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Structural, energetic, and elastic properties of hexagonal-close-packed rhenium-based transition-metal alloys
are computed by density-functional theory. The practical interest in these materials stems from the attractive
combination of mechanical properties displayed by rhenium for structural applications requiring the combination
of high melting temperature and low-temperature ductility. Single-crystal elastic constants, atomic volumes, axial
c/a ratios, and dilute heats of solution for Re-X alloys are computed, considering all possible transition-metal
solute species X. Calculated elastic constants are used to compute values of a commonly considered intrinsic-
ductility parameter K/G, where K is the bulk modulus and G denotes the Voigt average of the shear modulus, as
well as the anisotropies in the Young’s modulus and shear modulus. The calculated properties show clear trends
as a function of d-band filling, which can be rationalized through tight-binding theory. The results indicate that
solutes to the left of rhenium in the periodic table show a tendency to increase the intrinsic ductility parameter, a
trend that correlates with an increase of the c/a ratio towards the ideal value associated optimal close packing.
The Young’s modulus shows a trend towards increasing isotropy with alloying of solutes X to the left of Re,
while the shear modulus shows the opposite trend but with an overall weaker dependence on solute additions.
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I. INTRODUCTION

Among the refractory elements, Re is unique in displaying
a hexagonal-close-packed (HCP) crystal structure, as opposed
to the body-centered-cubic structure shared by Nb, Mo, Ta,
and W. This difference in crystal structure correlates with the
fact that Re is known to be the only refractory element that
does not display a measured ductile-brittle transition, such that
it features relatively high ductility at low temperature.1,2 The
combination of low-temperature ductility and high melting
point make Re-based alloys attractive as structural materials
for high-temperature applications. However, the exceptionally
high cost and limited worldwide reserves of elemental Re
have resulted in limited use of such alloys to date.3,4 There
is thus practical interest in finding replacement strategies
for Re, with one approach being the identification of solute
atoms that can be added to Re in high concentrations without
significantly altering its desirable mechanical properties. For
such a strategy to be effective, solute atoms must be identified
that, at a minimum, maintain the high melting temperature of
Re without compromising low-temperature ductility.

To aid in such alloy design efforts, it is useful to understand
the effect on intrinsic structural and elastic properties resulting
from substitutional alloying (e.g., Ref. 5). Here we focus on
alloying with transition-metal (TM) solutes, as it is expected
that combinations of these elements chosen to maintain a d-
band filling close to that characteristic of Re could be effective
in retaining high melting temperatures, due to the well-known
maximum in the cohesive energy that occurs at approximately
half d-band filling.6–8 We thus consider HCP Re-X alloys, with
all possible 3d, 4d, and 5d solute elements X, and calculate
by density-functional theory (DFT) three classes of properties:
dilute heats of mixing, single-crystal elastic constants, and
structural properties including atomic volume and axial c/a

ratio. Since one of the main attractive features of Re is its
low-temperature ductility, we use these DFT results also to

study trends in the effects of TM solutes on properties that are
expected to correlate with this property.

Several approaches have been proposed in the literature
to examine the intrinsic ductility of a material from first-
principles DFT calculations.9–15 The simplest approach is
based on the consideration of a ductility parameter D = K/G,
defined as the ratio of the bulk modulus (K) to the Voigt
average of the shear modulus (G). In HCP metals, this
parameter has been shown to correlate well with the relative
ductility,9,12 with a higher K/G ratio indicating a tendency
towards enhanced ductility. This correlation can be understood
simply from a picture where microcrack initiation and propa-
gation requires bond breaking, which becomes more difficult
for high values of the bulk modulus, K , while deformation
mechanisms that give rise to plasticity are expected to be more
prevalent in materials with comparatively low shear moduli G.

A second property that can be expected to affect ductility
in polycrystalline samples is the crystalline anisotropy of
the elastic constants. Specifically, for systems with highly
anisotropic elastic constants, applied loads can lead to stress
concentrations at grain boundaries and triple junctions that
can contribute to brittle failure.16–18 From this standpoint, it
is expected that a lower degree of elastic anisotropy should
contribute to an enhancement in the ductility of polycrystalline
materials. We thus consider the effect of solute additions on
elastic anisotropy in Re-based TM alloys, using as a measure of
the crystalline anisotropy two parameters introduced recently
in Ref. 19, measuring the anisotropy in the Young’s and shear
modulus, respectively.

