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Atomistic modeling of phase transformations: Point-defect concentrations
and the time-scale problem
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The time scale of diffusive phase transformations in alloys depends on point-defect concentrations, which
evolve with the microstructure. We present a simple method that provides a physical time scale for atomistic
simulations of such transformations, even when performed with constant point-defect numbers. It also gives an
on-the-fly evaluation of the real point-defect concentration, when equilibrium conditions are fulfilled. The method
is applied to kinetic Monte Carlo simulations of precipitation in binary alloys occurring by vacancy diffusion. The
vacancy concentration is found to be very dependent on the difference in formation energy between the matrix
and the precipitates, and therefore on the composition and volume fraction of these two phases. The effect of the
interface curvature, through a Gibbs-Thomson effect, is revealed. A mean-field approximation is also developed
for computing the point-defect concentrations. Contrary to previous models, it takes into account the short range
order in nonideal and concentrated solutions. Atomistic simulations and mean-field simulations are validated by
direct comparisons.
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The modeling of diffusive phase transformations with
physical kinetic pathways—including a well defined time
scale—requires a realistic description of diffusion events,
i.e., of the point-defect concentrations, jump mechanisms,
and frequencies. Recent studies1–4 have been devoted to the
importance of introducing real diffusion mechanisms, e.g.,
vacancy-atom exchanges rather than direct atomic exchanges.
Other ones have emphasized the importance of a good
description of the point-defect jump frequencies and their
activation energies, and the way they depend on the local
atomic environment (see Refs. 5–10 and references therein).

By comparison, the importance of the point-defect concen-
tration in alloys has received little attention. This is somewhat
surprising, insofar as almost all atomistic simulations of
diffusive phase transformations are performed with a constant
number of point defects,1–4 while point defects are nonconser-
vative species. The implicit assumption is that the simulated
time scale only differs from the physical one by a correction
factor that can be fitted on experimental kinetics.

On the other hand, some recent simulations have been
performed in semiconductors11 to highlight the relative contri-
bution of single point defects and small point-defect complexes
on diffusion as a function of temperature. In alloys, the
situation is even more complex because the average point-
defect concentration is related to the microstructure (i.e., on the
composition and volume fraction of present phases). Indeed,
the equilibrium vacancy concentration in a given environment
depends exponentially on the vacancy formation energy which
is a nonlinear function of the local composition.12 We show
here how to simulate a real physical time even when vacancy
is introduced as a conservative species and without arbitrarily
fitting parameters on experimental kinetics.

In the first part of this Rapid Communication, we present
a simple rescaling procedure, applied to atomistic kinetic
Monte Carlo (AKMC) simulations, that gives a physical time
scale. It emphasizes the point that the time correction factor
can dramatically change during the phase transformation,
especially when the vacancy formation energies in the various

phases differ significantly. A first estimation of this correction
was found to be essential in the specific case of Cu precipitation
in dilute Fe(Cu) alloys.6,8 Here we show that the method can be
generalized to concentrated alloys and can be used to provide
the evolution of point defects in heterogeneous systems
undergoing a phase transformation. A Gibbs-Thomson effect
affecting the vacancy concentration is revealed and quantified.
For the sake of simplicity, the method is applied to AKMC
simulations of A-B binary alloys, using a model of pair
interactions on a rigid lattice. But the application to more
complex energetic models and to other simulation techniques
dealing explicitly with point-defect diffusion (e.g., phase-field
models13,14 or accelerated molecular dynamics methods15) is
straightforward.

In stable homogeneous solid solutions, the equilibrium
vacancy concentration can be directly estimated by mean-field
(MF) models. In such a case, the time-rescaling method can be
checked by comparing the steady-state vacancy concentration
measured in the AKMC simulation with the MF equilibrium
value. However, precise MF models are currently limited to
dilute alloys16 or to ideal solid solutions.17 The second part
of this Rapid Communication is therefore devoted to the
derivation of a MF pair approximation that gives an expression
of equilibrium point-defect concentrations in nonideal body
centered cubic (bcc) concentrated alloys, including the effect
of short range order between nearest-neighbor species. This
MF approximation and the AKMC with a time-rescaling
procedure are then applied to compute the equilibrium vacancy
concentration in the same alloys, in stable homogeneous
solid solutions above the critical temperature Tc. Finally, both
methods are used to compute the local equilibrium vacancy
concentrations, during a phase separation occurring below Tc.

