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Spin-orbit-induced chirality of Andreev states in Josephson junctions
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We study Josephson junctions (JJs) in which the region between the two superconductors is a multichannel
system with Rashba spin-orbit coupling (SOC) where a barrier or a quantum point contact (QPC) is present. These
systems might present unconventional Josephson effects such as Josephson currents for zero phase difference or
critical currents that depend on the current direction. Here, we discuss how the spin polarizing properties of the
system in the normal state affect the spin characteristics of the Andreev bound states inside the junction. This
results in a strong correlation between the spin of the Andreev states and the direction in which they transport
Cooper pairs. While the current-phase relation for the JJ at zero magnetic field is qualitatively unchanged by
SOC, in the presence of a weak magnetic field, a strongly anisotropic behavior and the mentioned anomalous
Josephson effects follow. We show that the situation is not restricted to barriers based on constrictions such
as QPCs and should generically arise if in the normal system the direction of the carrier’s spin is linked to its
direction of motion.
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I. INTRODUCTION

The study of spin-orbit coupling (SOC) and related effects
is one of the most active fields in mesoscopic physics. As the
fabrication techniques improve, the link between the orbital
and the spin degrees of freedom can be engineered allowing
for the exploration of quantum phenomena at a deeper level.1–4

Moreover, the importance of SOC goes far beyond mesoscopic
device design as, for example, it has led to the identification
of the quantum spin Hall phase in topological insulators,5

a new phase of matter.6,7 More recently, hybrid systems
involving SOC and superconductivity have become one of the
most investigated platforms.8,9 When in combination with an
appropriate magnetic field (generated externally or induced by
proximity with a magnet in the sample), the system is expected
to develop topological superconductivity.10,11 This opens the
possibility to synthesize Majorana fermions in semiconducting
quantum wires, cold atoms, or devices based on topological
insulators.

In this work, we theoretically investigate the dc Josephson
effect in a hybrid system having superconductivity and spin-
orbit coupling; more precisely, two s-wave superconducting
leads (S) coupled by a two-dimensional normal region (N) that
has Rashba spin-orbit coupling. For superconductor-normal-
superconductor (S-N-S) junctions, it has been recognized that
the interplay between external magnetic fields—or, alterna-
tively, intrinsic magnetism—and the spin-orbit coupling can
change the relation between the supercurrent and the phase
difference between the two superconductors.12–20

The key ingredient in the S-N-S junction studied here is that
the normal region contains a gate-voltage controlled barrier,
see, for instance, the Josephson junction measured in Ref. 21.
In Ref. 22, a weak external magnetic field, applied in a specific
in-plane direction, was predicted to generate a controllable
phase shift in the current-phase relation (CPR), i.e., the system
develops a supercurrent for zero phase difference between the
superconductors. As the gate voltage is reduced, and the barrier

allows the transport of a few (more than one) transmission
channels, the Josephson current becomes nonsymmetrical as
a function of the phase. The maximum dissipationless current,
the critical current, depends on the direction of the current
and therefore there exists a current window on which the
supercurrent is rectified.

In the long Josephson junction limit with transparent S-N
interfaces, a normal region with a one-dimensional (1D) spin-
orbit coupling combined with a magnetic field, either parallel
or perpendicular to the SOC axis, can only produce transitions
between 0-π junctions as it is the case for superconductor-
ferromagnet-superconductor (S-F-S) junctions.23,24 In this
limit, this can be understood using Kulik theory,25 but the
same result follows by virtue of symmetry relations of the
Bogoliubov-de Gennes (BdG) Hamiltonian,26,27 irrespective
of the geometry of the junction for any generic 1D SOC
coupling. On the other hand, the magnetic field triggers shifts
in the CPR by incorporating the mixing with other subbands
in an effective 1D model.13,14

In the junction studied here, the anomalous effects arise be-
cause the barrier in the normal region [e.g. a two-dimensional
electron gas (2DEG) in a semiconducting quantum well]
behaves as an unconventional spin polarizer. As it was reported
by Eto et al. in Ref. 28, a quantum point contact (or barrier)
in a multichannel normal material with Rashba SOC spin
polarizes the current without the need for magnetic fields or
ferromagnets.29–32 The larger the spin-orbit strength and the
smoother the barrier, the more the polarization grows. Due to
time-reversal symmetry, the favored spin projection reverses
if the direction of the transport is inverted.

At zero magnetic field, we show how these gate-voltage
controllable spin polarizing features in the normal device
induce a correlation between the velocity33 and the spin of
Andreev states. As a result, the application of a magnetic field,
along the direction in which the SOC polarizes the current,
triggers the mentioned anomalous Josephson effects.
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We present a simple WKB picture for the transport through
the barrier that successfully explains the main features of
the exact numerical results for the Andreev states including
their spin texture. We also show that the anomalous Josephson
effects are not restricted to QPCs, they also appear in wider
barriers (stripe-shaped samples) for which the transverse
modes are so close in energy that the plateaus of quantized
conductance cannot be resolved when changing the gate
voltage. For both types of barriers, N-S junctions with reduced
transparency make the normal device behave as a Fabry-Perot
interferometer;34 the total transmission and the polarization
are maximized at particular values of the gate voltage that
controls the barrier. This resonant behavior translates into
stronger Josephson anomalies that can be tuned by changing
the gate voltage by a small amount.22

The paper is organized as follows: in Sec. II, we introduce
the model and we outline the polarizing mechanism of the
normal device, in Sec. III, we focus on how the spin properties
of the Andreev states result in the anomalous Josephson effects
mentioned above, and conclusions are presented in Sec. IV.

II. THE MODEL AND THE PROPERTIES OF THE
NORMAL DEVICE

A. Model for the junction

Our model describes a Josephson junction with a QPC
or barrier in a normal region that has spin-orbit coupling.
The device, illustrated at the top of Fig. 1, includes two
superconducting leads—left (L) and right (R)—and a central
normal part (N ) made out of a 2DEG in which the barrier is
created with the help of electrostatic gates. For convenience,
we assume that the three regions are restricted to a stripe
geometry, i.e., the potential becomes infinite outside the region

0 < y < Wy . The Hamiltonian describing the leads is

Ĥγ =
∫

d r

[∑
σ

�†
σ (r)

(
p2

2ms

− μ

)
�σ (r)

−�γ (r)�†
↑(r)�†

↓(r) − �∗
γ (r)�↓(r)�↑(r)

]
. (1)

Here, γ = L,R and the integral is done in the x < xL

semispace or the x > xR semispace for the left and right
leads, respectively. In the above expression, ms is the electron
mass in the superconductor, μ is the chemical potential, and
�†

σ (r) creates an electron with spin σ at position r = (x,y).
We assume that within the leads the superconducting order
parameter is constant and set �L(r) = �0 and �R(r) =
�0eiφ . In the following, we take �0 = 1.5 meV as in Nb.

The normal part of the junction, xL < x < xR , is described
by the Hamiltonian of a 2DEG with Rashba SOC and the
potential V (r) that defines the barrier:

ĤN =
∫

d r
∑
σ,σ ′

�†
σ (r)HN�σ ′(r),

(2)

HN = 1

2m∗
(
p2

x + p2
y

) + α

h̄
(pyσx − pxσy) + V (r) − μ ,

where m∗ is the effective mass of the 2DEG carriers, α is the
strength of the Rashba coupling, and σi is the i component of
the spin operator. The potential V (r) includes a constant term
that shifts the bottom of the conduction band of the 2DEG with
respect to the one in the superconductor.

As in Ref. 22, we consider thin superconducting films
parallel to the (x,y) plane. In this configuration, in-plane
magnetic fields lead only to Zeeman interaction. Therefore
the contribution to the Hamiltonian due to an external in-plane
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FIG. 1. (Color online) (a) Top: scheme of the junction including the leads and a qualitative color plot of the barrier potential V (r); Vg

is the value at the saddle-point. Bottom: qualitative two-mode picture of how the current through the barrier becomes spin polarized (left to
right case). In the dispersion relations E(kx) at different positions, we indicate the relevant states using dots at the Fermi energy EF. Electrons
from the left lead (at x = xL) are injected in four states, (n,σy), with n = 1,2 and σy = ±. The barrier allows only one transverse mode to be
transmitted (first conductance plateau, G = 2e2/h). Electrons injected at x = xL in states (1,+) and (2,+) are transmitted to the right. They
arrive at x = xR in states (1,+) and (2,+) and therefore the current is up polarized along y direction. Notice that—in the passage through the
barrier—an electron injected in state (1,+) does not see any avoided crossing (as in a zero-SOC barrier), whereas an electron injected in state
(2,+) suffers two SOC-induced avoided crossings: first it is mixed with (1,−) and then it returns to (2,+). (b) Summary of the left to right and
right to left transport properties of the barrier. The spin polarization from right to left is down as electrons injected (at x = xR from the right
lead) in (1,−) and (2,−) are transmitted whereas electrons injected in (1,+) and (2,+) are reflected to (2,−) and (1,−), respectively.
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magnetic field is

ĤZ =
∫

d r
∑
σ,σ ′

�†
σ (r)

g(x)μB

2
(Bxσx + Byσy)�σ ′(r), (3)

where Bi are the components of the magnetic field and the
gyromagnetic factor,

g(x) =
{

gN, for xL < x < xR,

gS, otherwise,
(4)

is different for the leads and the normal region. In the regime of
parameters studied in this paper, the superconducting contacts
are almost unaffected by the magnetic field. Namely, we take
the Zeeman energy EZ on the normal region, always smaller
than 20% of the superconducting gap �0 in the S contacts.
As the g factor in the In-based 2DEG is at least five times
larger that the g factor in the superconductor, the Zeeman
energy in the superconductor is at most �0/25.

In the present work, we solve the full Hamiltonian,
Ĥ = ĤZ+ĤN +ĤL+ĤR , numerically using a finite difference
approach.35 This is done by writing a tight-binding version
of the Hamiltonian and using a recursive Green function
method.36 The details of the approach are presented in
Appendix. For �0 �= 0, one must work in a Nambu space
representation since Ĥtot is indeed a BdG Hamiltonian.37

In the lattice model, the tunneling between the normal and
superconducting materials is described by hopping Hamiltoni-
ans, ĤN,L and ĤN,R . The sites at the interfaces are connected
by a spin-conserving matrix element tb that arises due to the
kinetic term in the original Hamiltonian (∝p2

x). As shown
in Eq. (A7), there are also spin-flipping tunneling elements
between those sites. These arise due to the symmetrization
made to assure Hermiticity of the SOC term:38

−α(x)

h̄
pxσy → − 1

2h̄
[α(x)px + pxα(x)]σy. (5)

Clearly, such symmetrization is relevant only where ∂xα(x) �=
0; here, the interfaces between the normal region and the
superconductors.

