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We consider fermionic states bound on domain walls in a Weyl superfluid *He-A and on interfaces between
3He-A and a fully gapped topological superfluid *He-B. We demonstrate that in both cases the fermionic spectrum
contains Fermi arcs that are continuous nodal lines of energy spectrum terminating at the projections of two Weyl
points to the plane of surface states in momentum space. The number of Fermi arcs is determined by the index
theorem that relates bulk values of the topological invariant to the number of zero-energy surface states. The index
theorem is consistent with an exact spectrum of Bogolubov-de Gennes equation obtained numerically, meanwhile,
the quasiclassical approximation fails to reproduce the correct number of zero modes. Thus we demonstrate that
topology describes the properties of the exact spectrum beyond the quasiclassical approximation.

DOLI: 10.1103/PhysRevB.86.214511

I. INTRODUCTION

Chiral Weyl fermions represent the fermionic sector in
the standard model of particle physics. The point nodes in
the spectrum of chiral quarks and leptons are topologically
protected as well as their condensed matter counterparts, which
are called Dirac or Weyl points (on the topology of Weyl points
in particle physics and condensed matter see, e.g., Refs. 1-5).

The nodal topological systems with Weyl fermions demon-
strate different types of the bulk-surface and the bulk-vortex
correspondence. Due to the bulk-vortex correspondence, the
cores of some vortices in the Weyl superfluid *He-A contain
a dispersionless branch of bound states with zero energy,
which is a one-dimensional flat band, discussed by Kopnin
and Salomaa in 1991.° The end points of this flat band are
determined by the projections of Weyl points to the direction
of vortex axis (see Refs. 7 and 8 for the topological origin of
this flat band and Refs. 9—12 for discussion of the topological
flat bands in general). Due to the bulk-surface correspondence,
the surface of a system with Weyl points contains another
exotic object—the Fermi arc—the 1D Fermi line in the 2D
momentum space, which terminates on the projections of two
Weyl points to the plane of the surface. The Fermi arc on the
surface of *He-A shown in Fig. 2(a) has been considered in
Ref. 13 and that on the surface of topological semimetals with
Weyl points in Refs. 14-16. The flat band in the vortex core
and the Fermi arc on the surface are momentum-space analogs
of the real-space Dirac string terminating on two magnetic
monopoles.’

Fermi arcs appear also at the interface that separates two
degenerate states of *He-A with the opposite directions of the
orbital anisotropy vector 1 (in chiral superfluid >He-A vector 1
determines the orientation of a spontaneous orbital angular
momentum of this anisotropic liquid and also determines
the positions p = :I:pFi of two Weyl points on the Fermi
surface with topological charges N3 = +£2, if spin degeneracy
is taken into account). Bound states emerging at one of the
representatives of such interface—the continuous 1-soliton—
have been calculated in Ref. 17. Here, we consider bound states
emerging on the singular domain wall in *He-A discussed in
Refs. 18 and 19. Zero-energy edge states on such domain
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wall in a thin film of 3He-A and the topological bulk-edge
correspondence for this 241 system were considered in
Ref. 20. Fermi arcs emerging in the 3+ 1 system form a
special configuration in momentum space, see Fig. 2(b). We
also consider Fermi arcs emerging at the interface between two
topologically different quantum vacua: the *He-A with Weyl
points and the fully gapped *He-B, which also has nontrivial
topology in momentum space'>?'-23 (AB interface).

The Fermi arcs in superfluid 3He solitons studied in the
present paper differ qualitatively from that existing in other
systems such as the surface of *He-A and Weyl semimetals.
The reason is that they can be obtained ultimately beyond
the quasiclassical approximation. It was found that the qua-
siclassical approximation yields a large number of spectrum
branches which intersect the Fermi level.!”> The number of
such branches depends on the parameters of the solition in
contradiction with the topological index theorem. We show
that the reason for this contradiction is that the quasiclassical
Bogoluibov-de Gennes (BdG) equations inherently miss the
normal reflection of quasiparticles from the spatially inhomo-
geneous superfluid order parameter and take into account only
Andreev reflection. Thus the system of quasiclassical BdG
equations is often called the system of Andreev equations.
As we will discuss below, the normal reflection is crucial
to describe the Fermi arcs in superfluid *He solitons. In
this case, fermionic zero-energy states are realized on the
quasiparticle trajectories passing at the small sliding angle to
the soliton plane. For such trajectories, the normal reflection
is strongly enhanced and change qualitatively the behavior
of spectral branches near the zero-energy points on Fermi
arcs. Here, we find numerically exact solutions of the spectral
problems for BAG equations that confirm the topological
index theorem predictions. Thus our results demonstrate
that the topological bulk-edge correspondence describes the
properties of the exact spectrum of localized boundary
states, which in some cases are missed in the quasiclassical
approximation.

The structure of the paper is as follows. In Sec. II, we
introduce the model, which is the BdG equations and the
order parameter structures of domain wall in A phase and
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FIG. 1. (Color online) Model spatial dependencies of the order
parameter components corresponding to the most symmetric and
energetically preferable 1D topological defects in superfluids *He ac-
cording to Refs. 18,19,31, and 32: (a) domain wall of the A phase and
(b) AB interface. The order parameter is normalized to the bulk value.