More sophisticated models have been developed for an-
alyzing ductility by DFT, where the energetic competition
between the creation of fresh surface (brittle behavior)
versus the formation of twins or stacking faults (ductile
behavior) is considered.9–13 For HCP metals, such models
consider the energetics of surface formation relative to slip

224101-11098-0121/2012/86(22)/224101(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.224101


DE JONG, OLMSTED, VAN DE WALLE, AND ASTA PHYSICAL REVIEW B 86, 224101 (2012)

on basal and prismatic planes and twinning on the {112̄1}
planes, which are known to constitute important deformation
mechanisms.9,13,20–22 Since the emphasis of the present work is
on the study of general trends in the intrinsic ductility induced
by the addition of TM solute atoms in HCP Re, we will
focus specifically on the consideration of the parameter K/G,
leaving the investigation of more detailed theoretical models
for future work focused on a more limited set of promising
compositions.

The remainder of this paper is organized as follows. In the
next section we give the computational details, including the
DFT methodology, the calculations of single-crystal elastic
constants, and the supercell modeling of alloys. The results
are presented in Sec. III, where we first compare results for
elemental Re with previous calculations and experimental
measurements. The trends in calculated properties with d-band
filling are then presented. A discussion of these trends in the
context of tight-binding theories is presented in Sec. IV. The
last section summarizes the main conclusions in the context of
the design of Re alloys outlined above.

II. METHODOLOGY

A. DFT Calculations

All of the DFT results presented in this work were
performed using the projector augmented wave (PAW)
method,23,24 as implemented in the Vienna Ab Initio Sim-
ulation Package (VASP).25,26 In these calculations use was
made of the Perdew-Zunger parametrization of the Ceperly-
Alder27,28 exchange-correlation energy within the local density
approximation (LDA-CA).

An energy cutoff for the plane wave basis set of 450 eV
was used. Brillouin zone integrations were performed using
Monkhorst-Pack k-point sampling;29 in all the total energy
calculations, the density of k points is chosen such that the
number of k points in the first Brillouin zone times the number
of atoms in the cell was approximately 15000. Occupation
of the electronic states was performed using the Methfessel-
Paxton scheme,30 with a smearing width of 0.1 eV. For the
structural optimizations, internal coordinates were relaxed
until the atomic forces converged to within 0.001 eV/Å.
The equilibrium lattice parameters were computed using a
conjugate-gradient minimization algorithm, employing the
calculated stress tensors. In all calculations, the residual
stresses, after the full relaxation, did not exceed 0.05 kBar
(5 MPa).

The PAW potential used for Re corresponds to the electron
configuration 5d56s2, with seven electrons treated explicitly
as valence. For all solutes, PAW potentials corresponding to
the nominal valence electrons were employed. For Re and
the alloy supercells (see below) the results presented, were
obtained using nonmagnetic calculations. For solute species
Fe, Co, Ni, Cr, and Mn spin polarization was considered
although nonmagnetic states were obtained upon structural
relaxation. In calculations of the dilute heats of solution, the
reference energies for elemental Cr, Mn, Fe, Co, or Ni were
also performed employing spin-polarized calculations; for Fe,
Co and Ni a ferromagnetic ground state was obtained, while for

Cr and Mn, the relaxed structured converged to nonmagnetic
solutions.

B. Elastic constant calculations

The calculation of the elastic constants was performed
using as a starting point the relaxed structures obtained from
the calculations described in the previous subsection. For
each such structure 24 unique deformation mappings are
constructed, corresponding to six independent deformation
modes. In the first set, ε11, ε22, and ε33 corresponds to
the uniaxial deformations whereas in the second, ε12,ε23,ε13

corresponds to the simple shear deformations. For calculating
the elastic constants, four values for the strain (−ε0, − 1

2ε0, +
1
2ε0, + ε0) were applied for each of the six deformation modes.
For uniaxial deformation, we used ε0 = 0.01 and for simple
shear ε0 = 0.004. Each of the deformations is characterized by
a deformation gradient tensor F. The Green-Lagrange strain
tensor E (which reduces to the linear strain tensor for small
strains) is calculated according to Eq. (1),

E = 1
2 (FTF − I). (1)

The components of the Cartesian stress tensor are calculated
from first principles, while allowing for ionic relaxations.
Subsequently, all components of the elastic tensor can be
determined by a least-squares fit of the calculated stresses to
the applied Green-Lagrange strain. This means every elastic
constant is fit to a total of five points, including the fully relaxed
(zero stress, zero strain) configuration.

