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Influence of Ni on the lattice stability of Fe-Ni alloys at multimegabar pressures
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The lattice stability trends of the primary candidate for Earth’s core material, the Fe-Ni alloy, were examined
from first principles. We employed the exact muffin-tin orbital method (EMTO) combined with the coherent
potential approximation (CPA) for the treatment of alloying effects. It was revealed that high pressure reverses the
trend in the relative stabilities of the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-
packed (hcp) phases observed at ambient conditions. In the low pressure region the increase of Ni concentration
in the Fe-Ni alloy enhances the bcc phase destabilization relative to the more close-packed fcc and hcp phases.
However, at 300 GPa (Earth’s core pressure), the effect of Ni addition is opposite. The reverse of the trend is
associated with the suppression of the ferromagnetism of Fe when going from ambient pressures to pressure
conditions corresponding to those of Earth’s core. The first-principles results are explained in the framework of
the canonical band model.
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I. INTRODUCTION

Iron is one of the most abundant metals on Earth. Due to its
unique properties, it is widely used in numerous technological
applications. Since the discovery of the Earth’s core about a
century ago, the idea that Fe is its dominant component has
gained strong support from geochemical observations, seismic
data, etc. Presently, it is generally presumed that Earth’s inner
core consists of iron alloyed with a substantial amount of
nickel (5 to 15 at.%) and a few percent of light elements
such as sulfur and silicon.1–5 The pressure and temperature
conditions in this region are estimated to be in the range of
300–400 GPa and 4000–6000 K, respectively. Until recently,
the hexagonal close-packed (hcp) phase of iron was considered
the only candidate for Earth’s inner core. However, lately it
was predicted theoretically that the body-centered cubic (bcc)
and face-centered cubic (fcc) phases of iron at Earth’s core
conditions may be as stable as the hcp structure.6–8 Moreover,
it is well established that at ambient pressure even relatively
small amount of impurities can influence the phase equilibria
and thermodynamic properties of Fe alloys,9,10 and one should
expect that a similar situation may also occur at Earth’s core
conditions. To address the problem of phase stability of iron
and its alloys at ultrahigh pressure is important to both physics
and geophysics.11–17

There is no unambiguous experimental data indicating
the stable iron phase, though experiments have started
to approach these extreme conditions.15,18 A number of
reliable experiments on Fe-based alloys were carried out at
slightly lower pressures and temperatures.12,16 An important
contribution here is due to Dubrovinsky et al.15 who have
reported stabilization of the bcc phase of iron alloyed with
10 at.% of Ni. At first it may seem surprising because from the
ambient pressure phase diagram of the Fe-Ni alloy19 it follows
that the addition of Ni stabilizes the closed-packed (fcc)
phase and destabilizes the bcc phase. Furthermore, ab initio
calculations by Vocadlo et al.20 show that at relatively low
pressures (up to ∼20 GPa) Ni destabilizes the bcc phase of
Fe-Ni in favor of the hcp phase as it does at ambient conditions.

So, is it possible that with a further increase of pressure
the effect is reversed? In this paper, we demonstrate it can be
the case. We study the effect of Ni on the lattice stability of the
bcc, fcc, and hcp phases of Fe. We show from first-principles
calculations that the stabilization effect of Ni strongly depends
on the magnetic state of the Fe-Ni system, which is, in turn,
controlled by pressure. Therefore the effect of Ni on the
structural energy differences between the competing phases of
Fe-Ni alloy turns out to be opposite at ambient conditions and
at pressure conditions corresponding to Earth’s inner core.
We support our calculations by an explanation in terms of the
canonical band theory, which successfully describes crystal
structure trends for transition metals21–23 and their alloys.24

The paper is organized as follows: Section II introduces the
concept of lattice stability. Section III contains the description
of the method of calculations and the obtained results.
Section IV presents the results of first-principles calculations,
which are discussed and explained in the framework of the
canonical band model. Section V summarizes the results.

