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First-principles study of hexagonal tungsten trioxide: Nature of lattice distortions
and effect of potassium doping
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A density functional theory study is reported on pure and potassium doped tungsten trioxide. The nature of
lattice distortions in the hexagonal phase is analyzed and a new symmetry group is proposed. The structure
and stability of cubic, monoclinic, and hexagonal phases is studied as a function of potassium doping and an
approximate phase diagram is derived. KxWO3 undergoes a monoclinic to hexagonal phase transition at x ∼ 3%.
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I. INTRODUCTION

Tungsten trioxide (WO3) is an interesting material for
catalysis1 and gas sensing.2 Upon alkali-metal doping, WO3

forms tungsten bronzes with promising optoelectronic prop-
erties such as electrochromism.3 Pure WO3 has a rich phase
diagram and undergoes several structural transitions in the
temperature range 0–1000 K. The crystal structure is close
to the ReO3 type (defect perovskite), with corner sharing,
W-centered oxygen octahedra which form a simple cubic
lattice. This ideal cubic structure (c-WO3) does not exist.
Instead, lattice distortions reduce the symmetry to tetrag-
onal, orthorhombic, monoclinic, or triclinic depending on
temperature. At room temperature, the monoclinic γ phase
(m-WO3) with space group P 21/n is stable.4,5 Using specific
synthesis routes, another phase, with hexagonal structure
(h-WO3) can also be stabilized at room temperature. The
h-WO3 phase was first synthesized by Gerand et al.6 by
dehydration of WO3 · 1/3H2O. Disregarding distortions, the
authors proposed a simplified atomic structure with P 6/mmm

symmetry. Schlasche and Schöllhorn7 and Oi et al.8 syn-
thesized h-WO3 from ammonium-containing precursors and
reported somewhat different lattice parameters than those
of Gerand et al.6 Oi et al.8 found a strongly distorted
structure with P 63/mcm space group. The atomic positions
could, however, not be fully determined and two different
and equally likely data sets were reported. To date, it is
not clear whether the three reported models correspond to
different crystal structures, possibly due to different resid-
ual impurities (H2O or NH3),9 or whether the differences
between models are due to uncertainties in the structural
refinements.

From the theoretical side, most studies have concentrated on
the cubic and monoclinic phases.10–14 For the hexagonal phase,
only the simplified high-symmetry (P 6/mmm) structure6 has
been considered.15–17 To the best of our knowledge, the precise
atomic structure and the nature of the lattice distortions in
h-WO3 has never been studied by first-principles theory.

The metastable hexagonal phase can also be stabilized by
growing WO3 nanostructures on appropriate surfaces. Gillet
et al.18 reported the formation of h-WO3 nanorods on a
muscovite(0001) surface. The K+ ions present at the muscovite
surface are believed to play a crucial role in stabilizing the
h-WO3 phase,19,20 because bulk K0.26WO3 has hexagonal
structure. Hexagonal KxWO3 has been calculated from first
principles for x = 1/3,15,16 but no systematic study of the

stability of KxWO3 as a function of doping level x has been
performed so far.

Here we report a density functional theory study on the
structure and energetics of pure and K-doped WO3, in cubic,
monoclinic, and hexagonal phases. For pure WO3 in the
hexagonal phase, we find that the lattice is substantially
distorted in agreement with experiment.6,8 The calculated
atomic structure has common features with several conflicting
models, thus providing a synthesis of the experimental data.
It is shown that upon K doping, WO3 undergoes a monoclinic
to hexagonal structural transition at doping level x ∼ 3% and
an approximate room-temperature phase diagram of KxWO3

is proposed.

II. COMPUTATION

The calculations were carried out using the plane-wave
projector augmented wave code VASP21,22 in the framework of
density functional theory (DFT) with the exchange-correlation
functional GGA-PBE (generalized gradient approximation-
Perdew-Burke-Ernzerhof). The energy cutoff was set to
400 eV. The Brillouin zone of m-WO3 and h-WO3 was sampled
on a �-centered 5 × 5 × 5 k-space grid. For some supercell
calculations of KxWO3, correspondingly fewer points were
used such that the grid spacing �k is approximately the
same. Structural optimizations were performed by relaxing
all atomic positions at a fixed cell volume and then searching
the total energy minimum as a function of cell volume. We
have also carried out some test calculations using the local
density approximation (LDA). We found very similar results
as with GGA-PBE, apart from the well-known fact that the
equilibrium volume is systematically smaller in LDA than in
GGA.