Several tests were performed to estimate the numerical
precision of the calculated elastic constants. In the first set
of tests we considered the convergence with respect to k

points and plane wave energy cutoff, giving an estimated
precision of about 9.5 GPa for all elastic moduli presented
below. Further, the fitting procedure for the elastic constants
was examined to test the assumption of linear stress-strain
relations. Specifically, we compared the results obtained for
the range of deformations given above to values obtained by
fitting to a more limited range of strains: (−ε0,0, + ε0). It
was found that the consideration of this more limited range
of strains led to very similar results for the elastic constants,
differing by less than 1.5 GPa, compared to the values obtained
from the expanded range of strains given above. A final check
of the accuracy of the elastic constants was performed by
comparing the symmetry of the calculated elastic tensor to
the theoretical symmetry, as dictated by the HCP structure.
To this end, the calculated elastic tensor is projected onto the
closest fourth-order elastic tensor exhibiting HCP symmetry.
This method31–33 effectively minimizes the Euclidean distance
between the calculated elastic tensor and the tensor on which
the calculated elastic tensor is projected. For the first-principles
parameters used in this study, we found that all components of
the calculated elastic tensor were converged to within 2.6 GPa
of the closest tensor exhibiting the underlying HCP symmetry.

For the calculation of the ductility parameter K/G the bulk
modulus K is determined from the calculated single-crystal
elastic constants through the relation34

K = 2 (C11 + C12) + 4C13 + C33

9
. (2)
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The Voigt average of the shear modulus G is calculated
from the single-crystal elastic constants using the following
expression:34

G = (C11 + C33 − 2C13 − C66) /3 + 2C44 + 2C66

5
. (3)

From the convergence tests described above, the numerical
precision of the calculated values of K/G is estimated to be
within about 2% of the values given below.

To investigate the degree of elastic anisotropy we make use
of two parameters, fE and fG, introduced in Ref. 19. These
parameters measure respectively the anisotropy of the Young’s
modulus and shear modulus, and are defined in terms of the
elastic compliances (Sij ), as follows:

fE = S11/S33 (4)

fG = (S44 + 2S11 − 2S12)/2S44. (5)

Values of fE and fG equal to one correspond to elastically
isotropic solids, while deviations from unity provide a measure
of elastic anisotropy.

C. Supercell models for alloys

To study the effects of alloying Re with 3d, 4d, and 5d TM
solutes, we employ a 2×2×2 HCP supercell containing 16
total atoms. A single Re atom is substituted by a TM atom
X, yielding composition Re15X1. For each such supercell,
structural relaxations were performed, and the results used
to compute three quantities: the solute expansion coefficients
ηa and ηc, and the heat of solution �Hsol. The latter quantity
is computed as follows:

�Hsol = E(Re15X1) − 15E(Re) − E(X), (6)

where E(Re15X) is the energy of the Re15X supercell, while
E(Re) and E(X) denote the energies per atom of pure Re and
X in their relaxed equilibrium crystal structures, respectively.
The solute expansion coefficients are computed as

ηa ≡ ∂ ln (a)/∂x ≈ 16 [a(Re15X1) − a(Re)] /a(Re) (7)

ηc ≡ ∂ ln (c)/∂x ≈ 16 [c(Re15X1) − c(Re)] /c(Re), (8)

where x denotes the mole fraction of the solute, a(Re15X1)
and c(Re15X1) denote the lattice parameters derived from the
relaxed 16-atom supercell, and a(Re) and c(Re) correspond to
the lattice parameters for pure Re. The relaxed supercells are
also used as the starting point for calculations of the single-
crystal elastic constants, following the procedure described in
the previous subsection.

III. RESULTS

In this section we present the results of calculated struc-
tural, energetic and elastic properties for pure Re and Re-X
transition-metal alloys and compare to previously published
computational and experimental results. Each of the calculated
properties for the alloys considered in this work is shown to
display clear trends with the number of d electrons in the TM
solutes. These trends are discussed in the context of canonical
d-band theory in the next section.