As assumed in the classic Blonder-Tinkham-Klapwijk
(BTK) approach for studying Andreev reflection,39 nonideal
transparencies can be introduced through a sharp potential at
the N-S interfaces in the continuous model. In the lattice model,
the transparency of the barrier is controlled by the parameter
A such that

tb = A
tN + tS

2
, (6)

where tS and tN are the hopping parameters for the super-
conducting and normal regions, respectively. Notice that for
realistic junctions, tS and tN are different since they are chosen
to simulate the Fermi velocity and electron mass mismatches
between the 2DEG and the superconductor. A transparent
junction corresponds to A = 1 since in such a case, tb is
the average of the hopping in the two regions minimizing
the scattering at the S-N interfaces; choosing A < 1 allows
for the simulation of poorer transparencies. To achieve the
full transparent junction case (Z = 0 case of BTK), it is
not enough to set A = 1 but we also need to assume that
tS = tN . Besides the interface parameter A, the junction is
characterized geometrically by its total length, LN = xR − xL,

by the properties of the barrier (see Appendix) and by the
number of transverse channels in the normal region.

B. Normal device: Spin polarization due to a barrier potential

Understanding normal transport through smooth barriers
in presence of spin-orbit coupling is a prerequisite to the
investigation of the JJs we treat here. Therefore, in this section,
we focus on the case in which the leads are not superconducting
but instead they are a continuation of the normal region (case I)
or a metallic material M , different from the spin-orbit coupled
2DEG in the central region (case II). For the case I, Eto et al.28

have shown that a 2DEG with a QPC is able to spin-polarize
the current without the help of an external Zeeman field. They
assume a Rashba SOC and study the ballistic transport through
QPCs described by a quite general saddlelike potential.

1. Origin of the current polarization: A qualitative picture

We focus on case I for which the interfaces 2DEG-
leads do not introduce backscattering. The main underlying
mechanism can be exemplified using two conducting channels
n = 1,2 in a Wentzel-Kramers-Brillouin (WKB) picture.40 At
every position xa , one obtains the dispersion relation that
would follow if the system were infinitely long with the
y-dependent potential, Ṽxa

(y) ≡ V (xa,y). We first exclude
from the Hamiltonian of the normal region in Eq. (2) the part of
the Rashba SOC proportional to the perpendicular momentum,
Hso

⊥ = α
h̄
pyσx . For H‖ ≡ p2

2m∗ − α
h̄
pxσy + Ṽxa

(y), solutions at
xa are uniquely identified by kx , by the spin projection along
the y axis, σy = ±, and by the transverse mode number n. For
each transmission channel, (n,σy), the kx solution at position
xa is |	xa,n〉|kx〉|σy〉, with eigenenergies:

E
‖
(n,σy )(xa) = h̄

2m∗ (kx − kασy)2 − Eα + EV
n (xa), (7)

where kα ≡ m∗α
h̄2 , Eα ≡ h̄2k2

α

2m∗ = α2m∗
2h̄2 , and EV

n (xa) are the trans-
verse mode energies, namely, the eigenenergies corresponding

to the eigenfunctions, 〈y|	xa,n〉, of the Hamiltonian
p2

y

2m∗ +
Ṽxa

(y).
Importantly, the E

‖
(n,σy )(xa) parabolas for modes (1,−) and

(2,+) [as well as for (1,+) and (2,−)] cross each other; see gray
lines in Fig. 1(a). Away from the center of the barrier and for
strong enough Rashba interaction these crossings are below the
Fermi level EF. The transverse SOC, Hso

⊥ ∝ pyσx , produces
avoided crossings because it coherently mixes transverse
modes with different parity, n mod 2, (since py = −ih̄ ∂

∂y
) and

opposite σy . Figure 1(a) sketches the transport through the
QPC in the adiabatic picture. For the situation shown there, the
value of the potential at the saddle point Vg is tuned to allow
the passage of a single transverse mode: the conductance is
2e2/h. As electrons at EF pass through the QPC from left to
right their kx momentum change. Electrons in the lowest-lying
split channel (1,+) pass through unaffected. On the other
hand, electrons in the higher split channel (2,+) are swept
twice through the anticrossing: first changing to (1,−) and
then to (2,+). Incoming electrons occupying the down modes
(1,−) and (2,−) (see contact with the left lead at position
xL) do not arrive at xc (center of the barrier) but instead they
are backscattered to xL into the left-traveling modes (2,+)
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and (1,+), respectively. Thus the current arriving at xR (the
position of the contact with the Right lead) is up-spin polarized
along the y direction.

In the two-modes sketch of Fig. 1, we have assumed
that the avoided crossings are fully effective. In a more
general case, the two quantum channels associated to the
first transverse mode can be divided in (i) channel (1,+),
which is fully transmitted to xR without state conversion, and
(ii) combination of (2,+) and (1,−) that arrives to xR after
mixing in region of the barrier. The larger the strength of the
Rashba coupling and/or the smoother the barrier potential,
the more effective are the avoided crossings and the better
becomes the polarizer: the contribution to the current of the
(2,+) quantum channel is increased. As the polarization is
defined by the transport properties of electrons at the Fermi
level, what matters most is the gradient of the barrier potential
at the positions xac in which the crossings between the relevant
dispersions fall at EF, i.e.,

EF = E
‖
(1,σy )(x

ac) = E
‖
(2,σ̄y )(x

ac). (8)

Two positions, xac
L < xc and xac

R > xc, fulfill this condition.
If the barrier is symmetric with respect to xc, both avoided
crossings share the same effectiveness. In Ref. 28, the probabil-
ity of state conversion is estimated—using the Landau-Zener
formula for the case that Ṽx(y) is a hard-wall constriction
potential of variable width W (x)—as pL,R = 1 − e−2πλ with
λ ≈ kα|W (xac

R )/[ dW
dx

(xac
L,R)]|.

Notice that for barriers with coexistence of Rashba and
Dresselhaus SOCs, nonzero polarization arises in exactly
the same way along the direction of the spin operator that
multiplies pθ , with θ̂ ≡ (cos θ, sin θ ), the direction parallel
to the current that flows through the barrier (here, θ̂ = x̂

and the corresponding spin operator for the Rashba SOC
is σy). This opens the possibility to electrically change the
spin-polarization axis of an Eto et al. polarizer as the Rashba
strength is tuned with gate voltage41 and the Dresselhaus
interaction remains constant.

2. Time-reversal symmetry and transport from right to left

In the above discussion, we have focused on the left (L) to
right (R) transport in the symmetric case. We now relax the
condition of spatial symmetry of the barrier profile allowing it
to be different for x < xc and for x > xc. Therefore we assume
that the probability to follow the avoided crossing is pL at xac

L

and pR at xac
R . For the two-channel model, with the barrier

in the first plateau of conductance, the nonzero transmission
coefficients (from left to right) at the Fermi energy are

T(L,1,+)→(R,1,+) = 1, (9a)

T(L,1,−)→(R,1,−) = (1 − pL)(1 − pR), (9b)

T(L,1,−)→(R,2,+) = (1 − pL)pR, (9c)

T(L,2,+)→(R,1,−) = pL(1 − pR), (9d)

T(L,2,+)→(R,2,+) = pLpR. (9e)

The conductance G, the polarization of the transmitted
electrons P , and the relative spin polarization of the incoming
electrons that contribute to the current D, can be expressed in

terms of the transmission coefficients as

GL→R = e2

h

∑
nL,σy,L

∑
nR,σy,R

T(L,nL,σy,L)→(R,nR,σy,r ), (10a)

PL→R = e2

hG

∑
nL,σy,L

∑
nR,σy,R

σy,RT(L,nL,σy,L)→(R,nR,σy,R ), (10b)

DL→R = e2

hG

∑
nL,σy,L

∑
nR,σy,R

σy,LT(L,nL,σy,L)→(R,nR,σy,R ), (10c)

where the subscript L → R refers to the left to right transport.
For the polarizing barrier, we introduce the coefficients of
Eq. (9) in Eq. (10) obtaining GL→R = 2e2

h
, PL→R = pR and

DL→R = pL.
Importantly, due to time-reversal symmetry, the resolved

transmission coefficients at the Fermi energy fulfill the
following relation:

T(L,nL,σL)→(R,nR,σR ) = T(R,nR,σ̄R)→(L,nL,σ̄L). (11)

Therefore the resolved transmission in the opposite direction
of electrons with opposite spins (at both ends) is identical.
This follows from the self-duality of the scattering matrix
in a spin-1/2 time-reversal symmetric system.42 Here, this
expression is of great importance for the Josephson effect
because at the S-N interfaces an electron coming from the
normal region can be Andreev-reflected back to the normal
as the lack of an electron with opposite spin (a hole) in
the same transverse mode. Since this hole propagates as the
lacking electron, Eq. (11) establishes the main difference
with a conventional magnetism-based polarizer. In the latter
systems, irrespective of the direction of the current, the largest
transmission is for electrons with spins parallel to the majority
spin.

For the polarizing barrier treated here, by combining the
time reversal relation with Eqs. (9) and (10), we get that
the normal transport from right to left has GR→L = 2e2

h
,

PR→L = −pL, and DR→L = −pR . Note that for the case of
the smooth symmetrical barrier with strong Rashba of Fig. 1,
pL = pR ≈ 1 and thus PR→L = − PL→R ≈ 1. The inversion
of the sign of the polarization is summarized in Fig. 1(b). It
can also be understood from the WKB picture in Fig. 1(a) by
noting that the electrons arriving to L are due to incoming
electrons from R entering the sample: (i) in channel (1,−)
passing through the barrier without mixing or (ii) in channel
(2,−) arriving to L in channel (2,−) after mixing in the region
of the barrier with channel (1,+).

We have introduced the two most important differences
between the Eto et al. polarizer and a magnetism-based spin
polarizer. First, here the device polarizes even though the
conductance is equivalent to two quantum channels, this
contradicts the naive expectation that G = 2e2/h implies
spin degeneracy and that therefore the polarization should
be zero. The second distinctive feature is that in symmetrical
barriers the spin polarization of the transmitted current reverses
when the current flow is reversed. More generally, irrespective
of the spatial symmetry of the barrier, we have that PL→R =
− DR→L and PR→L = − DL→R , which means that the SOC
induced polarization does not conspire against the formation of
Andreev states. The preferred spin direction for the transmitted
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electrons arriving to a given N-S interface is exactly opposite to
the preferred spin direction for the incoming electrons (or lack
of them) that can be transmitted to the other side of the barrier.
In Sec. III, we study which properties of Andreev states are
affected when these SOC-based polarizer barriers are present
inside a S-N-S Josephson junction and how these properties
manifest when a weak Zeeman energy is present.