III. RESULTS AND DISCUSSION

A. Cubic and monoclinic phases

For the idealized cubic phase we find an energy of
−36.274 eV and an equilibrium lattice constant of 3.82 Å,
in good agreement with previous DFT-GGA results.14,16 The
calculated energy of the monoclinic phase is slightly lower,
−36.396 eV per WO3 unit, which implies that the cubic phase
is unstable under monoclinic lattice distortion, in agreement
with experiment. In the following we shall indicate energies
per WO3 unit and relative to the monoclinic phase, so
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E(m-WO3) = 0 by definition and E(c-WO3) = 0.122 eV. The
calculated lattice parameters of m-WO3 (a = 7.63, b = 7.73,
c = 7.75 Å, and γ = 90.5◦) agree well with most other
theoretical values.14,17 However, as usual for the GGA, they
are slightly overestimated (1–4%) as compared to experiment
(a = 7.31, b = 7.54, c = 7.69 Å, and γ = 90.9◦).4,5 The
calculated atomic positions of m-WO3 display qualitatively
the same lattice distortions as in experiment. The amplitude
of the distortions is, however, underestimated, especially
for the oxygen sublattice. The O positions differ from the
high-symmetry (c-WO3) sites by up to 0.3 Å in experiment,
but only up to 0.07 Å in the calculations. The agreement
between experiment and theory is better for the W sites with
a maximum displacement of 0.3 Å in experiment and 0.2 Å
in theory. We conclude that the structure and energetics of the
m-WO3 phase can be qualitatively well reproduced with the
present DFT-GGA scheme, even though the lattice parameters
are slightly overestimated and the distortion of the O sublattice
is underestimated.

B. Hexagonal phase

The atomic structure of h-WO3 is not completely under-
stood to date. Gerand et al.6 suggested P 63/mcm as a likely
space group. However, they determined the atomic positions
only very approximately by assuming the higher symmetry
group P 6/mmm.

This simplified structure, denoted here H1, is depicted in
Fig. 1 and summarized in Table I. In H1, the individual WO6

octahedra have only a very weak tetragonal distortion. The W
sites are located exactly at the centers and the O-O bonds have
almost equal length (2.70 ± 0.04 Å).

In contrast, a h-WO3 structure with considerably distorted
octahedra was reported by Oi et al.8 They proposed two
equally likely models (denoted here as H2 and H3), with the
same lattice constants and symmetry (P 63/mcm) but different
atomic positions, see Table I and Fig. 1(b). In H2, the O
octahedron is strongly distorted in the (xy) plane, giving rise
to two short O1-O1 bonds (2.3–2.4 Å). In H3, on the other
hand, the O1 positions are the same as in H1. In both H2 and
H3, the apical O2 sites are displaced in the (x,y) plane by

FIG. 1. (Color online) Experimental structures of hexagonal WO3

(Refs. 6 and 8). W in gray and O in red and pink for occupancy 1 and
0.5, respectively. (a) Top view (along c axis) of model H1 (Ref. 6).
(b) Top and side view of individual WO6 octahedra in different
models.

TABLE I. Structural models for hexagonal WO3 from experi-
mental Ref. 6 (H1) and Ref. 8 (H2, H3). Space group (“sym”), lattice
constants (in Å), and atomic positions are given. For model H1 the
cell origin and Wyckoff symbols have been adapted to the lower
symmetry space group P 63/mcm for easy comparison with models
H2 and H3. In H2 and H3 the occupancy of the 12k site (O2) is 50%.