A. Structural and elastic properties of pure rhenium

In Table I the values of the structural parameters and elastic
moduli computed in the present work for elemental Re are
compared to results from previous computational studies and
experimental measurements. Considering first the comparison
between our results and experiments, we see that the calculated
a and c lattice constants are underestimated by approxi-
mately 0.7%, while the elastic moduli are overestimated by
approximately 8%, except for C13, which shows a larger
disagreement with experiments of about 20%. This level of
agreement is viewed to be reasonable given that the present
calculations made use of the LDA, which generally shows a
tendency to overbind. We note, however, that the only other
previous calculation that made use of the LDA-CA exchange-
correlation potential35 shows slightly better agreement with
experiment for a and c lattice parameters, while the values of
C11, C33, and C44 are considerably larger that those obtained
in the current work and all other previous calculations listed
in Table I.

By contrast, the two other sets of LDA results36,37 listed
in Table I feature elastic moduli that are on average 6% and
16% smaller than the values calculated in the present work,
and closer to experimental measurements. The differences with
the present results may be due to the different parametrizations
of the LDA used in these previous calculations: the work in
Refs. 36 and 37 made use of the Vosko, Wilk, and Nusair
(VWN)38 and Hedin-Lundqvist (HL)39 parametrizations of
LDA, respectively. The calculated results listed in Table I36,37

obtained with the generalized-gradient approximation of
Perdew et al.40 (GGA-PBE) show the expected trend featuring
larger lattice parameters and smaller elastic moduli, relative to
the present LDA-CA results.

Overall, the best level of agreement between experiment
and theory appears to be obtained from the GGA-PBE results
of Ref. 37. In what follows we will focus on the changes in
structural and elastic properties associated with the addition
of TM solutes to HCP Re, and the trends that these changes
display as a function of band filling. For this purpose, the
slightly lower accuracy of the LDA-CA exchange correlation
is not expected to affect the main conclusions of the work.
Moreover, since much of this work involves investigating
dimensionless alloy parameters such as the ductility parameter
K/G, it is expected that systematic biases between GGA and
LDA will not affect the overall results strongly.

B. Structural properties of Re-based transition metal alloys

Table II lists the calculated values of the solute expansion
coefficients [ηa = ∂lna)/∂x and ηc = ∂ln(c)/∂x] for each of
the 3d, 4d, and 5d solutes X considered. Trends in associated
structural properties are plotted as a function of the number of
d electrons for the solute species in Figs. 1 and 2.

Figure 1 plots the volume expansion coefficient ηV =
∂ ln (V )/∂x = 2ηa + ηc as a function solute d-band filling. A
nearly parabolic trend is observed for each of the 3d, 4d, and
5d series, with minima corresponding to the Co/Rh/Ir column.
All of the 3d solutes except Sc and Ti lead to a decrease in
molar volume, with the most negative values corresponding to
Co. The values for the 4d and 5d elements are comparable;
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TABLE I. Structural and elastic properties of HCP Re, based on the computational and experimental (Exp.) methods listed in the first
column. The units for the reported values of lattice constants (a and c), atomic volume (�), and elastic moduli (Cij ) are Å, Å

3
, and GPa,

respectively. For the lattice parameters and atomic volume, experimental values extrapolated to zero temperature, using reported thermal
expansion coefficients, are given in parentheses.

Method a c c/a � C11 C33 C12 C13 C44 K/G fE fG

NCPP,a GGA-PBE36 2.762 4.442 1.608 14.67 607 705 307 209 164 2.14 1.40 1.05
NCPP, LDA-VWN36 2.756 4.437 1.61 14.58 623 731 327 218 170 2.18 1.45 1.07
FLMTO,b LDA-CA42 2.748 4.474 1.628 14.62 837 895 293 217 223 1.68 1.14 0.91
FLAPW,c LDA-HL37 2.750 4.442 1.615 14.54 605 650 235 195 175 1.83 1.14 0.97
FLAPW, GGA-PBE37 2.794 4.513 1.615 15.25 640 695 280 220 170 2.02 1.20 0.97
PAW, LDA-CA (this work) 2.741 4.422 1.613 14.39 672 740 309 252 176 2.16 1.18 0.98

