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Minimal electronic models for superconducting BiS2 layers
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We construct minimal electronic models for a newly discovered superconductor LaO1−xFxBiS2 (Tc = 10.6 K)
possessing BiS2 layers based on a first-principles band calculation. First, we obtain a model consisting of two
Bi 6p and two S 3p orbitals, which give nearly electron-hole symmetric bands. Further focusing on the bands
that intersect the Fermi level, we obtain a model with two p orbitals. The two bands (per BiS2 layer) have a
quasi-one-dimensional character with a double minimum dispersion, which gives good nesting of the Fermi
surface. At around x ∼ 0.5 the topology of the Fermi surface changes, so that the density of states at the Fermi
level becomes large. Possible pairing states are discussed.
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For the past several decades, superconductors with layered
lattice structures such as cuprates,1 organic conductors,2

MgB2,3 Sr2RuO4,4 NaxCoO2,5 (Hf,Zr)NCl,6 and iron
pnictides7 have attracted much attention. These layered super-
conductors have been of interest in many aspects such as high
Tc and/or unconventional pairing mechanisms. Quite recently,
Mizuguchi et al. have discovered superconducting materials
that possess BiS2 layers, where the Bi and S atoms are aligned
alternatively on a square lattice. The materials found so far
are Bi4O4S3,8 LaO1−xFxBiS2,9 and NdO1−xFxBiS2,10 which
have Tc of 8.6, 10.6, and 5.6 K, respectively. Figure 1 shows
the lattice structure of LaOBiS2, where partial replacement
of O by F (x = 0.5) provides electron doping and gives rise
to superconductivity. These findings strongly suggest that
materials with BiS2 layers provide yet another family of
layered superconductors exhibiting double-digit Tc, and it is
of special importance to understand the underlying electronic
structure of these materials.

Recent studies have shown that effective models con-
structed from a first-principles band calculation can provide a
solid basis for the study of the mechanism of superconductiv-
ity, especially for materials with complicated band structures
such as iron pnictides.11 In this Rapid Communication, we
perform a first-principles band calculation of LaOBiS2, from
which we construct maximally localized Wannier orbitals
to obtain the effective tight-binding models, i.e., the kinetic
energy part of the effective Hamiltonian. The models consist
of two or four bands that have a quasi-one-dimensional
character, which are hybridized to give a two-dimensional
Fermi surface. At around x ∼ 0.5 the topology of the Fermi
surface changes, so that the density of states at the Fermi
level becomes large. We show that the quasi-one-dimensional
nature results in a nesting of the Fermi surface, which gives
rise to enhanced irreducible susceptibility along the diagonals
that intersects the wave vectors (0,0) and (π,π ). We discuss
possible superconducting states.

The band calculation of the mother compound LaOBiS2 is
performed using the WIEN2K package12 and adopting the lattice
structure given in Ref. 13 (see the Supplemental Material
for details14). Here we present results without the spin-orbit
coupling, although this coupling does have some effect on the
band structure. The calculation result is shown in Fig. 2. The
conduction bands around the Fermi level consists mainly of
in-plane Bi 6p orbital character, mixed with in-plane S 3p.

From this band calculation, we obtain maximally localized
Wannier orbitals,15,16 which enable us to construct tight-
binding models that correctly reproduce the original first-
principles band structure around the Fermi level. First, we
construct a 24 orbital model, which consists of six Bi 6p,
12 S 3p, and six O 2p orbitals. The band structure of the
obtained tight-binding model is shown in Fig. 3(a). Here, the
thickness of the lines represent the weight of the in-plane
p orbitals within the BiS2 layers. Since the BiS2 layers
are without doubt the origin of the superconductivity, we can
further obtain a model that omits the O 2p orbitals, the 3p

orbitals of the out-of-plane S, and also the pz orbital of the
in-plane S (whose bands lie away from the Fermi level), and
we are left with an eight orbital model (band not shown—see
the Supplemental Material14). There are eight orbitals because
there are two BiS2 layers per unit cell, and each Bi and
in-plane S has two p orbitals. Note that we should extract
the portion of the bands that is relevant to the BiS2 layers since
the many-body interactions (which should be included in the
forthcoming studies) take place mainly within this layer. By
further neglecting the small interlayer coupling between the
neighboring BiS2 layers, we end up with a two-dimensional
“p-p” four orbital model consisting of two Bi 6p and two
S 3p orbitals. The band structure of this model is shown in
Fig. 3(b). We write the model Hamiltonian in the form