Model H1 H2 H3

sym P 6/mmm P 63/mcm

a 7.298 7.324 7.324
c 7.798 7.663 7.663
c/a 1.069 1.046 1.046

W 6g (x,0,0.25)
x 0.5 0.472 0.472

O1 12j (x,y,0.25)
x 0.424 0.375 0.423
y 0.212 0.183 0.211

O2 6f (0.5,0,0) 12k (x,0,z)
x 0.5 0.445 0.431
z 0.0 0.016 0.018

0.4–0.5 Å from the high-symmetry positions (0.5,0,0), which
leads to some short O1-O2 bonds (2.4 Å). Moreover, the O2
sites are 12-fold with occupancy 0.5, that is, only 6 of the 12
equivalent sites are occupied [pink balls in Fig. 1(b)]. The W
sites are displaced in the xy plane by 0.2 Å from the centers
of the octahedra.

We have optimized the atomic structure of h-WO3 in
different symmetries, corresponding to the experimental mod-
els H1, H2, or H3, and without symmetry restriction. The
results are summarized in Table II. For P 6/mmm symmetry,
the calculated lattice constants agree within ±2% with the
experimental values of model H1, but the calculated c/a ratio
is 4% too small. The only internal structural parameter in this
symmetry, x of O1, agrees within 1% with experiment.

TABLE II. Calculated structural data for hexagonal WO3 in
different symmetries. Energy in eV with respect to the monoclinic
phase. See also legend of Table I.

Model H1 H3 H4

sym P 6/mmm P 63/mcm P 63cm

a 7.463 7.509 7.456
c 7.672 7.583 7.764
c/a 1.028 1.010 1.041

W 6g (x,0,0.25) 6c (x,0,z)
x 0.5 0.467 0.474
z 0.25 0.25 0.228

O1 12j (x,y,0.25) 12d (x,y,z)
x 0.429 0.424 0.426
y 0.214 0.216 0.217
z 0.25 0.25 0.25

O2 6f (0.5,0,0) 6c (x,0,z)
x 0.5 0.5 0.497
z 0 0 −0.002

Energy 0.129 0.040 0.019
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According to the experimental models H2 and H38 the
six O2 atoms occupy 12 sites with occupancy 0.5. From a
microscopic viewpoint, the question arises which six sites
in the unit cell are actually occupied. In the calculation,
a choice has to be made, and this necessarily breaks the
P 63/mcm symmetry. The number of possibilities to choose
6 sites among 12 is huge (12!/6!/6!). Most of these possibil-
ities can be discarded on physical grounds, because any two
nearest neighbor O2 sites are only ∼1 Å apart and cannot
be occupied at the same time (see the pairs of pink balls
on the same side of the octahedra in Fig. 1.) This leaves
26 = 64 physically acceptable configurations, many of which
are equivalent by symmetry. We have tried several inequivalent
configurations as initial conditions in the optimization. In all
cases, the O2 atoms relaxed very near (<0.03 Å) the high
symmetry position (0.5,0,0). This result automatically removes
the problem of the right choice of the (12k) sites since (0.5,0,0)
is a sixfold (6f ) site in P 63/mcm symmetry. As for the O1
site, the optimized position agrees well with the H3 (and H1)
model, see Table II. No solution was found corresponding to
the strongly distorted O1 positions as given in model H2. We
have carefully checked this by using H2 as initial structure of
the optimization. Even then, the O1 atoms relaxed to the H3
positions. Thus the H2 model can be definitely ruled out. In
all, two converged structures were obtained from the different
initial configurations for the H2 and H3 models. The first
one (denoted H3 in Table II) has P 63/mcm symmetry, as
suggested by experiments.6,8 It was obtained when the initial
configuration had a mirror plane perpendicular to c. The W
and O1 positions agree well with the experimental model H3.
Significant discrepancy with the experimental data is found
for the O2 positions (no distortion in calculation, as discussed
before) and the c/a ratio, which is underestimated by 4%.
The second converged structure (denoted H4, see Table II
and Fig. 2) was obtained when the initial configuration had
no symmetry at all. Nonetheless, the converged structure
has, within a numerical error bar of ∼0.01 Å, space group
symmetry P 63cm. With respect to P 63/mcm, one symmetry
element is missing, namely the mirror plane perpendicular
to c. Comparing the calculated structural parameters of H4
with the experimental values of H3, we see a slight (1–2%)
overestimation of the lattice constants, as usual for GGA, but
excellent agreement (∼0.5%) for the c/a ratio. Also the O1
and W coordinates agree very well, except that in H4, the
W atoms are displaced from the center of the octahedron not
only in the xy plane, as assumed in model H3, but also in the
z direction, by about 0.2 Å, see Fig. 2. This extra distortion
breaks the mirror plane perpendicular to c and thus lowers the
symmetry from P 63/mcm to P 63cm.