II. CONCEPT OF LATTICE STABILITY

A concept of lattice stability was introduced by
Kaufman.25,26 It referred to the differences in the Gibbs free
energies among different crystal structures of pure elements.
Originally, the lattice stability was determined by means of
the semiempirical thermochemical approach, which is based
on the assessment of experimental data. In particular, it
includes extrapolations from the liquidus-solidus lines in phase
diagrams of alloy systems relevant for corresponding pure
elements. Further, the method may involve extrapolations of
enthalpies of mixing as a function of composition, as well
as extrapolations of high-temperature data to zero temper-
ature. The zero-temperature lattice stabilities constitute the
cornerstone of the powerful calculation of phase diagrams
Computer Coupling of Phase Diagrams and Thermochemistry
(CALPHAD) approach to calculating phase equilibria at finite
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temperatures. This is explained and discussed in detail by
Saunders and Miodownik in Ref. 27.

First-principles calculations of lattice stabilities were pi-
oneered by Pettifor23 and Skriver,21 who demonstrated that
the first-principles theory is capable of reproducing correctly
the crystal structures of transition metals and related the
observed hcp–bcc–hcp–fcc sequence, which takes place across
the transition metal series, to the change in the occupation of
the d electron states. Despite the problem with comparing
absolute values of ab initio structural energy differences with
thermochemical lattice stabilities for some elements,28,29 the
trends, which govern the stabilization of different crystal
structures upon the increase of valence electron concentration,
are very similar in theory and experiment.27 Thus, the study
of lattice stability variation upon adding Ni into Fe is essential
for understanding of stabilization effect of Ni on the crystal
structure of Fe-Ni alloys. As a matter of fact, understanding
the energetic effect of the Ni substitution into different crystal
structures of Fe in terms of lattice stability is conceptually
very close to the methodology suggested in Ref. 30 for the
estimation of the stabilization energy of the bcc phase of Fe
with respect to the hcp phase due to alloying with Si. The
advantage of the former concept is that it can be related to a
change of the d occupation by means of the canonical band
theory,21,31,32 as will be discussed in Sec. IV.

III. FIRST-PRINCIPLES CALCULATIONS
OF LATTICE STABILITY

A. Methodology

The calculations were performed within the density func-
tional theory (DFT). The generalized gradient approximation
(GGA)33,34 was used for the exchange-correlation potential
and energy, and the Kohn–Sham equations were solved
in the framework of the exact muffin-tin orbital (EMTO)
method.35,36 The effect of alloying was taken into account
within the coherent potential approximation (CPA).37–39 The
CPA is known as the successful method for electronic structure
calculations of disordered metallic alloys, providing accurate
description of the electronic structure for alloys with common,
as well as split-band behavior, and for the total energies.40 A
comparison of this method and the supercell approach for
the Fe-Ni random alloys at ambient conditions was carried
out in Ref. 41, where its high accuracy was proven. The
disordered local moment (DLM) model was used to describe
the paramagnetic (PM) state.42 The ambient conditions were
modeled as T = 0 K and P = 0 GPa.

All the calculations were well converged with respect to the
number of k points used for the integration over the Brillouin
zone and other parameters of the method. It is known that
the GGA provides better agreement between calculated and
experimental equilibrium volumes, and accordingly pressure-
volume relations, but leads to an overestimation of the mag-
netic moment of bcc Fe. Therefore the self-consistent electron
densities were obtained within the local density approximation
(LDA),43 and then the total energies were calculated in the
GGA using the full charge-density formalism. As pointed out
in Ref. 44, this scheme gives a very accurate description of
both magnetic and thermodynamic properties of transition

metal alloys. The energy integration has been carried out in
the complex plane using a semielliptic contour comprising
24 energy points. The calculations were performed for a basis
set including valence s, p, d, and f orbitals. The core states
were recalculated at each iteration of the self-consistency loop.
In our CPA calculation, we included the screening contribution
to the electrostatic potential and energy to take into account
the effect of charge transfer between the alloy components.45

For the explanation of the theoretical results, the canonical
band model was used. The methodology of the canonical band
calculations is given in Ref. 24.