H0 =
∑

ij

∑

μν

∑

σ

[t(xi − xj ,yi − yj ; μ,ν)c†iμσ cjνσ

+ t(xj − xi,yj − yi ; ν,μ)c†jνσ ciμσ ] +
∑

iμσ

εμniμσ , (1)

where c
†
iμσ creates an electron with spin σ on the μth orbital in

the ith unit cell, and niμσ = c
†
iμσ ciμσ . Then, the parameters of

this four orbital model is given in Table I. The two p orbitals
are denoted as pX and pY , where the X-Y axis is rotated
by 45◦ from the x-y axes [a figure of the four orbital model
is not presented, but see Fig. 4(a) for the X and Y axes]. It
is interesting to note that the upper and the lower bands are
roughly symmetric with respect to the gap.

An even more simple model is the one which focuses only
on the bands that intersect the Fermi level. By extracting these
bands using the maximally localized Wannier orbitals centered
at the Bi sites and neglecting the interlayer hoppings, the
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FIG. 1. (Color online) The lattice structure of LaOBiS2.

Hamiltonian reduces to a two-dimensional two orbital model
[Fig. 4(a)], whose band structure is shown in Fig. 4(b) and the
hopping parameters given in Table II. Assuming a rigid band,
the Fermi surface for this model is obtained in Fig. 4(c) for
two doping ratios, δ = 0.25 and 0.5. Here δ is defined as the
number of doped electrons per Bi site, and satisfies δ = x in
an ideal situation. At around δ ∼ 0.5 the topology of the Fermi
surface changes, so that the density of states at the Fermi level
becomes large around this band filling. The pX and pY bands
have essentially a one-dimensional character, where the main
hopping integrals (t ′) exist between next nearest neighbor sites,

FIG. 2. The first-principles band structure is shown.

FIG. 3. (Color online) (a) The 24 orbital model and (b) the four
orbital model. In (b), the dashed (dotted-dashed) lines denote the
Fermi energy for the doping ratio δ = 0.5 (δ = 0.25).

as shown in Fig. 4(a) and Table II. Thus the one-dimensional
bands essentially have the forms

εX(k) = 2t ′ cos(kx + ky), εY (k) = 2t ′ cos(kx − ky), (2)

which have a double well band dispersion along (kx,ky) =
(−π, − π ) → (0,0) → (+π, + π ) or (−π, + π ) → (0,0) →
(+π, − π ), as shown in Fig. 4(d). The intraorbital (t) as well

TABLE I. Hopping parameters t(�x,�y; μ,ν) or the on-site
energies εμ for the four orbital model. The orbitals μ = 1,2,3,4
correspond to Bi pY ,pX , S pY ,pX orbitals, respectively. We follow
the notations in Ref. 11, i.e., I , and σd correspond to t(−�x, −
�y; μ,ν), t(�y,�x; μ,ν), respectively, where “±” means that the
corresponding hopping is equal to ±t(�x,�y; μ,ν), respectively.