The displacement of W in the xy plane reduces the
symmetry from P 6/mmm (model H1) to P 63/mcm (model
H3) and lowers the energy very significantly by 0.09 eV (see
Table II). The extra displacement of W along z in H4 lowers
the energy further by 0.02 eV. The fact that the most stable
structure H4 has P 63cm symmetry seems to disagree with
experiment, where P 63/mcm was found as the most likely
symmetry group. However, when taken alone, the W sublattice
of H4 has exactly P 63/mcm symmetry and the positions
of the W atoms agree almost perfectly (<0.5%) with the
measured ones in H3.8 To see this, the origin of the coordinate

FIG. 2. (Color online) Calculated lowest energy structure H4 of
hexagonal WO3. (a) Top view (along c axis). (b) Side view. (c) Two
WO6 octahedra along c with bond lengths in Å.

system of H4 in Table II can be shifted by −0.022c. So in
H4, the distortion of the hexagonal cell (c/a ratio) and the
distorted W sublattice (taken alone) agree perfectly with the
experiments of Oi et al.8 These structural parameters have been
determined most reliably since x-ray diffraction8 and electron
microscopy6 measurements are very sensitive to the positions
of the heavy element tungsten, but much less so to oxygen.
The O positions could not be determined with certainty in
the experiments. Instead, two equally likely models (H2 and
H3) with quite different O sites were proposed from the same
data.8 In our lowest energy solution H4, the oxygen sublattice
is hardly distorted and agrees well with the simple H1 model.
The W atoms, however, show considerable distortion which
was not fully accounted for in the experimental models H2
and H3, which disregarded the out-of-xy-plane displacement
of the W atoms. The calculation reveals that the W atoms
are displaced towards a face of the octahedron, rather than
towards an edge as suggested in models H2 and H3. As a
result, each W atom has three short W-O bonds (∼1.8 Å) and
three long ones (2.0–2.1 Å), see Fig. 2(c). In the H4 structure,
each O atom has one short and one long O-W bond, so from
the oxygen perspective, the lattice distortion corresponds to
a bond length asymmetry along the W-O-W lines, as in the
monoclinic phase.12 The H4 structure with P 63cm symmetry
is probably the most regular realization of such an asymmetric
W-O-W bonding in the h-WO3 structure. The experimentally
proposed P 63/mcm symmetry is not compatible with this
W-O-W asymmetry in all three directions of the network,
because in P 63/mcm the mirror plane perpendicular to c
implies that the W-O bonds along c are of equal length.

Because the structural energy differences in Table II are
quite small, we have checked the stability of the different
phases by calculating the vibrational frequencies at the �

point of the Brillouin zone. We found that in structures H1
and H3 (as well as in the cubic phase), there are several
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FIG. 3. (Color online) Density of states (DOS) of WO3 in
different phases (a)–(d) and of K1/3WO3 in hexagonal 1 phase (e).
The local DOS were calculated with atomic radii of 0.75, 1.35, and
2.5 Å for O, W, and K, respectively. Energy is measured from the
top of the valence band. The width of the insulating gap is (a) 0.51,
(b) 0.48, (c) 1.83, and (d) 1.21 (in eV). The Fermi level lies in the
band gap for (a)–(d) and is indicated as EF in (e).

modes with imaginary frequencies of the order of 20 meV. This
clearly shows that these structures are unstable with respect
to lattice distortion in agreement with our total energy results.
For the monoclinic and the H4 structure, in contrast, no modes
with imaginary frequencies exist at the � point. For these
two phases we have estimated the zero-point energy23 in the
�-point approximation. We found 0.279 eV for the monoclinic
phase and 0.284 eV for H4, which indicates that the zero-point
contribution is negligible for the relative structural energies.