B. Results

In order to examine the influence of Ni on the stability
of iron phases, first-principles calculations of the formation
enthalpies were carried out. The pressure-temperature phase
diagram of iron discloses three solid Fe phases at low
pressures, namely ferromagnetic (FM) bcc (α), PM fcc (γ ), and
PM bcc (δ) (see Refs. 6 and 15). In the low temperature interval
up to 1200 K, the FM bcc α phase of iron is thermodynamically
stable relative to the δ and γ phases. The three aforementioned
phases were examined together with the hcp iron phase, which
is known to be stable at higher pressures. For this reason, the
PM hcp ε phase was modeled within the DLM approximation.
The results of the enthalpy calculations are summarized in
Figs. 1 and 2.

In Fig. 1 the results obtained at zero pressure are presented.
In order to provide a clear representation of the lattice
stability influenced by Ni addition, the enthalpies of FM bcc,
nonmagnetic (NM) bcc, and FM fcc Fe-Ni alloys were plotted
in comparison with the PM hcp one, which was taken as the
reference (see Fig. 1). Here we would like to point out that
the ground state of Fe-rich FeNi fcc alloys is believed to

FIG. 1. (Color online) Formation enthalpies calculated for the
FM bcc (red line, squares), NM bcc (green line, diamonds), and
FM fcc (black line, circles) phases of Fe-Ni alloy as a function
of Ni content. The simulations were carried out at zero pressure
and temperature. Enthalpies of the considered phases are given in
comparison with the enthalpy of the PM hcp phase calculated within
the DLM approximation. The DLM hcp enthalpy is taken as the zero
level line. The arrows are a guide for the eye to illustrate the decreasing
relative stability of the bcc phase with increasing Ni concentration.
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FIG. 2. (Color online) Formation enthalpies calculated for the
NM bcc (red line, squares) and fcc (black line, circles) phases of Fe-Ni
alloy as a function of Ni content. The simulations were carried out at
pressure 300 GPa and zero temperature. Enthalpies of the considered
phases are given in comparison with the enthalpy of the PM DLM
hcp phase. The DLM hcp enthalpy is taken as the zero level line.
The arrows are a guide for the eye to illustrate the decreasing relative
instability of the bcc phase at zero temperature with increasing Ni
concentration.

be complex antiferromagnetic (AFM). However, the energy
difference between these and the FM state is very small, of
the order of few millielectron volts,46 so it is not essential
for the present discussion. Similarly, hcp Fe is predicted to
be AFM in calculations.47–51 However, the predicted magnetic
ordering temperature is rather low, ∼69 K,51 and, moreover,
hcp Fe0.9Ni0.1 alloy does not show any experimental evidence
of the AFM order down to 11 K at P = 21 GPa.49 This justifies
our choice of approximations for the description of magnetic
structure of close-packed fcc and hcp alloys.

The calculations were carried out for Ni concentrations
from 0 at.% up to 100 at.%, that is from pure Fe to pure Ni,
respectively. From Fig. 1 it is seen that at zero pressure the
enthalpy of the FM bcc Fe-Ni alloy with Ni content up to
45 at.% is the lowest one, indicating the thermodynamic
stability of this phase relative to the other considered phases.
The hcp phase is more stable than the FM fcc phase up to
∼7 at.% of Ni. However, at concentrations higher than 7 at.%
of Ni the FM fcc phase becomes energetically more stable than
the PM hcp one. The NM bcc state at P = 0 GPa is so much
higher in energy that it does not compete with the hcp and fcc
phases in the whole concentration interval. With an increase
of Ni concentration (up to ∼45 at.%), the enthalpy difference
between the FM bcc and the FM fcc phases decreases, and
finally at concentrations higher than ∼45 at.% of Ni the FM
fcc phase becomes energetically favorable relative to the FM
bcc one. Thus, at ambient pressures the Ni addition tends to
stabilize the fcc phase of Fe and therefore destabilizes the
FM bcc phase. This result is in qualitative agreement with the
experimental phase diagram.19