In the following we consider an A-B alloy with a bcc lattice
of N lattice sites, NA atoms A, NB atoms B, and NV vacancies.
The internal energy of the configurations is computed as
a sum of nearest-neighbor pair interactions between atoms
(εAA,εAB,εBB) and between atoms and vacancies (εAV ,εBV ).
We define v = εAA + εBB − 2εAB as the ordering energy.
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Here we limit our discussion to clustering alloys (v < 0)
characterized by a miscibility gap in the phase diagram with a
critical temperature equal to Tc ≈ 0.2zv/kB ,18 where z = 8 is
the coordination number and kB is the Boltzmann constant.

Diffusion occurs by exchanges of vacancies with nearest-
neighbor atoms. The exchange frequencies �AV and �BV

depend on the atomic distribution around the exchanging pair:
They are computed with the broken bond model described in
Ref. 6. If the jump frequencies are known, several Monte Carlo
algorithms can be used to generate the evolution of the atomic
configuration. In the residence-time algorithm, for example,19

a possible exchange is chosen at each Monte Carlo (MC) step.
The physical time on the simulation is given by the sum of the
successive time steps, tMC = 1/

∑
i �i , where the sum runs

over all the possible jumps starting from the present atomic
configuration.19,20 However, the number of vacancies NV is
usually not the real one and the time must be rescaled during
the simulation,6,8 according to

t = tMC
c̄MC
V

c̄V

, (1)

where c̄MC
V = NV /N and c̄V are, respectively, the average

vacancy concentration in the simulation and in the real system.
The time correction factor is defined as c̄MC

V /c̄V . This rescaling
is based on the assumption that the diffusion coefficients
of A and B atoms are proportional to the concentration of
monovacancies—the usual assumption of the classical models
for diffusive phase transformations. It is only valid as long
as c̄V remains low enough so that vacancies do not modify
the thermodynamic properties of the binary A-B alloy and that
interactions between vacancies can be neglected.

If the evolution of the microstructure is much slower than
the evolution of the vacancy concentration, c̄V remains equal
to the average equilibrium concentration c̄

eq
V . The problem is

that, in a system that undergoes a phase transformation, c̄
eq
V

is usually not known: It strongly depends on the composition
and the proportion of the various phases that change with time,
especially when the vacancy formation energies significantly
differ. It is worth noticing that since the rescaling factor
c̄MC
V /c̄

eq
V is not constant, it cannot be simply fitted on an

experimental kinetics at a given stage of the transformation.
However, one can take advantage of the fact that even if

the total vacancy concentration is constant in the simulation,
a local equilibrium is usually rapidly achieved, i.e., that the
concentrations cMC

V (α) in the various environments α are
proportional to c

eq
V (α) = exp[−βEV

for(α)], where β = 1/kBT

and EV
for(α) is the local vacancy formation energy. Therefore,

the ratio cMC
V (α)/ceq

V (α) does not depend on α and the rescaling
can be defined by

t = tMC
c̄MC
V

c̄
eq
V

= tMC
cMC
V (α)

c
eq
V (α)

, (2)

using any environment as a reference. cMC
V (α) must be

measured during the simulation on a time scale τ that is
long enough to ensure that vacancies explore all the possible
environments, but short enough with respect to the charac-
teristic time of the microstructure evolution21. In practice it
can be done easily, except in the very beginning of the phase
transformation. One must simply choose a configuration of
reference α for which EV

for(α) is known and CMC
V (α) can be

FIG. 1. (Color online) Monte Carlo simulation of precipitation
in a A0.95B0.05 alloy at T = 573 K (T � 0.6Tc) with vacancy
formation energies Efor

V (A) = 1.4 eV and Efor
V (B) = 1.0 eV. Top:

Time evolution of precipitate density and radius. Bottom: Evolution
of the equilibrium concentration of vacancies, using either pure A sites
or pure B sites as a reference, without and with the Gibbs-Thomson
(GT) correction.

estimated precisely. In a system with an unmixing tendency,
convenient choices are A pure or B pure environments. In the
present model system, in pure A,

c
eq
V (A) = exp

[ − βEfor
V (A)

] = exp β(zεAA/2 − zεAV ) (3)

(a similar expression holds in pure B).
In addition to the physical time scale, this method gives an

estimation of the average equilibrium vacancy concentration
c̄

eq
V during the transformation, since Eq. (2) can be rewritten as

c̄
eq
V = c̄MC

V

c
eq
V (α)

cMC
V (α)

= NV

N

c
eq
V (α)

cMC
V (α)

. (4)

In the case of a homogeneous solid solution, the resulting
vacancy concentration should be equal to the one obtained by
means of a classical integration method within the semigrand
canonical ensemble.22 The present method can also be per-
formed on the fly, to follow the evolution of local and total
vacancy concentrations with the microstructure.