C. Electronic structure

In Figs. 3(a)–3(d) the density of states (DOS) is plotted
for the four studied structures of WO3. The total DOS and the
partial O-p and W-d DOS are shown. Other partial DOS (O-s,d
and W-s,p) are negligible on this scale. The total DOS of the
cubic and hexagonal H1 phase of WO3 agree well with those
obtained by Ingham et al.16 The valence band is dominated
by O-p and the conduction band by W-d states as an ionic
bonding picture would suggest. However, except for the top
of the valence band which is of almost pure O-p character, all
bands are strongly hybridized between O-p and W-d states,
which signals a strong covalency of the bonding. The DOS of
cubic and hexagonal H1 phases are similar. The most obvious
difference is the appearance in the hexagonal DOS of a sharp
peak at 2.5 eV, which can be assigned to the existence of a
very flat band in the whole Brillouin zone, as seen in Fig. 2 of
Ref. 17. The DOS of the distorted phases (monoclinic and H4)
is not very different from the corresponding undistorted ones

(cubic and H1). Upon distortion, the bands become narrower
and the DOS display more fine structure. For example, the
dip at −2 eV develops into a tiny gap in the monoclinic
phase. The most important effect of distortion is the increase
of the insulating gap. When going from the cubic to the
monoclinic phase the gap increases from 0.48 to 1.21 eV
in agreement with other DFT-GGA calculations.13,14,17 The
calculated monoclinic gap is, however, much smaller than in
experiment (∼3 eV14). This typical shortcoming of DFT may
be corrected for by using many-body approaches such as the
GW approximation or hybrid functionals.14 Such approaches
are, however, computationally much more demanding without
improving the structural and energetic properties that we are
mainly interested in here. In the hexagonal phase, too, the gap
increases strongly upon distortion and the effect is even larger
than in the cubic-monoclinic transition. The gap increases
from 0.51 eV in the undistorted H1 structure to 1.83 eV in
the distorted H4 structure.

D. KxWO3 phase diagram

Next we have studied the structure and energetics of
potassium doped tungsten trioxide (KxWO3) as a function
of x in the range 0 < x < 0.5. The interstitial sites are known
from the alkali bronzes. In the cubic phase the interstitial site
is the center of the cube formed by eight W atoms. A K atom
has thus 12 O nearest neighbors at a distance ac/

√
2 ≈ 2.7 Å.

The monoclinic cell corresponds to a 2 × 2 × 2 cubic cell
and has eight interstitial sites. In the hexagonal phase, the
interstitial sites are located in the hexagonal “tunnels” formed
by six connected WO6 octahedra. A K atom has 12 O nearest
neighbors at a distance of 3.3 Å. For the cubic and monoclinic
phases, the calculations were performed in a K8xW8O24 cell,
which corresponds to the primitive cell of m-WO3, and the
2 × 2 × 2 supercell of c-WO3. For the hexagonal phase, the
primitive cell K6xW6O18 was used. For one point, x = 1/12 =
0.83, bigger cells were needed, namely K2W24O72 for the cubic
and monoclinic, and K1W12O36 for the hexagonal phase. In the
calculations we have fixed the symmetry of the supercell to
cubic, monoclinic, and hexagonal, respectively. The positions
of all atoms and the cell volume have been fully optimized.
In order to investigate the influence of lattice distortion in the
hexagonal phase, we have considered two hexagonal systems,
an “undistorted” one (h1) which contains a proper sixfold
rotation axis and corresponds to the H1 structure in pure WO3,
and a distorted one (h2), which has only a threefold axis and
corresponds to the H4 structure in pure WO3.

Figure 4 shows the relative energies of KxWO3 in the
different phases and the corresponding phase diagram. It is
seen that the monoclinic phase is most stable only for very low
K concentration. At a doping level of x ∼ 3%, the hexagonal
phase becomes ground state until x ∼ 40%. For even higher
K concentrations, the cubic phase is most stable.