However, at high pressures corresponding to Earth’s core
conditions (∼300 GPa) the effect of Ni on the behavior of
lattice stability turns out to be completely opposite to the

one at ambient conditions. In Fig. 2 the results for the lattice
stability of the bcc, fcc, and hcp Fe-Ni alloys obtained at 300
GPa are presented. Here again the hcp iron phase is taken as a
reference. As magnetism in Fe in DFT calculations disappears
with increasing pressure, the bcc and fcc phases were
considered as NM for the high pressure calculations. We also
notice that in the DLM calculations at 300 GPa the magnetic
moment disappears in the PM hcp phase of Fe-Ni alloys except
at concentrations very close to pure Ni. From Fig. 2, one may
see that at low Ni concentrations the hcp PM phase has the
lowest enthalpy. However, with the increase of Ni content up to
∼50 at.%, the NM fcc phase becomes more stable with respect
to the hcp one. Furthermore, the decrease of the gap between
the bcc and hcp curves with increasing Ni concentration
can be clearly seen. The same trend is observed for the gap
between the bcc and fcc phase enthalpy curves. Thus, we
stress that at high pressures the Ni addition tends to make the
bcc phase less unstable, while at zero pressures the opposite
effect takes place. This is in agreement with the experimental
results indicating stabilization of the high-pressure bcc phase
of Fe alloyed with Ni.15

IV. DISCUSSION

The opposite trends in the lattice stability behavior at
zero and 300 GPa pressures can be explained in terms of
the canonical band model.21,22,31,32 The canonical energy is
of particular interest since it gives an element-independent
description of the relative crystal structure stability. According
to the canonical band model, the canonical energy difference
among different structures can be determined from a sum of
all band energies up to the Fermi energy. The Fermi energy
is defined by the number of electrons with all azimuthal
quantum numbers l. Hence, the crystal structure stability can
be written as a function of the occupation of the l states. In
transition metals one may, to good approximation, neglect all
but the d bands (l = 2). Therefore one can derive the atomic
number independent estimation of the band contribution to the
cohesive energy in terms of the first-order moment canonical
state density.21,22,52 The canonical band theory is a classic
way to analyze and explain trends of the lattice stability
upon the change of the band filling, which is one of the
main effects of alloying Fe with Ni. Because it is derived
from the fundamental principles of quantum mechanics, its
conclusions do not depend on methodological details, and
they are unaffected by numerical inaccuracies inherent in
first-principles calculations. Certainly, the model cannot be
used for quantitative prediction of a specific crystal structure at
particular pressures and temperatures. In particular, it neglects
the pressure-induced sp to d charge transfer, which may
influence the quantitative energy balance.53,54 Nevertheless
it is a powerful theoretical tool to understand, explain, and
predict stability trends across transition metal series.

In Fig. 3 we show the structural trend as a function of band
occupation, obtained from the canonical d band model21,31

generalized for spin-polarized systems.24 To compare lattice
stability trends in FM and NM systems, one assumes that
the former are completely saturated ferromagnets, and their
spin-up d band is full. This is a reasonable assumption for
Fe and Ni at ambient pressure. Because the spin-up band
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FIG. 3. (Color online) Results of the canonical band model
calculations for the lattice stability of transition metals. The canonical
d band energies are given for the fcc and bcc crystal structures relative
to the hcp structure as a function of the d occupation of the spin-down
band.60 In the case of FM order the spin-up band is assumed to be
fully saturated. For the NM case occupations of both spin-up and
spin-down bands are equal.