Exp. (x-ray)44 2.762 4.455 1.613 14.71 × × × × × × × ×
(2.756) (4.448) 1.613 (14.63) × × × × × × × ×

Exp. (x-ray)45 2.761 4.456 1.614 14.70 × × × × × × × ×
(2.755) (4.449) 1.614 (14.63) × × × × × × × ×

Exp. (x-ray)46 × × × × 619 687 278 204 162 2.02 1.25 0.98
Exp. (ultrasound)47 × × × × 616 683 273 206 161 2.02 1.24 0.97

aNorm-conserving pseudopotential41

bFull potential linear muffin-tin orbital35

cFull potential linearized augmented planewave43

most of these solutes show positive values of ηV , with Tc,
Ru/Os, Rh/Ir, Pd/Pt giving weakly negative values.

Figure 2 plots the axial c/a ratio of the 16-atom Re15X1

cells as a function of the solute d-band filling. In this case a
general trend is observed for a decreasing value of c/a going
from the left to the right in the d-band series. The trend is nearly
monotonic, with some exceptions at the ends of the series on
either side (La, Cd, and Hg). It is noteworthy that pure Re has
a value of c/a ≈ 1.61, which is roughly one percent lower the
ideal value of

√
8/3 ≈ 1.63 corresponding to optimal close

packing. Solutes to the left of Re in the periodic table are seen
to increase c/a, making it closer to ideal, while those to the
right of Re lower c/a.

Experimental data on the structural parameters of Re-based
alloys is scarce and the effects of alloying with different
solutes is not well established. However, for the binary systems
Re-W, Re-Ir, and Re-Pt, our results regarding the trends in
the structural parameters are consistent with those identified
in some early experimental measurements.48 In Ref. 48, the

lattice parameters, c/a ratio and atomic volume of Re-based
alloys were experimentally determined. Solute elements W, Ir,
and Pt were added in concentrations between 5 and 40 at.%
while maintaining the HCP phase. Consistent with the current
work, Ir and Pt were found to decrease the c/a ratio whereas
W leads to an increase. The trends in the variation of volume
with band filling, as found in Ref. 48, are confirmed in the
present work as well. Alloying with W is found to lead to a
positive lattice expansion coefficient in elemental Re, whereas
both Ir and Pt show negative lattice expansion coefficients. Pt is
known experimentally48 to exhibit positive volume expansion
coefficients when added to Re in concentrations exceeding
about 40 at.%. These observations cannot be compared to
results from the present work in which much lower solute
concentrations have been studied.

C. Energetics of Re-based transition metal alloys

The energetics of alloying is examined through consider-
ation of the dilute heat of solution �Hsol defined in Eq. (6).

TABLE II. Calculated solute lattice expansion coefficients ηa and ηc and heat of solution �Hsol (kJ/mol solute) of solutes in rhenium
remove this phrase as it is redundant with text in the main manuscript.

3d Sc Ti V Cr Mn Fe Co Ni Cu Zn

ηa 0.047 −0.013 −0.050 −0.071 −0.081 −0.084 −0.086 −0.071 −0.038 −0.001
ηc 0.186 0.098 0.011 −0.047 −0.089 −0.114 −0.118 −0.123 −0.119 −0.089

�Hsol 100.7 17.6 37.4 64.9 28.6 3.9 −5.2 2.57 87.6 93.1

4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

ηa 0.117 0.073 0.024 0.004 −0.010 −0.011 −0.012 0.005 0.044 0.078
ηc 0.373 0.277 0.164 0.062 −0.018 −0.063 −0.068 −0.058 −0.036 0.0236

�Hsol 268.2 99.7 53.1 46.3 −1.8 −25.4 −58.3 −3.0 167.2 206.5

5d La Hf Ta W Re Os Ir Pt Au Hg

ηa 0.184 0.052 0.020 0.001 0 0.001 0.005 0.020 0.055 0.092
ηc 0.348 0.249 0.170 0.078 0 −0.048 −0.067 −0.057 −0.036 0.032

�Hsol 403.9 54.2 35.2 47.2 0 −27.3 −85.5 −72.2 82.7 212.6
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FIG. 1. (Color online) Volume solute expansion coefficient as a
function of 3d , 4d , or 5d solute element for alloy composition Re15X1.