3. Numerical results in more realistic models

Using the QPC potential of Eq. (A1) and the tight-binding
model, we compute the conductance and the polarization in
devices with many channels. In Fig. 2, results are presented as
a function of Vg for cases I and II described above. We have
chosen the opposite limit to the one shown in Fig. 1: the SOC
strength is weak, the avoided crossings are not fully effective
and thus the polarization is not strong. Case I is shown in
Fig. 2(a), as the leads are 2DEG based, the scattering back to
the barrier is minimized and the plateaux of conductance are
well defined. The SOC-induced current polarization is always
smaller than 5%, the characteristic value in the first plateau is
P 1st

(I ) = 0.04.
Figure 2(b) shows results for the case II in which the

leads are metals and therefore the electrons at the 2DEG-M
interfaces are strongly scattered back to the 2DEG region.
Resonances in the conductance are observed for special values
of Vg . Correlatively, the spin polarization of the current shows
maxima too. Notice that the average spacing between these
maxima is larger than that of the conductance maxima. The
main result is that constructive interferences, due to multiple
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FIG. 2. Conductance G (gray line) and polarization P (black
line) as a function of Vg for the quantum point contact QPC2

described by Eq. (A1) taking (z; Wb; Lb) = (90; 100; 250) nm. The
2DEG parameters are for an InAs-based 2DEG, (n = 1012 cm−2

and m∗ = 0.045me with me the electron mass) EF = 53.3 meV,
α = 5 meVnm, and LN = xR − xL = 1.2 μm. In the simulation, we
take Wy = 180 nm and a0 = 3 nm. (a) Case I, 2DEG-QPC-2DEG:
the leads are the same 2DEG and therefore the scattering at the
interfaces is absent. As the Rashba strength is weak the polarization
is small: less than 4% in the first plateau. (b) Case II, M-QPC-M :
the leads are a metallic material M different from the 2DEG leading
to a strong backscattering at the M-2DEG junctions; taking metallic
Nb as a reference we use m∗/ms = 0.045 and the Fermi velocities
ratio, v2DEG

F /vNb
F ≈ 2.25. Due to Fabry-Perot interference-like effects,

both the conductance and the polarization show resonant behavior as
a function of Vg; remarkably, there are values of Vg in which the
polarization can be much larger than the sub 4% values observed
when the device is in between 2DEG leads.

reflections of channels between the interfaces and the QPC,
strongly boost the current spin polarization with respect
to case I. We have checked (not shown) that the relative
polarization enhancement, P

peak
II /P 1st

I , grows the weaker is
the SOC strength. It is interesting to analyze this amplification
mechanism for the same phenomenon is correlated with the
anomalous Josephson current amplitude in the S-QPC-S case.

A simplified scattering theory is sufficient for a qualitative
understanding.34 It includes the two lowest channels, the
M-2DEG interfaces with a reflection coefficient r0, the SOC
strength through the probability p of state conversion at the
avoided crossing between channels (1,σy) and (2,σ̄y), and the
phases accumulated through the QPC for each of the quantum
channels. These phases can be calculated by a WKB formula,
they depend both on the junction length and on the gate voltage.
The result of this calculation is that the full transmission
(thus the conductance) as well as the spin polarization
oscillate with the accumulated phases due to Fabry-Perot
interferometry-like effects. As in the exact full numerical
simulation presented in Fig. 2 for a much larger total number of
channels, taking a large r0 value, one sees: (i) the ratio between
the polarization value at the peaks and the polarization for
r0 = 0 is larger the weaker is the Rashba strength and (ii) the
oscillation period for the polarization is larger than the one
of the conductance. The explanation for this is that the spin
polarization of the current crucially depends on a coherent
mixing of split channels with opposite spin directions. The
polarization is controlled by the phase accumulated in the
region between the output interface, at xR , and the closest
mixing location, at xac

R . On the other hand, the full transmission
is sensitive to the phase acquired through the whole length
of the device, thus explaining the faster variation of the
conductance with the gate voltage.34

III. THE EFFECT OF SOC-BASED POLARIZERS
IN JOSEPHSON JUNCTIONS

Defining the superconducting phase difference, φ ≡ φL −
φR , the Josephson current is given by37,43

I = 2e

h̄

〈
∂Ĥ

∂φ

〉
= 2e

h̄

∫ ∞

−∞
J (ε,φ)f0(ε) dε, (12)

where 〈· · ·〉 indicates the expectation value at thermal equilib-
rium, f0(x) = 1/(1 + ex/kBT ) is the Fermi distribution and we
have introduced the Josephson current density

J (ε,φ) =
∑

j

∂εj

∂φ
δ[ε − εj (φ)] . (13)

Thus J (ε,φ) contains the information about the velocity
at which Cooper pairs (i.e., charge 2e) are transmitted via
Andreev bound states, namely, the states with energy εj , which
have nonzero 1

h̄

∂εj

∂φ
. As we discuss below, the eigenvalues εj

of the system do not need to be computed in order to get the
Andreev levels. It is sufficient to compute J (ε,φ) and later
identify the coordinates (ε,φ) at which J (ε,φ) contributes to
the current. In the discretized model presented in Appendix, the
current is obtained from Eq. (A11). The calculation involves
expectation values that can be expressed as integrals over
ε of retarded and advanced Green function.44 This method
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allows us to directly obtain J (ε,φ) and from it identify the
contributing Andreev energy levels.

Notice that in the regime of parameters we work, 4π -
periodic components are not present as the magnetic field is
weak and it is applied parallel to the direction of the SOC field;
this is not the regime appropriate for Majorana physics.11,45

Here, due to the SOC-polarizing barriers and by virtue of
a small magnetic field along the polarization direction, we
find strongly asymmetric (2π -periodic) I (φ) shapes. We have
verified that the shapes always fulfill∫ 2π

0
I (φ)dφ = 2e

h̄
(〈Ĥ 〉φ=2π − 〈Ĥ 〉φ=0) = 0 , (14)

i.e., the area below the CPR is zero. This trivial property is not
evident from the plots reported in the following sections.

A. Anomalous Josephson effects enhanced by barriers
with SOC: Ideal interfaces

In this section, we study the case of ideal S-N interfaces
in order to isolate the effect in the Josephson current due to
the presence of SOC-induced spin polarization—in Sec. III B,
we will focus on how the basic properties discussed here are
modified by the resonant-like behavior that appears for more
realistic interfaces.22 The effective mass and Fermi velocity
of the superconducting leads are matched to the ones of the
2DEG and normal reflection (for |ε| < �0) is minimized.
In the lattice model, this is achieved by setting tS = tN = tb
[A = 1 in Eq. (6)].

1. Spin properties of Andreev states in absence of magnetic field

Figure 3 shows the results for zero magnetic field for a
device with strong SO coupling. In Fig. 3(a), we show a map
of the local density of states (LDOS) at x = xR as a function
of ε and φ: ρXR

(ε,φ) (see Appendix). The nondispersive
states are due to modes that are reflected at the barrier and
do not contribute to the Josephson current density shown in
Fig. 3(b). For the gate-voltage shown, the barrier allows the
transmission of a single transverse mode. Thus, at each side
of the barrier, there are standing waves that can not transport
Cooper pairs from one superconductor to the other—except for
an exponentially small contribution due to quantum tunneling.

On the other hand, the Andreev bound states—those
contributing to the current—have an apparent linear behavior
with φ. The sign of their contributions to J (ε,φ) is correlated
with the sign of their slopes: the latter are linked to the velocity
of the Andreev states [cf. Eq. (13), see Fig. 3(b)]. In Fig. 3(c),
we present the total Josephson current I , which is given by
the integral in Eq. (12). It includes the contributions of both
the discrete (Andreev bound states) and of the continuum
(|ε| > �0) spectrum. The most important contribution comes
from the Andreev bound states.39,46 The shape of the CPR
for zero field does not show signatures of the presence of the
SOC and the barrier: similar triangular-like CPR shapes are
expected in S-N-S long junctions with high transparency at the
S-N interfaces.21,25,47–49

Even though the magnetic field is zero, the Andreev levels
are not spin degenerate [see Fig. 3(d)]. This is due to the
Rashba coupling in the normal region and—as it becomes
clearer below—the effect is enhanced by the presence of the

FIG. 3. (Color online) Exact results for the full multichannel
model of a Josephson junction with a SOC-based spin-polarizing
barrier. The superconductors have �0 = 1.5 meV and are chosen
to minimize normal reflection (see text). The normal region length
is LN = 300a0 = 900 nm and the QPC parameters are those given
in Fig. 2. Here, the gate voltage is set in the middle of the first
conductance plateau and the SOC is strong, α = 40 meVnm, so that
the polarization is close to one. Color maps as a function of energy
ε and the superconducting phase difference φ for (a) ρXR

(ε,φ), the
local density of states at the last layer of the normal, XR; (b) and
(d) J (ε,φ), the current density. Notice that J (ε,φ), for |ε| < �0,
images the Andreev states; those that contribute to the current (red and
blue—in the online version—are positive and negative contributions,
respectively, given by the sign of the slope

∂εj

∂φ
). (c) Total Josephson

current I , i.e., the integral of J (ε,φ). (e) and (f) Magnetization
sy(x,y) = h̄

2 〈σy〉 at φa = 0.3π for Andreev states |A〉 and |B〉 [see
(d) and the discussion in Fig. 4]. The magnetizations, integrated over
all the normal sample, are positive: sB

y = 0.45sA
y .

spin polarizer barrier. Let us fix φ = 0.3π and investigate the
features of two neighbors Andreev states, |A〉 and |B〉. Notice
that both Andreev levels have the same slope sign and therefore
they transport Cooper pairs in the same direction. In a system
without magnetism and without SOC, the two states |A〉 and
|B〉 would be degenerate and their spin properties would be
opposite to each other. Here the situation is different: the two
Andreev states neither share the same transversal profile nor
their spin properties are opposite; in Figs. 3(e) and 3(f), we
show their spin density along the y direction—the direction in
which the barrier polarizes the current as a result of the Rashba
coupling.

In order to qualitatively analyze the results it is useful
to resort to the WKB picture presented in Sec. II B. First,
we notice that in the states |A〉 and |B〉 the Cooper pairs
are transferred from the left (L) superconductor to right (R)
superconductor (positive slope). Thus each Andreev bound
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FIG. 4. (Color online) Sketch for the WKB interpretation of the Andreev states |A〉 and |B〉 shown in Figs. 3(d)–3(f). Both states have
positive velocity, they transfer Cooper pairs from the left (L) to the right (R) superconductor. Figure 3 shows that the state |A〉 transports
Cooper pairs at a faster rate (since ∂εA

∂φ
>

∂εB
∂φ

) and its sy profile is always positive with a single maximum along the y direction, whereas sy

for the Andreev state |B〉 shows two positive maxima except from the center of the barrier where there exists a negative contribution to sy

having a single maximum. This is in full agreement with the WKB picture presented here. For the state |A〉 (left), the electron occupies the
(1,+) transverse mode all along the barrier as much as the reflected hole occupies the (1,−) transverse mode. On the other hand for |B〉 (right),
because of the smoothness of the barrier and the avoided crossings presented in Fig. 1, the electron (hole) is on the (2,+) [(2,− )] mode away
from the barrier and it mixes with the (1,−) [(1,+)] close to the barrier. This explains the different patterns of local magnetization along the y

direction, and why the Andreev state |B〉 is slower than the |A〉 one.

state is a stationary cyclic sequence of (i) electron traveling
from L to R, (ii) electron-to-hole Andreev reflection at R,
(iii) hole traveling from R to L, and (iv) hole-to-electron
Andreev reflection at L.