is full, it does not contribute to the bonding, and the lattice
stability in this case is determined by the fractional filling of
the spin-down d band, which contains ∼1.9 electrons for Fe.
On the contrary, if the magnetic moment is quenched, e.g.,
by ultrahigh pressure, the structural energy differences are
functions of the total d occupation number, and the electrons
are distributed equally between spin-up and spin-down bands,
contributing ∼3.5 electrons to the spin-down band of Fe.
Söderlind et al. pointed out in Ref. 55 that the observed crystal
structure sequence for FM 3d metals subject to increasing
d occupation, i.e., bcc → fcc → hcp, stems from the same
band-filling arguments as for the well-known PM 4d and 5d

transition metal sequence hcp → bcc → fcc → hcp.
Now we can use Fig. 3 to understand the stabilization effect

of Ni on the different iron phases in the FM ambient pressure
and NM high-pressure states. One can see that occupation of
the d band of the FM bcc iron phase corresponds to a position
near the energy difference minimum, while it is located near the
maximum in the NM state. Adding 10–15 at.% of Ni into the
FM iron phase changes the number of spin-down electrons per
atom and shifts the band occupation away from the minimum,
making the bcc structure less stable with respect to the fcc
and hcp phases. Thus alloying of Fe with Ni destabilizes the
bcc phase at ambient pressure, in agreement with experiment
and ab initio calculations. On the contrary, the Ni addition
to the NM Fe shifts the d band occupation off the maximum
and therefore tends to decrease the instability of the bcc phase
with respect to the more close-packed hcp and fcc phases.
In summary, the canonical band model correctly shows that
at ambient conditions the alloying with Ni should lead to
the stabilization of more closed-packed crystal structures of
Fe, as is known from experiments and reported in previous
publications.9,10 However, at Earth’s core conditions, when
high pressure suppresses the FM order,56–58 the addition of Ni
contributes to stabilization of the more open bcc structure.

It is important to point out that the first-principles
calculations presented in Sec. III, as well as the canonical
band model, give lattice stability trends at T = 0 K. It is rather
obvious that this approximation may significantly overestimate
the amplitude of the structural energy differences.28 However,
the trend of the lattice stability as a function of the d band
occupation (or concentration of element with higher number of
valence electrons) is still correct.27 In this respect, the approach
adopted by us is similar to that used by Vocadlo et al. in Ref. 30
to discuss the stabilization effect of Si on the bcc crystal
structure of Fe and by Dubrovinsky et al. in Ref. 15 to estimate
this effect for Ni. Certainly, though the calculated enthalpies
of the bcc alloy phases approach those of the close-packed
phases, the difference between them is still rather large.
However, as demonstrated in Ref. 30 by means of ab initio
molecular dynamics simulations, the anharmonic contribution
to lattice vibrations, which is much more pronounced in the bcc
phase than in close-packed structures, compensates to a very
large degree for the zero-temperature energy difference. For
example, it reduces the free energy difference between the bcc
and hcp phases by an order of magnitude, down to 35–50 meV
at T = 5000–6000 K.30 As one can see in Fig. 2, the energetic
effect of alloying with 10–15 at.% of Ni on the stabilization
of the bcc phase is comparable to these numbers. This may
explain the fact that the bcc phase has not been observed
in pure Fe at ultrahigh pressure and temperature,18 but it is
observed in the Fe-Ni alloy.15 We notice that a more precise
quantitative analysis of possible thermodynamic stabilization
of the bcc phase at high pressures requires full consideration
of lattice dynamics, including anharmonic vibrations.8,30 This
is, however, out of scope of the present paper.

We also emphasize that the model adopted by us approxi-
mates high-pressure bcc and fcc phases as NM, and electron
correlations are assumed to be weak. Recent dynamical
mean field theory calculations demonstrated that fcc and hcp
phases of Fe are indeed Pauli paramagnets at Earth’s core
conditions.59 Their potential energies should therefore be ade-
quately described by NM calculations at the level of accuracy
needed for the present study. On the contrary, the magnetic
susceptibility of the bcc phase shows linear dependence on
temperature,59 indicating that local magnetic moments may
survive at Earth’s core conditions. However, it was found that
this effect did not influence energy difference between the hcp
and bcc phases.59 Thus, a more accurate treatment of the PM
state should not affect our main conclusion: Ni in Fe acts as a
bcc phase stabilizer at ultrahigh pressure.