The energy of the monoclinic phase falls on an almost
straight line, which means that the insertion energy of a K atom
is independent of the doping concentration (in the calculated
range 0 < x < 0.5). This indicates that K-K interaction is
negligible which is also supported by our finding that for
a given K concentration, the energy is independent (within
0.01 eV) of the choice of the occupied interstitial sites. In
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FIG. 4. (Color online) Stability of the different phases of KxWO3.
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contrast, the energy of the hexagonal KxWO3 is a highly
nonlinear function of x. The energy of both h1 and h2 phases
decreases quickly with x for x < 1/6, then much more slowly
for 1/6 < x < 1/3 before it rises sharply for x > 1/3. For
x > 1/12, the curvature of E(x) is clearly positive. This
means that insertion of a K atom becomes energetically less
and less favorable with increasing doping and indicates a
repulsive K-K interaction. This may be seen as follows. The
curvature d2E/dx2 times dx2 directly gives the energy of
the disproportioning reaction 2 KxWO3 → Kx+dxWO3 +
Kx−dxWO3. When d2E/dx2 > 0 this reaction is energetically
not favored, so the system prefers a homogeneous distribution
of K atoms, which means that the K atoms want to stay apart,
that is, they interact repulsively. For the highly oxidized K+
cations in KxWO3, strong K-K repulsion is of course expected
from electrostatics. Our finding that the K-K interaction is
negligible in monoclinic KxWO3 shows that the K+-K+
repulsion is efficiently screened by the negatively charged
WO3 matrix. In the hexagonal structure, the screening is
much less efficient between K+ ions in the same tunnel since
the tunnels are large and the electrostatic potential along the
tunnels is very flat.15 For x > 1/3, strong K-K repulsion is
also expected because nominally maximum doping (one K per
interstitial site) is reached at x = 1/3. For x = 1/2, a tunnel
segment of c ∼ 7.7 Å is filled with three K atoms, such that
the K-K distance becomes very short (2.6 Å).

It can be seen from Fig. 4 that the energy difference
between the cubic and monoclinic phases decreases as a
function of x and vanishes for x > 0.35. At the same time

the atomic structure of the monoclinic phase approaches the
cubic one: c/a goes to 1 and the W atoms move “back” to
the center of the octahedra. The removal of the monoclinic
lattice distortion through doping was already reported for
electron-doped WO3.11 Qualitatively the same behavior is
found for the hexagonal phase. The difference between the
distorted structure h2 and the high-symmetry structure h1
fades away for 0 < x < 1/6 and becomes negligible for
1/6 < x < 1/3. In the overdoped, unstable regime x > 1/3,
distortions develop again.

In Fig. 3(e) the DOS of K1/3WO3 is shown in its ground
state hexagonal 1 structure. The valence and conduction bands
are hardly changed from the corresponding undoped system
[hexagonal H1, Fig. 3(a)] except that the states in the first
0.5 eV of the conduction band are filled and so the system
becomes metallic. Qualitatively the same behavior was found
for cubic alkali WO3 bronzes.16 In the whole valence band
and the lower 5 eV of the conduction band of K1/3WO3, the
orbital character is not changed from pure WO3, and the local
DOS on the K atoms [green curve in Fig. 3(e)] is negligible.
Potassium orbitals contribute only to empty states at over 5 eV
above the Fermi level. This analysis shows that the potassium
atoms transfer their 4s electrons to the WO3 matrix and K+
forms purely ionic bonds with W and O.

IV. CONCLUSIONS

In summary, we have presented a first-principles study on
pure and K-doped WO3 in the relevant room temperature
phases. The nature of the lattice distortions in hexagonal WO3,
which is an unsolved problem in the experimental literature,
has been studied theoretically. The calculated ground state
structure is in good agreement with experiment for the
well-established part of the structure, namely lattice constants
and W positions. We find that the W atoms are displaced
from the center of the O6 octahedra not only in the basal
plane but also along c. This distortion corresponds to a
bond length asymmetry along all W-O-W lines, and reduces
the symmetry group from previously assumed P 63/mcm to
P 63cm. The structure and stability of KxWO3 has been studied
for x < 0.5 and an approximate phase diagram has been
established. It has been shown that upon K doping, monoclinic
WO3 becomes unstable with respect to the hexagonal phase
when the doping concentration exceeds about 3%. Beyond
the nominal maximum doping concentration (x = 1/3) of
hexagonal KxWO3, the cubic phase becomes most stable.
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