For the subgap Andreev transport (|ε| < �0), we sketch in
Fig. 4, two different possibilities left open by the device as Vg

is tuned to allow a single transverse mode to transmit. The left
panel shows different processes that lead to the state |A〉: the
electron travels from L to R in the (1,+) mode and it is Andreev
reflected as the lack of an electron in the (1,−) channel; then,
this hole is transmitted in the (1,−) channel from R to L where
it is Andreev reflected as an electron back in channel (1,+)
and the loop closes. This is therefore an state with an overall
spin-up polarization in the y direction and a transverse spatial
profile given by the first transverse mode (which has a single
maximum in the transverse direction). This is in agreement
with the exact results for the spin profile shown in Fig. 3(e).

Similarly, the right panel of Fig. 4 focuses on the case of the
Andreev state |B〉; the electron in its travel from L to R starts
at mode (2,+), it mixes with the (1,−) mode in the region
of the barrier and then arrives at R in the (2,+) mode. It is
Andreev reflected as the lack of an electron in (2,−), this hole
is transmitted arriving at L in (2,−) but in the region of the
barrier, it mixes with mode (1,+). This is also in agreement
with the exact quantum result shown in Fig. 3(f) for state |B〉,
as the local spin density shows two positive maxima (spin
up and second transverse mode) away from the barrier and
a contribution with a single negative maximum (spin down

and first transverse mode) appear in the region of the barrier.
Furthermore, within this picture, it is also justified that the
Andreev state |A〉 transports Cooper pairs at a faster rate than
|B〉 [see greater slope with φ in Fig. 3 (d)] because in the first
one, both electrons and holes are transmitted fully in the first

transverse mode, which is at all positions faster than the other
channels, as it is evident from the slopes | dE

dk
| in Fig. 1.

2. Symmetry considerations and the weak magnetic field limit

We start studying the symmetry properties of the BdG
Hamiltonian HBdG in absence of ferromagnetic materials and
magnetic fields. In this case, we have

HBdG(−φ) = T −1HBdG(φ)T , (15)

where T is the time-reversal operator Notice that −φ is
equivalent to 2π − φ. With the exceptions of φ = 0 and
φ = π , Eq. (15) does not imply the existence of degenerate
solutions for HBdG at a fixed φ. Instead, it allows us to construct
solutions for the case of φ = (2π − φx) from the ones at
φ = φx . Thus, for any given eigenstate (labeled by the natural
number j = 1,2, . . .) |j 〉 at (ε,φ) = (εj ,φx), we know that

|j 〉
(εj ,φx)

⇒ |j̄ 〉 ≡ T −1|j 〉
(εj ,2π − φx)

. (16)

This means that if the energy of |j 〉 at φ = δφ + φx is given by
εj (δφ) = εj (φx) + bj δφ, then the energy of |j̄〉 at φ = δφ +
(2π − φx) is εj̄ (δφ) = εj (φx) − bj δφ, with bj the slope of the
Andreev level for |j 〉 at φ = φx . Therefore their velocities, vj

and vj̄ , become opposite to each other (vj = − vj̄ ) as they are

proportional to ∂εj

∂φ
and

∂εj̄

∂φ
, respectively. This implies that the

Josephson current must be zero for either φx = 0 or φ = π , as
the two T -related states share the same coordinates (ε,φ) so
their individual contributions cancel out. For arbitrary values
of φ, the following relations hold:

I (φ) = −I (−φ) = −I (2π − φ), (17a)

I (π + φ) = −I (π − φ). (17b)
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An obvious property implied by Eq. (17) is that the absolute
value of the critical current is independent on the direction of
the current, i.e., I+

c = I−
c with

I+
c ≡ max I (φ), I−

c ≡ |min I (φ)|. (18)

In the next sections, we discuss how the barrier presented in
Sec. II B provides a controllable way to violate the relation
I+
c = I−

c . In this section, we discuss the fate of the properties
Eq. (17) when Eq. (15) no longer holds due to the presence of
external magnetic fields coexisting with spin-orbit coupling.

Starting from the zero magnetic field condition, we group
the Andreev states in T -related states, |j 〉 and |j̄ 〉, and address
the response of the energy levels to a weak external magnetic
field. As |j̄〉 is the time-reversed state of |j 〉, they have opposite
local spin projections,

〈sj (r)〉 ≡ 〈j |s(r)|j 〉 = −〈j̄ |s(r)|j̄〉 = −〈sj̄ (r)〉 , (19)

with s = h̄
2σ and σ = (σx,σy,σz). Let us assume, as an

example, that the spin of the Andreev state |j 〉 is up along
the y-direction—then we know that |j̄ 〉 is a down state. Thus,
if a Zeeman field is applied along the y direction—provided
it is not too strong to affect the properties of the original
states—the energy levels corresponding to |j 〉 (at φ = φx) and
to |j̄〉 (at φ = 2π − φx) change in the same amount, |εZ|, but
with opposite signs. In general, if the total spin of the Andreev
state is not fully aligned with the external magnetic field then
the splitting will be a fraction of |εZ| (but still proportional to
the magnetic field). We must also keep in mind that the states
change their spin structure as φ (and ε) varies.

In order to qualitatively understand how phase-shifts may
arise due to the Zeeman energy shift, εZ , we now particularize
to the case of a transparent N-S interfaces in a long junction—a
situation in which their Andreev levels can be approximated as
linear functions of the phase for |ε| < �0.25,47 For |ε| < �0,
we write the levels as

εj (φ,εZ) = λj (φ − π ) − εZ

2

h̄
〈Sj,y〉 , (20a)

εj̄ (φ,εZ) = −λj (φ − π ) − εZ

2

h̄
〈Sj̄,y〉 , (20b)

= −λj (φ − π ) + εZ

2

h̄
〈Sj,y〉 , (20c)

where λj > 0 is the slope of the level and 〈Sq,y〉 is the total
spin along the y direction of the Andreev state |q〉 —we later
relate these quantities with the parameters of our system.
From Eq. (20), we see that the shift in energy, due to the
presence of the magnetic field By , is equivalent to a shift of
the superconducting phase of the Andreev levels at zero field:

εj (φ,εZ) = εj

(
φ − φZ

j ,0
)
, (21a)

εj̄ (φ,εZ) = εj̄

(
φ − φZ

j ,0
)
, (21b)

φZ
j = 2εZ

h̄λj

〈Sj,y〉 . (21c)

The energy levels in Eqs. (20) and (21) are single-valued
functions in φ. However, by translating all solutions to the
[0,2π ] region, we get many Andreev levels for each value of
φ in that range. The effect of the magnetic field is shown in
Fig. 5(a) for an unrestricted phase axis, while Fig. 5(b) shows
the same results folded into the [0,2π ] region. This illustrates
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FIG. 5. (Color online) Phase shifts due to external magnetic
fields. The N-S interfaces are transparent. (a) Andreev levels in the
long junction limit. At zero field, due to the symmetry under T of
the BdG Hamiltonian, for every state |j〉, at φx , there is an associated
state |j̄〉, at 2π − φx ( ≡ − φx) that (i) has the same energy, (ii) has
opposite local spins properties (see text), and (iii) has opposite veloc-
ity. A weak in-plane magnetic field By—if applied along a direction
in which the total spin of the Andreev state is nonzero—generates
an increment (decrement) of the energy of the state |j̄〉 (|j〉) as
shown with vertical arrows. The new pattern of Andreev levels (thick
lines) are phase-shifted (horizontal arrow) from the B = 0 levels (thin
lines). (b) Shows the Andreev levels of (a) restricting φ to the (0,2π )
region.

how the energy levels of a T pair of Andreev states would
rearrange due to the magnetic field in any long junction in the
transparent interface limit.

From the above discussion, we see that the T pairs provide
a useful way to group the Andreev levels when discussing
how a weak magnetic field can modify them. It is appropriate
to make an important remark here. It is known that for a
system with zero spin-orbit coupling but nonzero magnetic
field the Josephson current fulfills the constrictions of Eq. (17)
irrespective of the transparency of the interfaces, the value
of the magnetic field and the length of the junction. This
follows from a symmetry of the Hamiltonian analog to the
one presented in Eq. (15) for time-reversal systems, namely,27

HBdG(−φ) = U−1HBdG(φ)U , (22)

where U = T Rπ and Rπ is a π rotation of the spin along
an axis perpendicular to the one of the magnetic field. The
TR operator, T , reverses the magnetic field direction and Rπ

maps the field back to its original direction. The relation holds
even with a position dependent magnetic field, providing the
magnetic field is coplanar—the rotation Rπ is taken along the
normal to such plane. The properties of Eq. (17) for the CPR
follow straightforwardly by noticing that the two states in a
U pair [analogous to states in the T pair of Eq. (16)] have
opposite velocities.

The important point is that, for Josephson junctions in
which SOC and Zeeman fields coexists, a symmetry operator
U ′ as the one in Eq. (22) does not exists in general and thus the
CPR properties shown in Eq. (17) can be violated: the CPR
can have I (0) �= 0, I (π ) �= 0, and I+

c �= I−
c .26 It is instructive

to discuss, for example, the case of 1D spin-orbit system with
a Zeeman field,

H0 = 1

2m∗ (px − h̄kασ1)2 − Eα + EZ,1σ1 + EZ,3σ3 , (23)

where we have written the {1,2,3} directions in spin space
for gaining generality (σi are the Pauli matrices) with the
SOC along the 1 direction. EZ,1 and EZ,3 are the parallel and
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perpendicular Zeeman energies, respectively. This
Hamiltonian can be mapped by a well-known unitary
transformation to a system without SOC but with an
inhomogeneous magnetic field. The transformation is just
the spin-dependent shift in momentum,50 Uα = exp(ikαxσ1).
In the transformed Hamiltonian, the parallel magnetic field
is unaffected, whereas the perpendicular component rotates
along the 1 axis as a function of the position x,

U †
αH0Uα = p2

x

2m∗ − Eα + EZ,1σ1

+EZ,3[cos(2kαx)σ3 − sin(2kαx)σ2] . (24)

Notice also that the s-wave superconducting pairing potential
transforms trivially under Uα .51 This simple argument allows
us to see that for magnetic fields that are neither parallel
nor perpendicular to the SOC axis—i.e., EZ,1 �= 0 and
EZ,3 �= 0—a symmetry as in Eq. (22) cannot be found because
the system is intrinsically equivalent to a system without SOC
but subject to a non coplanar Zeeman field texture.

For the 2D case with Rashba SOC, it has been shown
in Ref. 26 that a symmetry U ′ that assures zero Josephson
current for φ = 0 can be found only if the Zeeman interaction
is perpendicular to the plane of the SOC.52 For inplane fields,
as Eq. (17) no longer holds, current for φ = 0 and φ = π is not
forbidden by symmetry and also one may find that I+

c �= I−
c .

However, the geometry of the sample plays a crucial role since
not any in-plane direction is efficient to modify the Josephson
current. For instance, due to the sample configuration (width
going to infinity), phase shifts in Ref. 12 are not observed for
both directions of in-plane magnetic fields. Similarly, in the
finite width stripe geometry we investigate,22 (with or without
a symmetric barrier inside) if the magnetic field is parallel to
the stripe, the current for φ = 0 becomes zero.