[�x,�y]

(μ,ν) [0,0] [1,0] [−1,0] [1, − 1] [1,1] I σd

(1,1) 0.890 0.223 0.223 0.103 0.082 + +
(1,2) 0.100 0.100 + −
(1,3) 0.486 −2.034 + +
(1,4) + +
(2,2) 0.890 0.223 0.223 0.082 0.103 + +
(2,3) + +
(2,4) 2.034 −0.486 + +
(3,3) −1.113 −0.110 −0.110 0.100 0.023 + +
(3,4) 0.154 0.154 + −
(4,4) −1.113 −0.110 −0.110 0.023 0.100 + +
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FIG. 4. (Color online) (a) The tight-binding model on the Bi
square lattice is shown along with the hoppings of pX and pY

orbitals. The stars denote the position of the S atom, whose p

orbitals are explicitly considered in the four orbital model, but are
integrated out in the two orbital model. (b) The band structure of
the two orbital model. The dashed (dotted-dashed) lines denote
the Fermi energy for the doping ratio δ = 0.5 (δ = 0.25). (c) The
Fermi surface of the two orbital model for the doping rate of
δ = 0.25 and δ = 0.5. (d) A schematic figure of the pX band along
(−π, − π ) → (0,0) → (+π, + π ). Three types of nesting vectors
are shown by the arrows.

as the interorbital (tXY ) nearest neighbor hoppings give the
two dimensionality of the system.

TABLE II. Hopping parameters and on-site energies for the two
orbital model. μ = 1,2 correspond to pY ,pX , respectively. Here t ′ =
0.880, t = −0.167, and tXY = 0.107.

[�x,�y]

(μ,ν) [0,0] [1,0] [1, − 1] [1,1] [2,0] [2,1] [2, − 1] I σd

(1,1) 2.811 −0.167 0.880 0.094 0.014 0.069 + +
(1,2) 0.107 −0.028 0.020 0.020 + −
(2,1) 0.107 −0.028 0.020 0.020 + −
(2,2) 2.811 −0.167 0.094 0.880 0.069 0.014 + +

The one-dimensional nature of the bands provides good
nesting of the Fermi surface. To see this effect, we calculate for
the two orbital model the 4 × 4 irreducible susceptibility ma-
trix in the orbital representation, χ0

l1,l2,l3,l4
(q) = ∑

k G0
l1,l3

G0
l4,l2

,
where G0 is the 2 × 2 bare Green’s function matrix. In Fig. 5,
we show the largest eigenvalue of the irreducible susceptibility
matrix for the doping ratio of δ = 0.25 and 0.5. The diagonal
structures that go through (0,0) or (π,π ) are due to the nesting
shown by the arrows in Fig. 4(d). Note that if the nearest
neighbor hoppings do not exist and the bands have the form in
Eq. (2), the nestings (i)–(iii) are equivalent, while this equiva-
lence is lost in the presence of t (and additional hoppings).

Finally, let us discuss the possible pairing states and the
superconducting gap structure. Since the many-body term of
the effective Hamiltonian is not determined here, there are
several possibilities at present. The most relevant bands have
mainly a 6p character, which gives a wide spread of the
Wannier orbitals, so that the electron-electron interactions may
not be very strong and short ranged as in the 3d-orbital-based
materials such as the cuprates and iron-based superconductors.
In that case, the electron-phonon interaction can be playing
the main role in the Cooper pairing, and the good nesting
of the Fermi surface may cooperate to give an enhanced
attractive pairing interaction around the nesting vectors. This
can give rise to an s-wave pairing with a constant gap sign as
shown in Fig. 6(a). It is interesting to point out that Bi-based
superconductors (Ba,K)(Bi,P)O3 (Refs. 17 and 18) are also
known to have Fermi surface nesting, but with a O-2p and
Bi-6s orbital character,19 which is different from the present
material. A more exotic possibility for the same type of gap is

FIG. 5. (Color online) The largest eigenvalue of the irreducible
susceptibility matrix for δ = 0.25 and 0.5.
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FIG. 6. (Color online) (a) Sign conserving s wave for attractive
pairing interactions such as mediated by phonons or charge fluctu-
ations, (b) sign reversing s wave, and (c) d-wave superconducting
gaps obtained for repulsive pairing interactions mediated by spin
fluctuations.