Results for this property are listed in Table II and plotted in
Fig. 3. The heats of solution for the 3d, 4d, and 5d elements
with 3 or 4d electrons (V, Nb, Ta, Cr, W, Mo) are weakly
positive, while elements further to the left in the periodic
table feature increasingly positive values. The 4d and 5d

elements having 5, 6, or 7d electrons (Ru, Os, Rh, Ir, Pd, Pt) all
yield negative heats of solution, whereas the corresponding 3d

elements (Fe, Co, Ni) show weakly positive values. Moving
further to the right in the periodic table, to elements with 8, 9,
or 10d electrons, we observe again strongly positive heats of
solution for all of the 3d, 4d, and 5d solutes.

Experimental data on the thermodynamics of Re-rich alloys
is relatively scarce. However, the present results can be
compared to recent related computational studies,49,50 as well
as free-energy models derived from phase-diagram assess-
ments performed within the framework of the calculation of
phase diagrams (CALPHAD) formalism.51 To enable these

FIG. 2. (Color online) Variation in c/a as a function of 3d , 4d , or
5d solute element for alloy composition Re15X1.

FIG. 3. (Color online) Heat of solution as a function of 3d , 4d ,
or 5d solute element for alloy composition Re15X1.

comparisons, it is useful to consider the dilute heat of mixing
�Hmix, which is defined analogously to Eq. (6) but with the
E(X) defined as the energy of element X in the HCP structure
(rather than its lowest-energy structure if different than HCP).
A negative value of �Hmix is indicative of an ordering
tendency, such that the lowest-energy atomic configurations
on the HCP parent structure would be expected to be ordered
compounds. In the computational work reported in Refs. 49
and 50, Re-rich D019-prototype ground-state structures were
identified with compositions Re3Pd, Re3Pt, Re3Rh, Re3Ir, and
Re3Co. This is consistent with the results found in this work, in
which these systems were found to have large negative heats of
mixing. Another HCP-based superstructure, B19, is identified
as a ground in the Re-Os system, for which we also find a
negative heat of mixing.

Published CALPHAD models for the Re-W and Re-Ta
system51 feature negative excess Gibbs energies for both the
Re-Ta and Re-W HCP phases. The mixing energy computed
in the present work for Re-W with composition Re15W1

is −2.86 kJ/mol, which compares reasonably well to the
value of −7.986 kJ/mol from the assessment in Ref. 51. For
Re-Ta, however, the published free-energy model predicts a
mixing energy of −31.286 kJ/mol for Re15Ta1 composition,
which is in sharp contrast to the present calculated value of
+4.85 kJ/mol.

D. Elastic properties of Re-based transition-metal alloys

Figure 4 plots the calculated values of K , G, and the
intrinsic ductility parameter D = K/G for Re-X TM alloys
as a function of the number of d electrons for the solutes (X).
Both K and G are shown to display concave and roughly
parabolic trends, with maximum values occurring in the
Fe/Ru/Os column for K and in the Co/Rh/Ir column for
G. The K/G ratio displays a convex and roughly parabolic
dependence on solute d electron count, with a minimum in
the Co/Rh/Ir column. Since higher values of K/G correlate
with higher intrinsic ductility, the results in Fig. 4(c) suggest
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FIG. 4. (Color online) Variation of (a) K , (b) G, and (c) K/G as a function of 3d , 4d , or 5d solute element for alloy composition Re15X1.

that the addition of solutes to the left or right of Re in
the periodic table should increase and decrease the intrinsic
ductility, respectively. It is interesting to note that this trend is
qualitatively similar to that displayed by the axial c/a ratio
in Fig. 2. A table listing calculated values for all of the
independent symmetrized elastic constants of the Re-X TM
alloys studied in this work is included in the Supplemental
Material.52

Trends in the elastic anisotropy are shown in Fig. 5, which
plots one minus the anisotropy parameters fE and fG for the
Young’s modulus and shear modulus, respectively, as defined
in Eqs. (4) and (5). An isotropic material corresponds to fE

and fG values of one, so that deviations from zero for 1 − fG

and 1 − fE in Fig. 5 measure the degree of elastic anisotropy.
Alloying of Re with neighboring elements to the left and right
in the periodic table are seen to decrease slightly the degree of

anisotropy in the Young’s modulus. Alloying with elements at
the end of the TM series increase the anisotropy in fE , while
the elements Sc, Y, and La, on the left of the TM series, show
a considerable scatter in fE . The effects of alloying on fG are
seen to be weaker overall, relative to fE . The anisotropy in
the shear modulus is seen to be lowest for pure Re, and alloys
with its isoelectronic solute elements; alloying with elements
to the right or left are seen to weakly increase the magnitude
of the deviation of fG from unity.

