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Birefringence and polarization rotation in resonant x-ray diffraction
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Birefringence can contribute to x-ray resonant Bragg diffraction and likely explains recent novel data collected
on CuO. We prove these statements using ab initio simulations which reproduce the experimental polarization
effects quantitatively. We show that an unrotated polarization signal—ruled out in resonant magnetic scattering
within the electric dipole approximation—arises from the dynamic change in polarization inside the material. We
are able to reproduce all the related behavior with circular polarization and its dependence on the angle of rotation
about the Bragg wave vector. We provide a tool to disentangle the various physical origins of the polarization
rotation, providing a more complete understanding of the illuminated material.
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Polarization phenomena in photon scattering, from optics
to x rays,1 provide information on electronic degrees of
freedom not available with any other technique in material
science. In the past decade, striking progress has been made
with polarization analysis—using polarization in both the
primary and deflected photons—in experiments performed at
synchrotron sources that produce intense, highly collimated
and tunable beams of soft or hard x rays, none more so than in
resonant Bragg diffraction with the intensity of a Bragg spot
enhanced and labeled ion specific, all achieved by matching the
photon energy to an atomic resonance of a selected ion while
conditions demanded for Bragg diffraction are enforced. By
this technique weak Bragg spots yield unique and valuable
information about electron spin and orbital properties that
partake in magnetism, superconductivity, and multiferroic
behavior, for example.

Birefringence, in which light is divided by double refrac-
tion into two components, has not been accounted for in
previous interpretations of resonant diffraction from atomic
motifs since, unlike the case of soft x-ray reflectivity,2 the
data are conventionally interpreted within the framework of
kinematical diffraction. It is then assumed that the polarization
is modified only by the scattering process and that the material
through which the beams pass, before and after scattering,
serves only to give an overall attenuation. Since birefringence
at energies close to absorption edges (the conditions under
which resonant diffraction takes place) has been shown to
be very significant,3–6 this assumption must be challenged.
This is especially true when small changes to the expected
polarization dependence may motivate an exotic explanation
of the scattering process. For example, within the electric
dipole approximation, the emerging x-ray linear polarization
is entirely rotated, with any nonrotated component indicating
some higher-order scattering process. Similarly, any depen-
dence on circular polarization can be seen as a fingerprint
either of an exotic atomic scattering event or a noncollinear
magnetic structure. Birefringence and linear dichroism, which
are related via a Kramers-Kronig transform, modify both the
polarization and phase of the waves and thus render both of
these assumptions void (see Fig. 1).

Since both exotic resonant scattering and birefringence
(within the electric dipole approximation) are permitted by

symmetry in CuO, only ab initio calculations can give a reliable
quantitative description of the scattering signals, and determine
the dominant physics. This is the purpose of the present Rapid
Communication.

CuO crystallizes in the monoclinic space group C12/c1
(No. 15)7 and, in common with all noncubic crystals, exhibits
birefringence at absorption edge resonances. The material is
multiferroic just below the paramagnetic transition at TN2 =
230 K and above TN1 = 213 K.8 Below TN1 it is an antiferro-
magnet with an ordering wave vector q = (1/2,0,−1/2).9,10

In a recently reported experiment,11 the magnetic
(1/2,0,−1/2) reflection was recorded at 100 K, under various
conditions of the incoming polarization, with an analysis of
the outgoing polarization and with photon energy close to the
Cu L23 edge. Observations of a nonrotated polarization com-
ponent and a strong dependence on the circular polarization of
the incident beam guided the authors to the exciting possibility
of electric dipole–magnetic dipole (E1M1) scattering from an
orbital or toroidal current around the scattering copper atoms,
supporting the recent suggestion that such multipoles play
a role in high-temperature superconductivity in cuprates.12

Moreover, Wu et al.13 measured the same reflection in CuO at
a single energy just below the L3 edge and attributed the ob-
served nonrotated polarization intensity to a memory effect in
the multiferroic transition through TN1 as a result of preserving
the handedness of spin spirals in multiferroic nanoregions.