related to the fact that the system is close to a band insulator,
where electron-hole excitations might be playing an important
role in the pairing.20 In fact, if we consider electron-electron
interactions in the four orbital model, the system can be viewed
as two interacting charge-transfer-type insulating bands. This
is similar to the situation studied in Ref. 21, where the
occurrence of superconductivity was proposed for systems
with a metallic band interacting with a charge-transfer-type
insulating band. In this context, it should be noted that the
analysis for the Bi 6p-S 3p four orbital model can give
different results from those for the two orbital model regarding
the superconducting state, because the band filling is different,
i.e., the four orbital model is a nearly half-filled, electron-hole
symmetric system, while the two orbital model has a small
band filling.

On the other hand, if we assume a short-ranged repulsive
interaction, the present two orbital model provides a funda-
mental problem of the pairing state in repulsively interacting
quasi-one-dimensional systems, apart from its relevance to
the BiS2 layers. Namely, the occurrence of superconductivity
in repulsively interacting one-dimensional systems with a
double-well-type band structure was studied in the late 1990′s,
where interaction (ii) in Fig. 4(d) dominates for a certain
parameter regime to give a gap that reverses its sign between
the inner and the outer Fermi points.22–25 The existence of t in
Fig. 4(a) is essential in this case, because this makes the inter-
actions (i)/(iii) and (ii) inequivalent. In fact, by adding on-site
intraorbital (U ) and interorbital interactions (U ′ = 2U/3 and
the Hund’s coupling and the pair hoppings J = J ′ = U/6),
and applying a multiorbital random phase approximation26,27

to obtain the spin-fluctuation-mediated pairing interaction, we
find the sign reversing s-wave gap shown in Fig. 6(b) for

large doping (e.g., δ = 0.5 and U = 1.8 eV) and the d-wave
superconducting gap shown in Fig. 6(c) for small doping (e.g.,
δ = 0.25 and U = 2.43 eV).

These gaps are determined by cooperation or competition
between the repulsive (sign reversing) spin-singlet pairing
interactions driven by the nestings given in Fig. 4(d). The
gap in Fig. 6(b) indeed exhibits a sign reversal between
the inner and the outer Fermi surfaces. On the other hand,
the gap in Fig. 6(c) is obtained by reversing the gap sign for
both interactions (i) and (ii). To make the gap have even parity
requires additional nodes at kx = ±ky . The reason why this
d wave is favored for small doping is because the diagonal
nodes do not intersect the Fermi surface in this situation. In
an ideal situation, the gaps in Figs. 6(a) and 6(b) [6(c)] can
be distinguished by T −1

1 measurement in the nuclear magnetic
resonance (NMR) experiments. For the gap in Fig. 6(a), T −1

1
should exhibit a coherence peak followed by a steep decrease,
while for Fig. 6(b) [Fig. 6(c)] the coherence peak should be
(nearly) absent. It is more difficult to distinguish the gaps
in Figs. 6(b) and 6(c) because even for the d-wave case in
Fig. 6(c), the nodes intersecting the Fermi surface are acciden-
tal. Therefore, other phase sensitive experiments are necessary.

Finally, yet another possibility related to the quasi-one-
dimensionality is the spin-triplet pairing. In fact, the present
band structure also has a similarity with the quasi-one-
dimensional bands (the hybridized dxz/yz bands) in Sr2RuO4,
where some theoretical studies have suggested the possibility
of spin-triplet pairing originating from these bands.28–31 NMR
experiments will also provide a test for this possibility.

To summarize, we have obtained effective tight-binding
models for the superconducting BiS2 layers by performing a
band calculation for LaOBiS2 and exploiting the maximally
localized Wannier orbitals. The model consists of pX and pY

orbitals, and the dominant next nearest neighbor hoppings lead
to quasi-one-dimensional bands, which give nesting of the
Fermi surface. Considering the quasi-one-dimensional as well
as the doped-band-insulator nature of the band structure, there
are several interesting possibilities for the superconducting
state depending on the dominating many-body interactions.
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