IV. DISCUSSION

The DFT-calculated properties for Re15X1 alloys presented
in the previous section are shown to display pronounced trends
with the number of d electrons in the TM solute atoms X. In this

FIG. 5. (Color online) Variation of the elastic anisotropy parameters fE (a) and fG (b) as a function of 3d , 4d , or 5d solute element for
alloy composition Re15X1.
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section we examine these trends further within the framework
of canonical d-band theory.

We consider first the variation in the solute volume expan-
sion coefficient, which is shown to display a parabolic-like
variation with band filling in Fig. 1 for each of the 3d, 4d, and
5d periods. This can be explained readily from the well-known
trends in the atomic volumes in the elemental transition
metals in their respective equilibrium structures, which vary
approximately parabolically with band filling.53–55 Given that
the alloys considered in the present work are substitutional
and dilute in nature, Vegards’s law (i.e., atomic volume of
an alloy varying linearly with concentration) is expected to
be a reasonable assumption, such that alloying with solutes
with sizes increasingly larger (smaller) than Re should lead to
increasingly larger increases (decreases) in the atomic volume
of the alloy.

We consider next the calculated trend in the axial c/a ratio,
which is shown in Fig. 2 to decrease almost monotonically with
the number of d electrons for the solute atoms. In tight-binding,
canonical d-band models of the electronic structure of HCP
transition metals56–59 the bond order between neighbors within
and out of the basal plane is decomposed into ddσ , ddπ ,
and ddδ two-center hopping-integral contributions. Bonding
contributions between neighbors in the basal plane and out
of the basal plane are denoted by σ1,π1,δ1 and σ2,π2,δ2,
respectively. Starting at half band filling, the σ1 and σ2 bonding
weakens with a decrease in the number of d electrons, whereas
the in-plane bonding π1 is enhanced while the π2 bonding
levels off (the δ bonding is relatively insignificant).56 This
implies that the bonding in the basal plane gets reinforced with
respect to the bonding out of the basal plane with decreasing
band filling, which is qualitatively consistent with our finding
that the c/a ratio of Re increases when alloyed with TM solutes
to the left in the periodic table. Additionally, the π1 and π2

bond orders cross at almost exactly the band filling of Re.
Consequently, as the band filling is increased, starting from
this crossover point, the π2 bonding starts dominating over π1,
which is expected to lead to the contraction of the c direction
relative to the in-plane lattice spacing (a). This is consistent
with the present results, which show a decrease in c/a ratio
when Re is alloyed with solutes to the right in the periodic table.

Trends in the elastic constants of the pure transition metals
in their equilibrium structures with band filling have been
fairly well established.60 Bulk moduli K of the 3d, 4d, and 5d

transition metals have been predicted using canonical d-band
theory by Pettifor58 and these trends have been confirmed by
other authors (e.g., Rose and Shore61). In transition metals, the
general trend is for the bulk modulus to reach a maximum at
approximately the Re or Os column of the periodic table. More
specifically, for the 5d elements, the maximum bulk modulus
seems to occur at band filling slightly higher than Re. Near
the maximum, the behavior of the bulk modulus with band
filling is approximately parabolic. On the other hand, both the
Voigt average G and the Reuss average of the shear modulus of
the elemental transition metals are known to exhibit different
behavior with band filling.62 Specifically, for the elemental 5d

transition metals, it is known that G increases almost linearly,
varying by about 40% with increasing band filling from W to
Re to Os and finally to Ir. Since K levels out in the W-Re-Os
band-filling regime, whereas G monotonically increases, these

observations are consistent with the present work showing
that K/G decreases (increases) when alloying Re with solute
atoms to the right (left) in the periodic table.