An alternative explanation for these results is found in
birefringence and dichroism. Indeed, the electric dipole atomic
magnetic scattering gives only a polarization-rotated contri-
bution (σπ ′; see Fig. 1). However, as the beam propagates
through the crystal, the incoming σ wave is rotated slightly and
becomes elliptical, leading to an apparent σσ ′ contribution.
Only a quantitative evaluation can disentangle the relative
importance between these effects and more exotic E1M1
or E1E2 (dipole-quadrupole) resonant scattering. For this
purpose we used the approach developed by Collins and
Lovesey14 and Palmer,3 and included it in the FDMNES code.15

First, even without considering birefringence, absorption
itself has a significant effect and must be taken into account.
This is done by considering the scattering from a thin layer,
located at a depth z beneath the flat crystal face. The length
of the material along which the incident (i) and scattered
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FIG. 1. (Color online) The propagation of polarized waves within
the sample. Here, the incident polarization is perpendicular to the
scattering plane (σ ) as it enters the sample. By the time the beam
scatters from a layer of the sample at depth z, its polarization is a
rotated ellipse by the effects of birefringence and dichroism. The
polarization state continues to evolve until the beam emerges from
the sample.

(s) beams propagate is then li(s) = z/ sin [θB + (−)α]. In-
tegration over z is simple and yields the result that the
uncorrected intensity must be divided by the factor aμ̄ with
a = 1/ [sin (θB − α) + sin (θB + α)]. Two further corrections
may be applied. The first is a factor e−aμ̄δ that accounts for
a nondiffracting (e.g., disordered) surface layer of the same
material, of thickness δ. The second is a further factor 1/μ̄

that gives an approximate correction in the case that the peak
height is measured rather than the peak area. This takes into
account the diffracting thickness, inversely proportional to μ̄,
which is, also in the present case, smaller than the longitudinal
x-ray coherence length. It is convenient to use the uncorrected
peak intensity (Inc) before the edge at an energy E0 as a
reference where we note μ0 = μ̄ (E0). The final expression
for the isotropic case is

I = ea(μ0−μ̄)δ

(
μ0

μ̄

)n

Inc, (1)

where n = 1 or 2 for peak or integrated intensity measure-
ments, respectively.

We now consider in the model the effect of including
birefringence from the anisotropic crystal, which necessitates
a detailed description of the photon polarization. Here, we
adopt standard results3,14,16 whereby the polarization state is
expressed in terms of a linear combination of basis states cor-
responding to the polarization parallel (π ) and perpendicular
(σ ) to the scattering plane. The unit-cell scattering amplitude
for the four polarization permutations is given by the matrix

F =
(

Fσσ ′ Fπσ ′

Fσπ ′ Fππ ′

)
. (2)

Just as the matrix F operates on the incident beam to generate
the scattered beam, we can write an expression for the action
of the diffraction-based polarization analyzer.3 Because we
assume a perfect analyzer, we use, as for the incoming polar-
ization P, a two-component vector representation, A+ = (1,0)
or A+ = (0,1), to detect σ ′ and π ′ components, respectively.

In the kinematic approximation, diffracted intensity is then
given by

I ∝ |A+FP |2, (3)

where the + symbolizes the conjugate transpose.

We have so far accounted for the polarization dependence
of scattering from a thin layer within the sample, followed
by a polarization analysis. To include absorption, dichroism,
and birefringence from the the crystal before and after the
scattering layer, we define the transmittance matrix