From the above discussion, we have deepened our physical
understanding of the presence of a finite Josephson current
at zero phase difference. Our TR-symmetric device is able to
break the spin degeneracy of the Andreev states in absence of
magnetic fields. Due to the sample-specific geometry, a given
in-plane direction is privileged in the spin of the Andreev
states. More specifically, with a single transverse mode open
inside the barrier, the two Andreev states with positive velocity
(|A〉 and |B〉 states in Figs. 3 and 4) can have the same sign
of total magnetization along the direction in which the SOC
device polarizes. From the concepts that led us to Eq. (21),
it follows that a nonzero current for zero phase difference is
expected if a weak magnetic field By is applied as φZ

A �= − φZ
B .

On the other hand, current for zero phase difference is not
expected for inplane magnetic fields along the x direction
because for those states the integrated magnetization along
x direction is zero, i.e., 〈SA,x〉 = 〈SB,x〉 = 0. This is in
agreement with our numerical simulations.

3. Andreev levels and phase shifts in the weak magnetic field limit

In order to analyze our numerical results quantitatively,
we now relate the two essential features of the Andreev states
in transparent junctions, namely their phase dependence
(slope) and their energies as a function of a magnetic field
(in linear response), with the parameters of our system. The
energies of Andreev states for a homogeneous and long

(LN � ξN ≡ h̄vF/π�) one-dimensional S-N-S junction are
given by εn,± = h̄vF/(2LN )[2π (n + 1/2) ± φ], where vF is
the Fermi velocity of the normal material, and LN is the length
of the junction and the plus and minus signs correspond to the
two signs of the excitation velocity. This expression can be
generalized to include both the effect of external field and cor-
rections of order ξN/LN . Following the procedure of Ref. 25,
we obtain

εn,±
σ = σμeffBy + h̄vF

2(LN + πξN )
[2π (n + 1/2) ± φ] , (25)

here σ is the spin of the Andreev state and μeff is the effective
magnetic moment

μeff = gNμB

2

(
1 +

gS

gN
− 1

1 + LN

πξN

)
. (26)

We assume that the magnetic field is in the y direction—since
it is contained in the plane of the 2DEG no diamagnetic
effects are induced. The energies of the Andreev states are
then simply shifted by the field. In Eq. (25), n is an integer
and φ is restricted to the [0,2π ] region. These energy levels
are equivalent to the ones presented in Eq. (20) after folding
them into the [0,2π ] interval, as done in Fig. 5(b).

This analytical result for a 1D system without SOC can
be used to qualitatively analyze the effects induced by the
presence of a barrier in a normal region when α �= 0. We resort
to the WKB approximation and proceed in the following way:
for an adiabatic QPC in the absence of external magnetic fields
and for an electron (and the reflected hole) in the channel i,
we define a “local” wave vector,

k
e/h

i (x) = F
e/h

i (x,ε,μ) . (27)

These functions have to be obtained from the dispersion
relations at each position xa , by assuming that the potential
for all x is equal to V (xa,y). As shown in Sec. II B, due
to the SOC the different transverse modes with dispersion
relations given by Eq. (7) become mixed and the form of
F

e/h

i (x,ε,μ) become nontrivial—in the absence of SOC,
different transverse modes do not mix and the functions are just

F
e/h

i (x,ε,μ) =
√

2m∗
h̄2 (μ ± ε) − Ṽi(x), with Ṽi(x) the effective

1D potential that accounts for the shift of the bottom of the
i-channel band.

The orbital phase accumulated by the electron and the
reflected hole in the junction is given by∫ LN

0

[
ke
i (x) − kh

i (x)
]
dx = 2LNδiε

h̄vF
, (28)

where we have parametrized the integral by a single dimen-
sionless number δi . With this parametrization, we find for the
energy of the Andreev states:

ε
n,±
i,σ = h̄vF

2(LNδi + πξN )
[2π (n + 1/2) ± φ] . (29)

Within this picture, the effect of the barrier only introduces an
effective length LNδi > LN for each channel—the value of vF

is taken far away from the barrier potential. There is also a
small correction to the effective magnetic moment of channel
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i that is given by Eq. (26) with LN replaced by the effective
length LNδi .

We found, by inspecting the Andreev levels’s slopes of the
exact numeric results, that the parameters δi are only weakly
dependent on the SOC (see below). As the spin is no longer
a good quantum number, in the above expression the spin
index should be replaced by a new quantum number that
characterizes the two branches of each of the i = 1,2, . . . ,Noc

transmitted channels. In order to include the effect of an
external magnetic field in our simple WKB picture, we
profit from the properties of the Andreev states introduced
in the previous section. We group the Andreev states in
T partners, |j 〉 and |j̄〉, given in Eq. (16) [see Fig. 5], where
(j,j̄ ) = (1,1̄),(2,2̄), . . . ,(2Noc,2Noc), and j (j̄ ) labels the
states with positive (negative) slope. Therefore, in the linear
response regime, a magnetic field By leads to the phase shifted
energy levels of Eq. (20). In fact, the WKB version of Eq. (20)
can be written as

εj (φ) = ηjμeffBy + h̄vF

2(LNδj + πξN )
[2π (n + 1/2) + φ] ,

(30a)

εj̄ (φ) = −ηjμeffBy + h̄vF

2(LNδj + πξN )
[2π (n + 3/2) − φ] ,

(30b)

where the parameter |ηj | � 1 quantifies how different from the
spin degenerate case the system behaves. The link between the
parameters and the phase-shift φZ

j defined in Eq. (20) can be
written as

λj = h̄vF

2(LNδj + πξN )
, (31a)

|ηjμeffBy | =
∣∣∣∣εZ

2

h̄
〈Sj,y〉

∣∣∣∣ , (31b)

φZ
j = ηjμeffBy

2(LNδj + πξN )

h̄vF
. (31c)

The factor πξN in the denominator can be neglected in the
long junction limit—this is the case of the results presented in
Fig. 6 that we discuss below. Introducing the linear dispersions
of Andreev levels in Eqs. (12) and (13), the zero magnetic field
and zero temperature contribution to the Josephson current of
each 1D mode (a set of j and j̄ partners) is proportional to the
saw-tooth function, Fst(φ),25,47

Ij (φ) = 2eλj

h̄
Fst(φ) =

{ 2eλj

h̄

φ

π
if 0 < φ � π

2eλj

h̄

(
φ

π
− 2

)
if π < φ � 2π

,

(32)

which is a 2π -periodic zero-mean function and we have
defined it for φ ∈ [0,2π ]. For LN/ξN finite, the total current
includes the contributions of the Andreev bound states (|ε| <

�0) and of the continuum states (|ε| > �0).47 For a perfect
1D channel, the CPR has an abrupt change at φ = π , however,
in the simulation such jump is slightly smoothed due to the
presence of the barrier [see Fig. 3(c)].

We now discuss the effect of the magnetic field on the
Josephson current. The gate voltage Vg is set to allow the
transmission of a single channel, i.e., Noc = 1. Thus there are

φ/
π

S T U VRQP

O
P
Q
R

φ/π

O

S
T
U
V

φ/π

=α ≠α

≠α=α

π π

FIG. 6. Josephson current at a fixed finite Zeeman energy,
EZ = μeffBy , and a fixed barrier profile—Vg is set to allow transmis-
sion of a single transverse mode—as LN is enlarged. For convenience,
we plot it as a function of the effective length, Leff = δjLN [see
Eq. (31c) for ξN � LN ]. (a) and (b) correspond to α = 0, whereas
(c) and (d) to α �= 0. Qualitatively similar results are obtained if LN

is fixed and EZ is varied. For α = 0, the normal device behaves as a
ferromagnetic polarizer; the current at φ = 0 is zero, while changing
the length produce 0-π junction transitions. On the other hand, for
the case shown for α �= 0, the QPC behaves as an efficient polarizer
in the normal state. The magnetic field By is applied along the SOC
polarization axis. Note that the current at φ = 0 is nonzero and that
the phase-shift changes with the length of the junction.

two distinct Andreev levels, (j,j̄ ) = (1,1̄),(2,2̄), with positive
and negative slope, respectively. In the simulation, there is a
weak in-plane magnetic field (i.e., EZ � �0), and we vary
the length of the junction while the barrier dimensions are
kept fixed. The quantities δjLN change and so the phase shifts
in Eq. (31a). The current becomes

I (φ) = 2eλ1

h̄
Fst

(
φ − φZ

1

) + 2eλ2

h̄
Fst

(
φ − φZ

2

)
. (33)

We show the CPRs for a system without SOC in Figs. 6(a) and
6(b). Note that there is no current for φ = 0 because the states
j = 1 and j = 2 are the spin-up and -down states along the y

direction, respectively, and so φZ
2 = − φZ

1 (because η2 = −
η1 = 1). For φZ

1 = − φZ
2 = (2n + 1)π , the discontinuity of

both saw-tooth functions is at φ = 0. This can be understood
as a transition from a 0 to a π junction.

Figures 6(c) and 6(d) show the CPR for a system with
polarizing properties due to the presence of strong SOC. The
current for φ = 0 is nonzero as both saw-tooth components
move in the same direction. This can be understood as follows:
as the mode (1,+) dominates the Andreev state |A〉 [see
Figs. 3(e) and 4(a)], we have η1 = ηA ≈ 1. On the other
hand, since the region of the barrier is small compared to
the total length of the junction, the (2,+) mode dominates
away from the barrier in the Andreev state |B〉 [see Figs. 3(f)
and 4(b)], and we also have η2 = ηB ≈ 1. It then follows
that φZ

2 ≈ φZ
1 , justifying the numerical results of Fig. 6(c).

Using Eqs. (30)–(33), we see that the longer the junction, the
bigger the phase shift (∝LN ), while the maximum current gets
reduced (because λj ∝ LN

−1). Similarly, if LN is fixed, both
the phase shift and I (φ = 0) grow linearly with By while the
critical current does not change.
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FIG. 7. (Color online) Anomalous current, I (φ = 0) �= 0, phase-asymmetric CPRs and current-asymmetric CPRs, due to in-plane
magnetic field (parallel to the SOC polarization axis). The barrier is the quantum point contact, QPC1, described by Eq. (A1) taking
(z; Wb; Lb) = (30; 100; 250) nm. The junction length is LN = 1.2 μm and the S-N interfaces are transparent. The left (L) panels show
CPRs (La) and Andreev levels (Lc) for a fixed magnetic field, EZ = gμBBy = �0

10 = 150 μeV, and different values of the Rashba strength α.
The gate voltage, Vg = 46.5 meV, sets the number of open transverse channels, Noc, in 1. The larger α the bigger is the current I (φ = 0) and
the less distorted is the Josephson current from the one at By = 0: it looks as a phase-shifted version of the CPR at zero field [see (Ra) and
(Rc)]. (Lc) Deduced relative magnetic moments, η1 and η2, of the two Andreev bound states (see text) as a function of α. We show the simplest
estimation for η2, (2Pav − 1), with Pav the average polarization induced by the device in the energy range of the superconducting gap. The right
(R) panels show how the opening of more than one transverse mode in the QPC can lead to asymmetric CPRs when By is nonzero. We fix
α = 40 meVnm and show the Andreev levels, for (Vg,Noc) = (46.5 meV,1) [ (39.4 meV,2)] in (Ra) [(Rd)] for By = 0 and in (Rb) [(Re)] for
By �= 0: EZ = 150 μeV. In (Rf), the CPR for By �= 0 and Noc = 2 does show current-asymmetry, i.e., it fulfills Eq. (17). On the other hand,
for the case of Noc = 1 shown in (Rc), the CPR gets phase shifted and distorted for By �= 0 but no strong current-asymmetry is observed.