The variation of the bulk modulus and the Voigt average
of the shear modulus of Re15X1 alloys with band filling is
shown in Figs. 4(a) and 4(b), respectively. These quantities
approximately follow the same trend as those of the pure
transition metals with band filling: approximately parabolic
behavior with a maximum at higher band filling then Re.
Interestingly, the higher ductility parameter from Re-based
alloys with lower band filling than Re is not caused by an
increase of K and a decrease of G, as one might expect but
merely by a relatively lower decrease in G compared to K for
lower band filling than Re. For example, the Re-based Re-La
alloy has a value for K which is about 25% lower than for Re,
whereas G decreases by nearly 50%, yielding an increase of
the ductility parameter.

Canonical d-band theory can be used to outline the trends
in the energetics of Re-based alloys as follows. Within this
framework, the enthalpy of formation of a transition metal
alloy from the pure elements can be decomposed into four
physically distinct parts:6 i) a contribution from the transfer of
electrons to equalize the Fermi level, which is always negative,
ii) a contribution that stems from the difference in Density of
States (DOS) bandwidth of the pure elements, which can be
either positive or negative, iii) a contribution that comes from
the change of shape of the DOS when alloying, and iv) a
contribution that comes from Coulomb energy due to charge
transfer. In the simplest model, only the first two contributions
are taken into account. Continuing along these lines, the heat
of formation for a binary transition metal alloy AxB1−x can be
expressed63 as in Eq. (9),

Eform = −Zd (1 − Zd/10)

2
Wd + x

ZdA(1 − ZdA/10)

2
WdA

+ (1 − x)
ZdB (1 − ZdB/10)

2
WdB. (9)

The DOS bandwidth of the alloy AxB1−x is denoted by Wd ,
whereas the DOS bandwidths for the pure elements A and B are

FIG. 6. (Color online) Canonical d-band heat of solution as a
function of various 5d solute elements for alloy composition Re15X1.
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given by WdA and WdB , respectively. The number of electrons
in the d band for the alloy and elements A and B is given by
Zd , ZdA, and ZdB , respectively.

The parameters appearing in Eq. (9) can be computed from
DFT calculations. However, for the purposes of the present
qualitative analysis we use the published muffin-tin-orbital
values for transition metals63 to compare with the trends shown
in Fig. 3. Using the theory outlined above, based on canonical
d-band theory, we have obtained the heat of solution for
various Re-based 5d transition metal alloys shown in Fig. 6.
Comparing the DFT-calculated heat of solution from Fig. 3
to the quantities computed from canonical d-band theory in
Fig. 6, it is seen that the trends in the heat of solution are
predicted correctly. The sign is not predicted consistently with
DFT in all cases, although the trends with the deep minimum
to the right of Re and the higher values to the left are present.
The actual values of the heat of solution are off by factors of
between 2 and 5 which is not unreasonable considering the
approximations inherent in the model.

V. SUMMARY AND CONCLUSION

In summary, the present work has involved a computational
study of the structural, energetic and elastic properties of
HCP rhenium-based transition-metal alloys. Trends in the
atomic volume, axial c/a ratio, elastic constants and formation
energies of Re15X1 alloys are investigated for all 3d, 4d, and
5d solute species X. Each of the calculated properties show
clear trends with band filling that are well described by the
d-band theory of transition-metal bonding.

The practical interest in Re-based materials is associated
with the combination of their high melting points and good
low-temperature ductility. Thus, in the context of the design of
lower-cost Re-based alloys the key findings of this work relate
to the effects of solute additions on the elastic anisotropy and
the intrinsic ductility parameter K/G. It is found that alloying
Re with elements to the left in the periodic table increases
K/G, and is thus expected to enhance the intrinsic ductility.
The trend in K/G correlates with an increase in the axial
c/a ratio, towards values closer to ideal close packing, when
alloying with solutes that decrease the average band filling.
The effect of alloying on the elastic anisotropy is examined by
considering two parameters that measure the anisotropy of the
Young’s modulus and shear modulus. As described in the first
section of the paper, it is expected generally that an increase
in the elastic anisotropy could contribute to brittle behavior in
polycrystalline samples. In the present calculations alloying
with solute additions near Re in the periodic table is found to
weakly decrease (increase) the anisotropy in Young’s modulus
(shear modulus).
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