T = e− 1
4 (μσσ +μππ )l

(
Tσσ Tπσ

Tσπ Tππ

)
, (4)

with

Tσσ = cosh (τ l) + μππ − μσσ

4τ
sinh (τ l) ,

Tσπ = −μσπ

2τ
sinh (τ l) , (5)

where τ = 1
4

√
(μσσ − μππ )2 + 4μσπμπσ . μ = μ′ + iμ′′ is

the complex linear absorption coefficient. Its real part gives
the absorption and dichroism (we have already noted that μ̄

is its spherical average) and the imaginary part, given by the
corresponding Kramers-Kronig transform of the real spectrum,
is responsible for birefringence. The indices symbolize the
polarization dependence. Tπσ and Tππ are obtained by a simple
permutation of the indexes from Eq. (5). Off-diagonal terms,
which drive the polarization rotation, are always present for
noncubic materials unless the propagation direction coincides
with a principal axis, i.e., the wave is an eigenstate of the
transmittance matrix. (Note also that for a magnetic material
one has μσπ �= μπσ .)

Ultimately, the observed intensity is obtained by multi-
plying the four matrices that modify the x-ray wave, leading
to a simple expression for an arbitrary incident polarization
condition:

I = Cλ3

v2 sin 2θB

μ0

∫ ∞

0
dz|A+TsFTiP|2, (6)

where C, λ, and v are, respectively, a constant, the x-ray
wavelength, and the unit-cell volume.17 From this formula,
one finds that even with a forbidden Fσσ ′ = 0, one can get a
σσ ′ intensity component because, at the depth z, the incoming
σ polarized wave is rotated and it acquires a π component.
For an isotropic material, the integral on the right gives, for
the σσ ′ channel, |Fσσ ′ |2 /μ̄. As discussed previously, we also
eventually multiply by the prefactor μ0/μ̄ for measurement
of the peak intensity and by ea(μ0−μ̄)δ to take into account a
disordered layer.

Calculations of the various spectra and azimuthal scans
(rotations about the scattering vector) are fully relativistic and
thus include the spin orbit in both the core and valence states.
In the antiferromagnetic supercell, there are two nonequivalent
Cu sites of multiplicity 8 (without magnetism all the Cu atoms
are equivalent). The calculation of the unit-cell structure factor
of the (1/2,0,−1/2) reflection is done using the space and
magnetic symmetry:

F = 2 (1 + mb) (1 − T ) (fCu1 + ifCu2) , (7)

where fCu1 and fCu2 are the atomic scattering amplitudes, mb

is the mirror symmetry operation perpendicular to b, and T

is the time reversal operator. The 1 − T factor makes that the
reflection is magnetic. The atomic scattering amplitudes are
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given by

f ∗
Cu = me

h̄2

∑
f,g

(Ef − Eg)2〈g|o∗
s |f 〉〈f |oi |g〉

h̄ω − (Ef − Eg) + i
/2
, (8)

where me, f , and g are the electron mass and the unoccupied
and core states. Ef , Eg , h̄ω, and 
 are the f and g state
energies, the photon energy, and the broadening. oi and os

are the transition operators corresponding to the incoming and
scattered waves given by

o = ε · r
(

1 + i

2
k · r

)
+ β (k × ε) · (L + 2S) + · · · , (9)

where ε and k are the photon polarization and wave vector,
β = −h̄/[2me(Ef − Eg)], and L and S are the angular
momentum and spin operators. The first and second terms
give the so-called electric E1 and E2 transitions; the third
one gives the magnetic M1 transition. E1, E2, and M1 are
governed by different selection rules on the probed valence
states, making resonant x-ray diffraction a unique probe
of the electromagnetic properties of crystals. Equation (8)
produces a series of pure and mixed multipole transitions.
The atomic scattering amplitudes are calculated within a
tensorial framework considering successively all the transition
channels E1E1, E1E2, E2E2, M1M1, and E1M1. After
some algebra, Eq. (8) for the E1E1 channel shows that the
signal is proportional to the component of the atomic magnetic
moment along the b crystal axis. In the same way E1E2 and
E1M1 depend on the toroidal moment around the same atoms.
The purpose here is also to quantify all these terms.