4. Phase shift of Andreev levels, dependence with α

In Fig. 7(L), we show the Andreev levels and the CPRs for
several values of α corresponding to the weak, intermediate,
and the strong SOC regime. The number of open channels Noc

is one and both the junction length and the magnetic field are
fixed. As expected, for α = 0 [see Fig. 7(Lc)], the arrangement
of Andreev levels is symmetric with respect to φ = π . We
call (j,j̄ ) = (1,1̄) [(j,j̄ ) = (2,2̄)] to the two energy levels that
cross ε = 0 at φ > π [at φ < π ]. Notice that as α is increased
the position of the crossing for (2,2̄) at ε = 0 shifts in phase
to the right, whereas for levels (1,1̄), the crossing position
remains unchanged. This is interpreted using the WKB picture.
We associate levels (1,1̄) to states in which electrons and holes
do not go through avoided crossings in the transport through
the QPC. Therefore, in these states, the spin remains along the
y direction: i.e., η1 ≈ + 1, for the Andreev state associated to
|A〉 [see Fig. 4(a)] and its T partner.

On the other hand, the Andreev states corresponding to
levels (2,2̄) have their spin not fully aligned to the y direction
as electrons and holes are affected by the avoided crossings
for nonzero α. In the strong SOC limit, we associate them to
the Andreev state |B〉 [see Fig. 4(b)] and its T partner. As the
probability to follow the avoided crossing increases with α

[see, for example, the 2-channels model in Eq. (9)], the wave
function in the region away from the barrier is changed from
being dominated by the first transverse mode (at α ≈ 0 holding
η2 = − 1) to being dominated by the second transverse mode
with opposite spin along the y direction (at very strong SOC
such that η2 ≈ 1).

For both types of states, we take the slopes of the Andreev
levels λj and from Eq. (31a) compute the values δj . Notice that

we have sorted out the T partners (here j = 1,2) by increasing
j as λj decreases, i.e., from the fastest to the slowest Andreev
state. Then we introduce the observed shifts φZ

j [see Fig. 7(Lc)]
in Eq. (30) to compute the parameters ηj . The results are
presented in Table I and Fig. 7(Lb) where we plot the values ηj .

In Fig. 7(Lb), we see that, as expected, η1 is constant as
a function of α. We show that η2 is well approximated by
2Pav−1, with Pav the average polarization of the QPC in
the ε ∈ (−�0,�0) energy window. This quantity is a crude
estimate for the spin projection of the Andreev state that suffers
the avoided crossing for the case in which the total length
of the junction is much larger than the zone of the barrier
in which the spin gets mixed. In this limit, one can assume
that the spin of the Andreev state is dominated by their spin
properties away from the barrier, these being the ones which in
the normal device dictate the value of the polarization. More
specifically, we assume that η2 ≈ S2, with S2 extracted from
the polarization of the normal device. We assume Pav = (1 +
S2)/2: the factor 2 in the denominator accounts for the total
number of transmitted modes within the first conductance

TABLE I. Dependence with α of parameters δj and ηj , j = 1,2.
The JJ has the quantum point contact QPC1, the CPRs, and Andreev
levels are those shown in Fig. 7 (left panels).

α(meVnm)→ 0 10 20 30 40 50 60 70

δ1 1.43 1.43 1.41 1.40 1.42 1.45 1.49 1.52
η1 1. 0.99 0.99 0.99 0.99 0.98 0.98 0.98

δ2 1.43 1.43 1.41 1.40 1.39 1.37 1.35 1.34
η2 −1. −0.90 −0.77 −0.44 −0.03 0.34 0.59 0.74
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plateau and the numerator is the sum of 1 [i.e., full spin up

due to the electron never leaving the (1,+) mode] with the
contribution S2 given by the specific superposition in modes
(1,−) and (2,+) arriving to lead R due to the SOC-induced
avoided crossing (see 2-channels model in Sec. II B).

5. Asymmetric CPRs

So far, we have shown results for one open channel in
the QPC. In the weak-By limit, we have shown that a current
appears for zero phase difference. This is due to different shifts
suffered by each of the twoT partners of Andreev states. As we
discuss in Sec. III A2, here the current-phase relation does not
need to be symmetric and thus the critical current can depend
on the direction of the current flow, i.e., I+

c �= I−
c . We find that

the latter effect becomes significant when the barrier is tuned to
allow the transmission of a few (more than one) open channels.
This is shown in Fig. 7(Rf) for Noc = 2. For convenience, we
number the T couples j = 1,2, . . . ,2Noc from faster to slower
Andreev states (decreasing slope of their dependance on φ).
In the case of Figs. 7(Rd) and 7(Re), we show how four of
those couples (Noc = 2) rearrange due to a finite magnetic-
field applied along the direction of polarization. In Table II, we
present the parameters δj and ηj obtained from the simulations.

As expected the fastest T pair (j = 1) has η1 ≈ 1 due to
the fact that they are associated with Andreev states in the
outermost branches of (1,+) and (1,−), i.e., those unaffected
by avoided crossings. The remaining three T pairs are affected
by the avoided crossings in the transport through the barrier.
Each of them also sees a different effective length (δjLN ) in
the passage through the barrier. This combination of different
slopes and different spin properties (ηj ) translates, given a
finite magnetic field along the y direction, into an asymmetric
CPR. The asymmetry is difficult to detect in the same device
for the Noc = 1 case (at a higher gate voltage). In Figs. 7(Ra)
and 7(Rb), we show that the rearrangement of Andreev levels
for Noc = 1 is symmetrical (with respect to a new phase value
different from π ) except for the small difference in slopes
between the two T pairs; the latter difference does not produce
a significant asymmetry in the total CPR shown in Fig. 7(Rc).

The significant difference of the two critical currents,
|I+

c −I−
c |/(I+

c +I−
c ), also gets reduced in the opposite limit,

when Noc � 1. In this case, the full current is the sum of the
contributions of the 2Noc T pairs and balanced spin properties
are dominant since a smaller fraction of the transmitted
channels undergo an avoided crossing transition. This can be
understood, for example, by taking the height of the barrier half

TABLE II. Values of δj and ηj for two open channels in the QPCs
for different junction lengths when α = 40 meVnm.

Vg LN

(meV) (nm) δ1 η1 δ2 η2 δ3 η3 δ4 η4

QPC1 600 1.39 0.95 1.49 0.50 1.63 −0.31 1.82 0.18
39.4 900 1.27 0.97 1.35 0.55 1.44 −0.41 1.58 0.27

1200 1.21 0.99 1.27 0.58 1.33 −0.45 1.47 0.36

QPC2 600 1.53 0.97 1.60 −0.84 1.70 0.87 1.90 0.72
46.3 900 1.40 0.97 1.45 −0.85 1.52 0.89 1.66 0.77

1200 1.31 0.99 1.36 −0.86 1.41 0.90 1.52 0.79

of what is considered in Fig. 1. Then, the electrons in channels
(1,−) traveling from left to right would not be affected by
the avoided crossings with mode (2,+) and thus both modes
(1,σ ) would be transmitted. Assuming that the third transverse
mode can now transmit, only the SOC mixing between (2,σ )
and (3,σ̄ ) modes contributes to spin filtering effect. This is the
reason why the polarization, and thus the anomalous Josephson
effects we study here, is smaller when many channels are
allowed to transmit through the barrier.

B. Anomalous Josephson effects enhanced by barriers
with SOC: Nonideal interfaces

In the previous section, the analysis was deliberately made
to elucidate the effects introduced by the barrier. Therefore
we have idealized the S-N junctions in order to minimize
normal reflections at the S-N interface. In those simulations,
the matching between 2DEG and superconductors was very
good despite the fact that the latter have α = 0 and a smaller
g factor. Here, we change the superconductor system, as
described in Sec. II A,22 with the goal of incorporating the
mismatch of Fermi velocities between the 2DEG and the S
contacts to simulate more realistic experimental devices.21 In
the following, we show that anomalous effects in the CPR due
to the polarizing effects are present both for realistic junctions
based on quantum point contacts and for wide barriers.

1. Quantum point contacts

The drastic effect of more realistic 2DEG-contact interfaces
was discussed in Sec. II B3 for the transport properties of
QPCs when the leads were taken to be metallic, i.e., �0 = 0.
As shown in Fig. 2—for a ratio between Fermi velocities,
v2DEG

F /vNb
F ≈ 2.25 —the conductance through the QPC shows

a resonant-like behavior as a function of gate-voltage. In partic-
ular, we have shown that, due to quantum interference effects,
the polarization peaks can be larger than the polarization
developed for the case where the 2DEG-contacts interfaces
do not generate backscattering.

Figure 8 show results derived from the current-phase
relation in a Josephson junction containing a QPC and realistic
2DEG-S interfaces. Due to the magnetic field By , the CPR for
the system has interesting properties that can be tuned by
changing the gate voltage, which controls the barrier height.
For convenience, we define the average critical current [see
Fig. 8(a)]

Īc ≡ 1
2 (I+

c + I−
c ) , (34)

the anomalous current [or zero phase difference current, see
Fig. 8 (b)]

Ia ≡ I (φ = 0) , (35)

and the asymmetry of the CPR [see the dependence with EZ

in Fig. 8(c)]

Asymmetry ≡ I+
c

I−
c

. (36)

The underlying resonant tunneling physics produce an abrupt
dependence with the gate voltage of the quantities of interest.
This is different from the idealized S-N junctions case of
Sec. III A for which the results do not change with Vg providing
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FIG. 8. (Color online) Results for a Josephson junction, S-QPC-
S, based in QPC2 with realistic 2DEG-S junctions: an In-based 2DEG
and Nb superconductors are simulated [parameters given in Fig. 2(b)].
We take α = 5 meVnm, LN = 1.2 μm; in (a) and (b) for the JJ
results the Zeeman energy in the 2DEG is EZ = − 150 μeV. We
plot the dependence with the gate voltage Vg of: (a) the average
critical current Īc and (b) the anomalous Josephson current Ia . In
(a) [(b)], we include the conductance G [the polarization P ] as
a function of Vg for the same device between normal contacts
(dashed line, 2DEG-QPC-2DEG junction), such that the leads do not
generate backscattering and the leads are metallic (solid black line,
M-QPC-M junction), we take the parameters of Nb with �0 = 0. We
observe correlation between Īc(Ia) for the S-QPC-S and G(P ) for the
M-QPC-M. (c) We fix Vg at a peak for Ia and present, as a function of
EZ , Īc and the critical current asymmetry I+

c /I−
c . For such value of Vg ,

the departure from the I+
c = I−

c situation is strong and controllable
via magnetic field (and gate voltage as shown in Ref. 22). (d) We plot
the full current-phase relations for some situations labeled in (c).

the number of open channels in the QPC remains the same.
The dependence with Vg shows resonant peaks in both Īc and
Ia . Figure 8(d) presents some examples of CPRs that show
a striking asymmetry. In these cases, the fact that the CPRs
fulfill the zero area condition of Eq. (14) is not obvious.