V. SUMMARY

We have shown from first-principles calculations that
application of ultrahigh pressure reversed the trend among
the relative stabilities of the bcc, fcc, and hcp phases of
Fe-Ni alloys. In the low pressure region the increase of
Ni concentration in Fe-Ni alloy leads to the bcc phase
destabilization relative to the fcc and hcp phases, in agreement
with the experiment. However, at Earth’s core pressures, Ni
addition reduces the instability of the bcc phase relative to
the closer packed phases. This diverse behavior is associated
with the suppression of ferromagnetism of Fe when going
from the ambient conditions to the conditions of Earth’s core.
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The results of first-principles calculations are explained in the
framework of the canonical band model.

We notice that our finding, though obtained at zero temper-
ature, is expected to have implications for the case of Earth’s
inner core pressure and temperature conditions. In particular,
we conclude that experiments carried out for pure Fe and for
Fe-Ni alloy should not be compared directly. Even though
experiments could not confirm the stability of the bcc phase of
pure Fe at high pressures,18 the presence of Ni may drastically
change this picture and promote the bcc phase stabilization.
This possibility together with the tendency of the bcc phase to
be stabilized at high temperatures makes the bcc Fe-Ni alloy
a strong candidate to be present in Earth’s inner core.
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42-59) and the Göran Gustafsson Foundation for Research in
Natural Sciences and Medicine. I.A.A. and S.I.S. acknowledge
the Swedish Government Strategic Research Area Grant
in Materials Science, including Functional Materials and
VR Linnaeus Grant LiLi-NFM. Support from the Swedish
Foundation for Strategic Research through the SRL program
is gratefully acknowledged. This study was supported in part
by the Ministry of Education and Science of the Russian
Federation within the framework of Program “Scientific
and Scientific-Pedagogical Personnel for Innovative Russia
(2009-2013)” (projects no. 14.B37.21.0890 of 10.09.2012 and
no. 14.A18.21.0893) and Russian Foundation for Basic Re-
searches (Grant No. 10-02-00-194a, A.V.P.). We are grateful to
Leonid Dubrovinsky for fruitful discussions. The calculations
were carried out at the National Super Computer Centre (NSC)
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Ruban, H. L. Skriver, and B. Johansson, Phys. Rev. B 54, 3380
(1996).

224107-6

http://dx.doi.org/10.1103/PhysRevB.5.2382
http://dx.doi.org/10.1016/0079-6425(82)90005-6
http://dx.doi.org/10.1103/PhysRevB.57.14164
http://dx.doi.org/10.1103/PhysRevB.71.054402
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1088/0034-4885/71/4/046501
http://dx.doi.org/10.1088/0034-4885/71/4/046501
http://dx.doi.org/10.1103/PhysRevB.66.024202
http://dx.doi.org/10.1103/PhysRevB.66.024202
http://dx.doi.org/10.1103/PhysRevB.76.014434
http://dx.doi.org/10.1103/PhysRevB.60.791
http://dx.doi.org/10.1103/PhysRevB.60.791
http://dx.doi.org/10.1088/0953-8984/16/14/020
http://dx.doi.org/10.1088/0953-8984/16/14/020
http://dx.doi.org/10.1103/PhysRevLett.97.087202
http://dx.doi.org/10.1103/PhysRevLett.97.087202
http://dx.doi.org/10.1103/PhysRevB.78.064410
http://dx.doi.org/10.1103/PhysRevB.78.064410
http://dx.doi.org/10.1103/PhysRevB.67.180405
http://dx.doi.org/10.1103/PhysRevB.66.024110
http://dx.doi.org/10.1103/PhysRevLett.108.055505
http://dx.doi.org/10.1103/PhysRevB.50.5918
http://dx.doi.org/10.1063/1.2434184
http://dx.doi.org/10.1103/PhysRevB.79.184406
http://dx.doi.org/10.1103/PhysRevB.79.184406
http://dx.doi.org/10.1016/j.jmmm.2009.10.033
http://dx.doi.org/10.1016/j.jmmm.2009.10.033
http://arXiv.org/abs/arXiv:1204.3954
http://dx.doi.org/10.1103/PhysRevB.54.3380
http://dx.doi.org/10.1103/PhysRevB.54.3380