As shown in Fig. 2, we find an excellent agreement
for both the x-ray absorption near-edge structure (XANES)

FIG. 2. (Color online) Top: Spectra of the (1/2,0, −1/2) mag-
netic reflection in CuO. The self-absorption is responsible for the
vanishing intensity at the energy of the maximum of absorption. The
reflection without self-absorption correction is also shown, divided
by 100. Data taken from Ref. 11, but the RXD spectra are provided
by the same authors from an experiment done after publication.

FIG. 3. (Color online) Azimuthal scan of the (1/2,0, −1/2)
magnetic reflection in CuO at 930 eV. The points are the experiment
and the lines the simulation. Left and right polarizations are shown
with their difference at the bottom. Note the good agreement in
amplitude. The nonzero σσ ′ signal is also shown multiplied by 2.
Data from Ref. 11.

and the diffraction peak spectrum shapes using only the
E1E1 channel, including birefringence. Since the spectra
were obtained by measuring the peak intensity rather than
area, the double correction is necessary to reproduce the
experiment. We also add a 20 nm thick disordered layer
on top of the surface which is parallel to the diffraction
plane (α = 0). The spectra appear qualitatively different after
absorption correction, which produces a double peak shape
with a maximum at 930 eV that is not related to any feature of
the resonant scattering amplitude.

In Fig. 3, we reproduce the azimuthal scan recorded at
930 eV also only with the E1E1 channel and the birefrin-
gence effect. Here the experimental points were recorded by
integration so we apply only the single correction, i.e., without
multiplying the intensity by μ0/μ̄. Without birefringence,
incident beams with left and right circular polarization would
produce identical spectra. We observe a strong difference, and
reproduce not only the general shape but also the magnitude
of the phenomenon. The difference between left and right
circular polarization is 30% of the total intensity—exactly
what we obtain from the simulation. This provides, perhaps,
the most compelling evidence that the explanation in terms of
birefringence is valid. In the figure we also show the calculated
σσ ′ intensity, which is clearly not zero. At ψ = −43◦, it
is 5% of the intensity observed with πσ ′ polarization, and
what remains anyway is four times smaller than in the
experiment.

In Fig. 4, we show the change in amplitude with the
azimuth around the L3 edge. We observe the same effect
in the experiment11 in spite of the fact that at 17◦ the change in
the relative intensity of the features is not complete, requiring a
larger angle of 60◦. This is consistent with the results from the
azimuthal dependence, where we observe a poorest agreement
at around 20◦. Notwithstanding this discrepancy, we obtain
very good agreement in both shape and magnitude.
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FIG. 4. (Color online) Spectra of the (1/2,0, −1/2) magnetic
reflection in CuO for incoming right (R) and left (L) polarizations
and at different azimuths. We observe the same change as in the
experiment of the relative amplitudes of the two main features vs the
angle. Top: Data from Ref. 11.

To complete our analysis, we have performed simulations
including the E1M1 and the other contributions. These were
found to play a very minor role compared to birefringence. We
found the E1M1 contribution to be 10−4 smaller in amplitude
than the E1E1 component. E1E2 and E2E2 are, respectively,

3 × 10−3 and 2 × 10−4 smaller than E1E1. Moreover, these
amplitudes must be squared to obtain intensities. With the sim-
ulations being monoelectronic, it could be that the calculation
of the toroidal electronic current corresponding to the so-called
anapole is underestimated. Nevertheless its contribution is so
small and the birefringence effect so large that there can be
little doubt that it is the dominant physics in the reported
measurements.

We have demonstrated that birefringence can play a major
role in resonant diffraction experiments. We have proven that,
even in the x-ray energy range, this effect cannot always be
neglected and should be modeled precisely. In the case of CuO
we find no evidence for the existence of orbital currents. Ab
initio simulations are absolutely necessary to interpret both the
energy spectra, and azimuthal and polarization dependences.
Resonant x-ray diffraction is a powerful tool, sensitive to
very weak scattering phenomena and thus provides a way
to measure them. Identification of E1M1 contributions with
confidence is likely to require experiments where competing
effects, such as birefringence, can be ruled out.
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