Indeed, because of the strong normal reflection at the
interfaces, the system can be interpreted as a S-quantum dot-S
Josephson junction and thus the resonant-like shapes in the
critical current are expected.48 This is the so-called resonant
tunneling supercurrent transistor regime for samples in which
the charging energy of the “dot” is small and thus Coulomb
blockade is not observed.53,54 In the absence of a magnetic
field, the states arising in the quantum dot appear as time

reversal pairs. As for the case of Sec. III A, for JJs based on
normal quantum dots with spin-orbit coupling, no asymmetric
CPRs or current for zero phase difference are expected at zero
field.17

A correlation between the normal transport and the su-
perconducting transport is observed in the shapes of Īc and
G in Fig. 8(a). This is understood generically, for Josephson
transistor devices, because the critical current is dominated by
the contribution of the highest quasiparticle level (i.e., closest
to ε = 0).53 Then the critical current is maximized at the
same values of Vg that maximize G in the M-QPC-M device:
constructive interference favors transmission of quasiparticles
and Andreev bound states acquires strong dependence with
the phase φ for ε ≈ 0. Moreover, in Fig. 8(b), we find a strong
correlation between P in the normal device and the anomalous
current Ia in the associated Josephson junction.

Here, the fact that the transport is conditioned by normal
backscattering at the interfaces and interference effects does
not invalidate the symmetry arguments discussed in Sec. III A
for the existence of Andreev states T partners at zero magnetic
field. Indeed, the Andreev states at a resonant condition are
T partners and it is natural to expect that their spins [see
Eq. (19)] are correlated with the polarization found in the
corresponding normal junction. At the resonant value of Vg ,
their associated Andreev levels cross each other with opposite
slopes at (ε,φ) = (0,π ).54 In a zero SOC system, Andreev
states are spin degenerate and thus there are two T −pairs
resonating at the same Vg . Here, on the other hand, as pointed
out in Sec. II B, the two scattering states contributing to a given
transverse mode have different velocities. In the Fabry-Perot
geometry, this leads to resonances at different values of Vg .
In summary, the multichannel physics, the symmetric sample
geometry, and the SOC make a particular spin projection,
up along the y direction in this case, to be favored in the
normal transport from left to right (PL→R > 0). The opposite
projection is favored in the right to left normal transport. The
Fabry-Perot effects enhances the polarizing effect for specific
values of Vg . In the associated Josephson junction, when a
weak By breaks the spin degeneracy, this leads to a nontrivial
rearrangements of the Andreev levels resulting in the nonzero
Ia and/or asymmetric CPRs, I+

c �= I−
c .

It is worth mentioning that the biggest asymmetry in the
CPR occurs due to the magnetic field for the cases which
at zero field present a few off-resonance T pairs (i.e., pairs
whose energies are below the Fermi energy for any value of
the phase difference) and a single resonant T pair (its energy
reaches ε = 0 for φ = π ). In this situation, the dispersion of
the resonant Andreev state is close to the one corresponding
to the ballistic case, while the off-resonant ones are more
sinusoidal-like, typical of a low transmission channel (results
not shown). Therefore the shifts induced by the B field are very
different in each case, leading to the observed asymmetry when
the corresponding contributions to the CPR are added up. This
becomes strongly dependent on Vg allowing, at a fixed B, to use
slight changes in the gate voltage as a control parameter.55 The
I+
c �= I−

c condition is generically observed as long as few open
channels are open in the QPC and the modes affected by SOC
mixing contribute a significative fraction of the total current.
We observe that the asymmetry grows with the magnetic field
as shown in Fig. 8(c) up to a value in which it jumps from
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I+
c > I−

c to I+
c < I−

c . This dependence is also observed at
fixed By as a function of the junction length—in such a case,
one has to change Vg with LN in order to follow the resonant
condition. The qualitative interchangeability of LN and By , as
in S-F-S junctions, follows because both quantities produce an
enhancement of the underlying phase-shifts of Andreev levels
(see Sec. III A3).

2. Wide barriers

In Sec. II B, we have presented the polarizing properties
of QPCs.28 The WKB picture, in Fig. 1, shows therefore
transverse modes well separated in energy by virtue of the
transversal quantization induced by the lateral constriction of
the QPC. The polarizing properties, however, are also expected
for very wide barriers. The physical mechanism is conceptually
the same, i.e., a smaller transverse modes quantization energy
does not avoid the SOC-induced mode mixing leading to
polarization in the transport through an adiabatic barrier.
This nontrivial spin transport shares the same time-reversal
properties as in the discussed QPC. Nonzero polarization has
been derived by Silvestrov and Mishchenko in Ref. 29 even
for the case of a very wide system with transversal periodic
conditions. As the barrier (B) becomes smaller the polarization
decreases in agreement with the observations in QPCs. Here
we present results for the polarization in a wide barrier and
show that these devices also lead to the same CPR phenomena
in Josephson junctions.

Figure 9 shows results for the wide barrier potential
Vwide(x,y) given in Appendix. The barrier has no dependence
with y and thus lateral confinement is determined by the stripe
width Wy chosen in the simulation. We take Wy = 630 nm,
which means 51 open channels in the stripe (Vg = 0) for our
choice of the Fermi energy. We denote with Z = 0 to the case
of a 2DEG-B-2DEG junction, i.e., the leads are essentially the
same material as the central region except from the reduced
g factor and the zero spin-orbit coupling—recall that Z is
the amplitude of the barriers at the S-N junctions in the BTK
approach.39 Then we study the case in which the leads are
metallic, i.e., a M-B-M junction. In the latter case, we use the
parameter A presented in Eq. (6), to reduce the transparency
of the junction away from the ideal condition (A = 1).

In Fig. 9(a), we shown the normal transport properties
of the barrier, the conductance G and the polarization P ,
that we use to characterize it. In the Z = 0 case, despite
the fact that the conductance plateaux become undefined, the
polarization is nonzero. In the case of metallic leads with
high transparency, A = 1, the G and P acquire some structure
but without showing marked resonances as in the QPC case.
This can be understood from the fact that many channels with
similar velocity are available and thus neighboring resonances
overlap. The total contribution is similar to the Z = 0 case
except for a reduction of the conductance. When we take
A = 0.3, the transparency of the junction is decreased and both
the conductance and polarization are affected. In particular, the
polarization shows peaks as a function of Vg .

We transform all these cases into Josephson junctions
by taking �0 = 1.5 meV. The current-phase relations in the
presence of a finite magnetic field along the y direction is
shown in Fig. 9(b). We can easily find, by tuning Vg , situations
with Ia �= 0 and asymmetric CPRs. As it is the case for QPCs,
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FIG. 9. (Color online) Results for a junction with potential
Vwide(x,y) with Lb = 360 nm, i.e., a plain barrier (B) without a
lateral constriction. We take α = 20 meVnm and the 2DEG and
superconductor parameters given in Figs. 2 and 8. (a) Spin polarizing
properties of the barrier when the leads are normal, we show the
dependence on gate voltage Vg for the conductance G and the
polarization P . Case Z = 0 is for a 2DEG-B-2DEG junction, i.e.,
the interfaces are ideal as the leads are the same In-based 2DEG. The
other two cases are for the M-B-M junction, the leads are metallic
Nb and a there is mismatch of Fermi velocities and effective masses;
moreover, away from A = 1, see Eq. (6), the transparency of the
junction is decreased. (b) The normal systems of (a) are turned into
Josephson junctions due to a superconducting pairing �0 = 1.5 meV
in the contacts and we also include a Zeeman field along the y

axis with energy EZ = − 150 μeV. Current-phase relations showing
both current for φ = 0 and/or CPR asymmetry I+

c �= I−
c , as those

appearing in QPCs, can also be obtained for wide barriers.

the asymmetry of the CPRs becomes larger for the realistic
junctions having normal scattering at S-N interfaces. The
phenomena is smaller the more modes are allowed to transmit
in the device as it is also the case for the polarization of the
associated normal device.

IV. CONCLUSIONS

We have described how the spin-polarizing properties of
barriers with spin-orbit interaction affect the spin of the
Andreev states. First, we revisited the normal device polar-
ization mechanism highlighting the multichannel nature of the
transport while stressing that the polarization of the transmitted
electrons is due to the mode mixing induced by the SOC term
proportional to the transversal linear momentum. As the device
is time-reversal-symmetric strong restrictions are imposed on
the spin-resolved transmissions in opposite directions. At zero
magnetic field, the properties derived from these restrictions
do not conspire against the formation of Andreev bound states,
this is opposite to the case of ferromagnetic polarizers.

At zero magnetic field, a symmetry of the BdG equation,26

including the SOC, links Andreev states corresponding to
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phase differences between superconductors +φx and −φx ,
respectively, that have opposite spin and velocity. The sym-
metry argument is valid for the junction irrespective of the
transparency of the S-N interfaces. Each of these states, that
would appear spin-degenerate in the absence of SOC, are
nondegenerate in its presence. More remarkable, the polarizing
barrier makes the two Andreev states traveling in the same
direction for +φx (with slightly different energy due to SOC)
to share similar spin properties. Because of the mentioned
symmetry there are two Andreev states for −φx that travel
in the opposite direction having spin opposite to those for
+φx , so the system presents a spin chirality. In our system,
we have shown that the introduction of a weak magnetic field
along the direction in which the Andreev states are spin chiral
is enough to trigger anomalous Josephson effects such as
current at zero phase difference Ia and I+

c �= I−
c . The chirality

condition here is built into the device properties by the presence
of the barrier and thus it can be switched on and off with
gate voltage. The condition is similar to the one required for
nonzero anomalous current in the spin-orbit coupled quantum
dot Josephson junction of Ref. 18. As this spin chirality is
intrinsic to other helical systems, we expect that a similar
effect could occur in those cases too. That is, a Zeeman-
induced Ia would also appear if the B field is aligned with
the helical direction in Josephson junction based on s-wave
superconductors.14,26

In order to see how the spin-polarizing properties of the
barrier determine the Andreev states and affect the Josephson
effect, we have idealized the S-N interfaces to minimize normal
scattering. The numerical results agree with a simple picture
for the transport through the barrier, based on the analysis of
the contribution of two almost degenerated Andreev states with
the same velocity and spin for a given phase difference. In this
limit, a direct translation of Zeeman energy shifts into phase-
shifts of Andreev levels can be made because of the linearity of
the phase dispersion of the Andreev levels in the long junction
regime. This, combined with the spin chirality of Andreev
states, leads to Ia �= 0. We have studied the dependence of
the phase-shifts with junction length, magnetic field and SOC
strength. We also showed that asymmetric CPRs are possible
when the barrier allows more than one open channel.

We also presented results for QPC based junctions with
realistic S-N interfaces. The asymmetry of the CPRs becomes
more marked than in the transparent junction case. This is

related to the Fabry-Perot like transport that produces peaks
in the conductance and polarization of the associated normal
device (taking �0 = 0 in the leads).