An example of simulation is shown on Fig. 1, in an
A-B alloy with cB = 0.05 at T = 0.6Tc, where the vacancy
formation is lower in pure B than in pure A. Simulations have
been performed with N = 2 × 1283 bcc sites and NV = 1
vacancy. One observes the usual sequence of precipitation
in a solid solution with a small supersaturation: a nucleation
stage (between approximately 107 and 2 × 108 s), followed by
the growth of B-rich precipitates (up to ∼2 × 109 s) and the
beginning of coarsening afterwards. As long as the precipitate
volume fraction remains negligible, c̄

eq
V is almost constant.

It slowly increases during the nucleation stage, then varies
rapidly when the B-rich precipitates grow, before stabilizing at
the beginning of the coarsening stage, when the fraction and the
composition of the two phases almost reach their equilibrium
values. During the whole precipitation sequence, c̄

eq
V —and

therefore the correction factor in Eq. (2)—have changed by
more than one order of magnitude. In Fig. 1, one can observe
that the estimations of c̄

eq
V using Eq. (2) with pure A and pure B
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as a reference are very close, which justifies the assumption
that the vacancy concentration remains at equilibrium in
the two environments. However, at the beginning of the
simulation, the estimation obtained with pure A as the reference
environment is more precise, because the fraction of pure B
is very small. Moreover, both references indeed give slightly
different estimations of c̄

eq
V , especially at the beginning of the

precipitation. It is due to the fact that the equilibrium vacancy
concentration in pure A and in pure B given by Eq. (3) are not
appropriate values when a new phase almost pure in B appears
as finite size nanoprecipitates. Starting from a Gibbs-Thomson
(GT) estimation of the alloy chemical potential excess,23 we
deduce an effect of the precipitate curvature on the vacancy
equilibrium concentrations in pure environments, for example,
in pure A,24

c
eq-GT
V (A) = c

eq
V (A) exp β

γ (T )�

R̄
, (5)

where γ (T ) is the precipitate/matrix free energy of the binary
alloy,25 � the atomic volume, and R̄ the mean radius of the
precipitates. The same expression holds for c

eq-GT
V (B) except

that the argument of the exponential is opposite. While the
classical GT effect leads to an increase of B concentration
in both the precipitate and the matrix, in the specific case
of vacancy a different effect is predicted. The correction
to C

eq
V (A) [respectively C

eq
V (B)] is expected to be mostly

affecting the matrix (respectively precipitate) equilibrium
vacancy concentration because the major part of the pure
A (respectively pure B) environment is to be in the matrix
(respectively precipitate), leading to a vacancy concentration
increase in the matrix and a concentration decrease in the
precipitates. We observe in Fig. 1 that the discrepancy between
the equilibrium vacancy concentrations using reference A and
B disappears when the GT correction is added. Since the
correction is small (except at very low temperatures), it can
usually be neglected, to avoid the calculation of the average
precipitate radius.

To test this procedure, let us compare the steady-state
vacancy concentration measured by AKMC in a homogeneous
solid solution with the equilibrium vacancy concentration
computed with a MF approximation. In an alloy at equilibrium,
the vacancy formation energy is deduced from the minimiza-
tion of the free energy with respect to the number of vacancy:

∂F

∂NV

∣∣∣∣
NA,NB

= F

N
− cA

N

∂F

∂cA

∣∣∣∣
N,cB

− cB

N

∂F

∂cB

∣∣∣∣
N,cA

, (6)

in which independent variables are chosen to be (N,cA,cB). In
the specific case of pure metals with a low vacancy concentra-
tion, a mean-field approach yields Eq. (3). The existing models
for concentrated alloys do neglect short range order between
atomic species17,26 or are based on a noncontrolled statistical
treatment of the interface matrix/vapor from which vacancies
are created.27,28 In the present calculation, short range order be-
tween species on nearest-neighbor sites is included. An explicit
treatment of the interface is avoided by introducing a rigorous
definition of the vacancy chemical potential corresponding
to the partial derivative of the free energy with the vacancy

FIG. 2. (Color online) Equilibrium vacancy concentration with
respect to composition in an A-B solid solution with a cluster-
ing tendency, vacancy formation energies Efor