The phenomena described here are to be expected in barriers
as long as the device behaves as a polarizer—due to the
mode mixing induced by the SOC. Then, few open channels
are preferred. We have shown that anomalous effects are
also observable in wide barriers even in cases in which the
transparency of the S-N interfaces are not high. Therefore,
for smooth barriers with few open channels in quantum
wires, the mentioned effects should be observed as long
as the spin-orbit coupling is two dimensional, i.e., it must
have terms both proportional to the longitudinal momentum
and to the transversal momentum. As for quantum wires
constriction-type barriers are difficult to implement, the latter
is an important result: apart from the practical possibilities
arising from the supercurrent rectifier and the phase shifted
CPR, the experimental observation of the effects would
provide a signature of the presence of a SOC term proportional
to the transverse momentum. We believe this is valuable
information as SOC is one of the fundamental ingredients
required in quantum wires for accessing the topological super-
conducting phase, and knowledge of all existing SOC terms is
desirable.
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APPENDIX

1. Potential Barrier

To describe the quantum point contact we use the realistic
potential given in Ref. 56 for a split-gate defined QPC,

VQPC(x,y) = Vgϒ(x − xc,y − yc)

ϒ(0,0)
,

ϒ(x,y) = f

(
2x −Lb

2z
,
2y +Wb

2z

)
− f

(
2x + Lb

2z
,
2y + Wb

2z

)
+ f

(
2x − Lb

2z
,
Wb − 2y

2z

)
− f

(
2x + Lb

2z
,
Wb − 2y

2z

)
, (A1)

f (u,v) = π

2
− arctan u − arctan v + arctan

uv√
1 + u2 + v2

,

where z is the distance between the 2DEG and the plane of the gates, Lb is the length of the gate, Wb is the width of the
constriction, and Vg is the value of the potential at the saddle point located at (xc,yc).

In the case of barriers without the lateral constriction, we use a modified version of the potential given in Ref. 57,

Vwide(x,y) =
{

Vg

2

[
1+cos

(
π(x−xc)

Lb

)]
for −Lb < x − xc < Lb

0 otherwise
, (A2)
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where 2Lb is the barrier length and at the center of the barrier
xc, the barrier achieves its maximum value Vg .

2. Tight-binding model

Following standard finite-difference procedures for a square
lattice with spacing a0, we write the total Hamiltonian as

Ĥ = ĤZ + ĤN + ĤL + ĤR + ĤN,L + ĤN,R . (A3)

For convenience, we have used the same notation as the
continuous Hamiltonians given in Sec. II A and we have
introduced the Hamiltonians ĤN,γ connecting the normal
region and the lead γ = {L,R}. The Hamiltonian (2) for the
normal region becomes

ĤN =
∑

r∈N,σ

(4tN + V (r) − μ)ĉ†r,σ ĉr,σ +
[ ∑

r∈N,σ

tN ĉ†r,σ ĉr+a0x̂,σ

+
∑

r∈N,σ

tN ĉ†r,σ ĉr+a0ŷ,σ −
∑

r∈N,σ

λx,σ σ̄ ĉ†r,σ ĉr+a0x̂,σ̄

−
∑

r∈N,σ

λy,σ σ̄ ĉ†r,σ ĉr+a0ŷ,σ̄ + H.c.

]
, (A4)

where ĉr,σ (ĉ†r,σ ) refers to the annihilation (creation) op-
erator for an electron in the 2DEG at position r with
spin σz = σ = {↑,↓}. The hopping is tN = h̄2/2m∗a2

0 . The
summations are taken over all lattice sites in the normal region,
N; terms with operators ĉr,σ and ĉ

†
r,σ with r outside such

region are taken to be zero. The Rashba spin-orbit coupling
parameters are related to the Rashba strength in the continuous
model as

λx,↑↓ = α

2a0
, λx,↓↑ = − α

2a0
,

(A5)
λy,↑↓ = −i

α

2a0
, λy,↓↑ = −i

α

2a0
.

Notice that time-reversal symmetry is intrinsic to the SOC
coupling as we have λj,σ σ̄ = − (λj,σ̄σ )∗ with j = {x,y}.

The lattice version of the Hamiltonian of the leads (1) is

Ĥγ =
∑

r∈Rγ ,σ

(4tS + ES − μ)d̂†
r,σ d̂r,σ −

[ ∑
r∈Rγ ,σ

tS d̂
†
r,σ d̂r+a0x̂,σ

+
∑

r∈Rγ ,σ

tS d̂
†
r,σ d̂r+a0ŷ,σ + �0

∑
r∈Rγ ,σ

d̂
†
r,↑d̂

†
r,↓ + H.c.

]
,

(A6)

where γ = {R,L} for the right and left leads, respectively,
the summations are taken over sites belonging to the regions
of those leads Rγ and d̂r,σ (d̂†

r,σ ) refers to the annihilation
(creation) operator for an electron in the lead γ at position r
with spin σz = σ = {↑,↓}. We use the parameters tS and ES

for simulating the different types of leads.
When the goal is to minimize the scattering at the leads

we use ES = 0 and tS = tN [and A = 1, see Eq. (6)]. On the
other hand, for simulating realistic superconducting leads (or
metallic ones if �0 = 0), we change both ES and tS assuring
that the lead has many open channels—with the appropriated
velocity (dispersion)—in a large energy window around the

Fermi energy. The size of the latter is not important in the
metallic phase, as the low-temperature transport is dominated
by the quantum transmission at the Fermi energy. In the
superconducting case, it is enough to consider an energy
window of a few �0, as the Josephson current in S-N-S
junctions is mediated by Andreev reflection, which decays
exponentially as a function of energy for |ε| > �0.39 The
contribution to the CPR of states at energies outside this
window is negligible.

In writing the Hamiltonians Ĥγ , we have chosen a gauge
where the superconducting phases (φl,φr ) = (0,−φ) and φ is
accumulated only in the tunneling Hamiltonian between the
central 2DEG and the right superconducting lead.35 We group
the lattice sites according to the coordinate x. The set XR (XL),
having the sites at x = xR (x = xL), is the last (first) vertical
layer in the normal region. The intermediate Hamiltonians are

ĤN,γ =
[

−
∑

r∈Xγ ,σ

tbeiϑγ ĉ†r,σ d̂r+sγ a0x̂,σ

+
∑

r∈Xγ ,σ

λ
γ
σ σ̄

2
eiϑγ ĉ†r,σ d̂r+sγ a0x̂,σ̄ + H.c.

]
, (A7)

with parameters (sL,λL
↑↓,λL

↓↑,ϑL) = (−1,λ∗
x,↓↑,λ∗

x,↑↓,0) and
(sR,λr

↑↓,λr
↓↑,ϑr ) = (1,λx,↑↓,λx,↓↑, − φ/2). Notice that the

variation of the Rashba strength—as α is taken to be zero in
the leads and nonzero in the central region—introduces a SOC
contribution to the tunneling Hamiltonian at the interfaces.
This follows as a result of the correct discretization of the SOC
term α(x)

h̄
pxσy—when dα(x)

dx
�= 0, i.e., at x = xL and x = xR ,

this term needs to be symmetrized to be Hermitian.
Finally, the Zeeman term in the normal region is just

ĤZ = gμB

2

{ ∑
r,σ

(δ↑,σ − δ↓,σ )Bzĉ
†
r,σ ĉr,σ

+
[ ∑

r

(Bx − iBy)ĉ†r,↑ĉr,↓ + H.c.

]}
. (A8)

The Zeeman interaction at the leads γ = {L,R} has the
same form but in terms of the operators d̂r,σ and d̂

†
r,σ with

summations taken for r ∈ Rγ and gN replaced by gS .

a. Conductance and polarization

For the normal case (�0 = 0), we compute the transport
properties in the linear response regime. The conductance
follows from

G = e2

h
Tr[�LGr (EF)�R Ga(EF)] , (A9)

where Gr(a)(ε) is the retarded (advanced) matrix propagator,
with elements Gr

rσ,r ′σ ′(ε) given by the propagator from site r ′

and spin σ ′ to site r and spin σ , �
γ

rσ,r ′σ ′ = i(�r
γ −�a

γ )rσ,r ′σ ′

where �r(a)
γ is the retarded (advanced) self-energy due to the

γ lead and EF is the Fermi energy.
The polarization is

P = 1

G

∑
σ

(G↑σ −G↓σ ) , (A10)
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with Gσ ′σ the spin-resolved conductances, i.e., the contri-
butions due to the electrons that are injected from lead
L with spin σ and collected at lead R with spin σ ′.
As the current flow is in the x direction, the relevant
polarization occurs for the y axis—recall that the Rashba
SOC is proportional to pxσy . Thus Eq. (A10) refers to
the spin-resolved conductances with σ = {↑,↓} along the

y-axis. The polarizations along the x and z spin axis are
zero.

b. Josephson current

The Josephson current (12), being proportional to 〈 ∂Ĥ
∂φ

〉,
follows from ĤN,r as it is the only term in Ĥ that depends on φ,

I = 2e

h̄
i

( ∑
σ,rεXR

[
− tb

2
e−i φ

2
〈
ĉ†r,σ d̂r+a0x̂,σ

〉 + tb

2
ei φ

2
〈
d̂
†
r+a0x̂,σ ĉr,σ

〉] +
∑
rεXR

[
λx,↑↓

4
e−i φ

2
〈
ĉ
†
r,↑d̂r+a0x̂,↓

〉 − λ∗
x,↑↓
4

ei φ

2
〈
d̂
†
r+a0x̂,↓ĉr,↑

〉
+ λx,↓↑

4
e−i φ

2
〈
ĉ
†
r,↓d̂r+a0x̂,↑

〉 − λ∗
x,↓↑
4

ei φ

2
〈
d̂
†
r+a0x̂,↑ĉr,↓

〉])
. (A11)

This quantity is computed using normal propagators between the sites in the XR layer and sites in the first superconducting layer
of the R lead. As �0 �= 0, the calculation of the required propagators requires to work in the Nambu space since the equations
of motion for normal and anomalous propagators are coupled. We write all the coupled equations using the standard method of
Ref. 44 and obtain the normal propagators Gr(a)

rσ,r ′σ ′(ε).

c. Density of states and spin and current densities

After solving the equations of motion for the propagators,
all the densities are obtained from44

〈ζ̂ †
r ′,σ ′ ζ̂r,σ 〉 =

∫ ∞

−∞
ρrσ,r ′σ ′(ε)f0(ε) dε , (A12a)

ρrσ,r ′σ ′(ε) ≡ i

2π

[
Gr

rσ,r ′σ ′(ε) − Ga
rσ,r ′σ ′(ε)

]
, (A12b)

where the fermionic operators ζ̂ are type ĉ, or d̂ according to
the region in which they operate.

When only the integrated quantity is important, for instance
when studying the total Josephson current as a function of an
external parameter, the integral in Eq. (A12a) can be computed
in the complex plane by using the residue theorem. In this case,
the number of integration points required for convergence is
reduced by a factor of ten as we avoid the problem of integrat-
ing the chain of Dirac δs found in the real axis for |ε| < �0.
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