V (B) = 1.0 eV and
Efor

V (A) = 1.4 eV, at T = 1.13Tc, 1.07Tc, and 1.02Tc.

number [see Eq. (6)]. The free energy is calculated within the
pair approximation of the cluster variation method (CVM).29

Within a pair approximation both internal energy and
entropies are written in terms of pair probabilities yij cor-
responding to the mean occupation of two nearest-neighbor
sites by species i and j . They are calculated in such a way
that they minimize the free energy under the constraint of
normalization: ci = ∑

j yij .
In the case of a low vacancy concentration, an analytical

expression of the vacancy formation energy is obtained:30

βEfor
V = z

2

∑
ij

[βεij qiqj e
−βεij + L(qiqj e

−βεij )]

−z

[∑
i

ci ln(qi) + ln

(∑
i

qie
−βεiV

)]
, (7)

where L(x) = x ln (x). Parameters qi are deduced from the
definition of pair probabilities, yij = qiqj e

−βεij , and the
normalization constraint on yij . The vacancy formation
energy depends on temperature, nominal composition, and
three energies, Efor

V (A), Efor
V (B), and the ordering energy v. In

the case of a dilute alloy (cB → 0) Eq. (7) is equivalent to the
Lomer’s expression.12,16 Figure 2 represents the equilibrium
vacancy concentration of homogeneous solid solutions with
a clustering tendency at T > Tc. We observe a very good
agreement between AKMC values and the mean-field pair
approximation of the vacancy concentration.

Now that the mean-field model has been validated on the
whole concentration range of a solid solution at equilibrium, it
is applied to the analysis of the on-site vacancy concentration
during a MC simulation of phase separation in an alloy with the
same ordering energy, but equal vacancy formation energies
in pure A and B, in order to highlight the GT effect. In Fig. 3,
two snapshots of the solute and vacancy concentration fields
of a (100) plane with 128 × 128 sites are represented.

Both snapshots at the bottom represent the relative dif-
ference between the vacancy concentration measured in the
AKMC simulation and the MF prediction, (cMC

V − cMF
V )/cMF

V .
As is expected, domains of large vacancy concentration
correspond to the precipitate/matrix interfaces where vacancy
reduces the number of not favorable A-B bonds. An on-site MF
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FIG. 3. (Color online) Two successive snapshots of the AKMC
solute concentration measured on the fly (first row), the AKMC
vacancy concentration measured on the fly (second row), and
the relative difference between the AKMC and the MF vacancy
concentration deduced from the on-the-fly solute concentration (third
row). The nominal solute concentration is CB = 0.30 and temperature
is equal to T = 0.32Tc. Efor

V (A) = Efor
V (B) = 0.6 eV.

value is computed from Eq. (7) by taking an alloy composition
equal to the on-site solute concentration. Although the on-site
solute concentrations at interfaces between the precipitates
and the matrix are associated with unstable solid solutions,
a MF approximation provides with a pseudoequilibrium
vacancy concentration. In the precipitates (respectively in the
matrix), the MC vacancy concentration c

eq-GT
V (A) is slightly

smaller (respectively larger) than the MF value. These small
differences are due to the Gibbs-Thomson effect. Indeed,
while an AKMC simulation includes the GT effects on
both the solute and the vacancy concentration fields, a MF
vacancy concentration deduced from Eq. (7) and the MC
solute concentration field does include the GT effect on the
atomic concentrations only. Therefore, the present comparison
is a way to measure the effect of the precipitate curvature on
the vacancy concentration field in the precipitates and in the
matrix.

To conclude, not only an explicit treatment of point-defect
diffusion mechanism but also a variation of the point-defect
concentration with the microstructure have to be considered to
produce a real time clock. The time-rescaling procedure based
on the on-the-fly estimation of vacancy concentration is shown
to be easy to implement in simulations with a constant number
of point defects.

At equilibrium, its validity has been checked in homoge-
neous solid solutions, on the whole range of temperature and
composition. During a phase transformation, it is justified as
long as a local equilibrium of vacancy can be assumed and if
the contribution of divacancies is negligible.

A local analysis of the vacancy and atomic concentration
fields confirms that MC local vacancy concentrations are very
close to the MF values which are computed by means of a local
equilibrium hypothesis. Small discrepancies are shown to be
mainly due to a GT effect on the vacancy concentration field,
which could be easily corrected by adding a microstructure-
dependent term.
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