AB interface. The results are presented in Sec. III where
we consider at first the topological nature of Fermi arcs and
then the calculations of fermionic spectrum. We discuss the
failure of quasiclassical approximation to describe Fermi arcs
in the fermionic spectrum of domain wall in A phase and AB
interface in Sec. IV. The conclusion is given in Sec. V.

II. THE MODEL

We calculate the spectrum of eigenstates of BdG
Hamiltonian describing spin-triplet p-wave superfluids/
superconductors

H = [e(p) — )3 + tiReA — £ImA, (1)

where e(p) = (p2 + pZ + p?)/2m, w is chemical potential,
pi = —iV; and 7; are Pauli matrices of Bogolubov-Nambu
spin acting on the wave function ¥ = (u,v)” with particle
and hole components u and v. The gap operator is A =
Awi6oPi/Pr, Where 6, are Pauli matrices of spin (in *He
it is nuclear spin), pr = +/2mu is the Fermi momentum.

The order parameter in superfluid *He is a 3 x 3 matrix
A, where the greek and latin indices correspond to the spin
and orbital variables. We will consider the fermionic modes
localized on different 1D order-parameter solitons, namely,
the domain wall of a He-A and the AB interface with order
parameter inhomogeneity along the vector fi = X so that the
momentum projections p, and p, are conserved. At first, we
introduce the order-parameter structure corresponding to the
discussed solitons.

A. Domain wall of A phase

We consider the configuration of one of the do-
main walls possible in *He-A according to the symmetry
classification'—the one shown in Fig. 1(a). The orbital vector
f of the order parameter points down a || —%) as x — —oo and
points up || 2) as x — 4o0. This domain wall configuration
can be approximated by the following ansatz:

Agi(x) = Aody[2i +if (X)Pi], 2)

where the unit vector d represents the spin part of the
order parameter, which is fixed if the spin-orbit interaction
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is neglected, and we put d = %. Then the gap function is given
by

Apn = cobul pe +if (X)py ], 3

where ¢y = Ag/pr is the parameter that plays the role of
the longitudinal speed of light in bulk 3He-A?, f(x) is an
arbitrary monotonic function with asymptotic f(+oo) = %1.
The topology of bound states does not depend on the details
of the function f(x) in Eq. (3) if it is monotonic. Note that
the same model (modulo unimportant d vector orientation)
describes domain wall between chiral domains in p +ip
superconductors like Sr,Ru0,>* thus the fermionic spectra
are identical in these cases.

B. AB interface

Let us fix the order parameter on the B phase side of the
interface, i.e., at x = +00, in the following form:

Aoti(x = +00) = AB(),C\otxAi + 5}04)/}1' +2a2i)- (4)

The configuration of the A phase at x — —oo can be different
for different realizations of the domain wall (see, e.g., Ref. 31).
They are described by the relative orientations of the vectors
i, &, and fi (the normal to the AB interface which in our case is
i = X). First, we shall consider the case d= X, i= Z, which
has the lowest energy*?

Agjx = —00) = Aada(®) — iF)). )

We model the domain wall at the AB interface with A, =
Ap = Ay and the switching between bulk phases (4) and (5)
as follows:

A, = Ag = const, (6)
Ay = Ay = Ao fi(x), (7)
Axy = _iAOfZ(x)’ (8)

where f1,(x) are arbitrary monotonic functions with
asymptotics f1(—o0) =0, fi(+00)=1 and fo(—00) =1,
f2(400) = 0. The order parameter components (6) are shown
in Fig. 1(b). Then the gap operator is given by

Aap = cob,lpx — ifo(X)pyl + co fitO)[6ypy + 62p:1. (9)

III. RESULTS

A. Topology of Fermi arcs in superfluid *He

As we have mentioned in Introduction the spectrum of
fermions bound to the surface of superfluid *He A is known
to contain the Fermi arc.'3 Let us now compare the Fermi arcs
on a domain wall in *He-A with the Fermi arc on a surface of
3He-A shown in Figs. 2(a) and 2(b), correspondingly. In both
cases, Fermi arcs originate from the Weyl points in the bulk
spectrum. But in case of the domain wall the Weyl points exist
in the bulk liquids on both sides of the wall, as a result there
are two Fermi arcs in Fig. 2(b) instead of a single Fermi arc in
Fig. 2(a). Topological origin of two Fermi arcs on the domain
wall is demonstrated in Fig. 3. The Weyl points on two sides
of the interface have the same positions in momentum space,
but opposite values of topological invariant Ns.
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FIG. 2. (Color online) The manifold of zero energy statesin p,, p,
plane in the spectrum of bound fermions &(p,, p.) = 0 forms (a) the
Fermi arc (solid blue line) on the boundary of *He-A according to
Ref. 13; (b) two Fermi arcs on the domain wall in Eq. (2). Only
single spin projection is considered. Thick arrows show directions of
Fermi velocity at the Fermi arcs. In (a), the Fermi arc has topological
charge N = +1, which satisfies the index theorem following from the
bulk-surface correspondence and the momentum space topology of
Weyl points in bulk *He-A. Fermi arc terminates on the projections
of Weyl points to the surface of He-A. The spectrum of bound
states terminates at the dashed line where the spectrum merges with
the bulk spectrum. The region of continuous spectrum is shown by
yellow shading. In (b), at p, = 0, the Fermi velocity at the Fermi arcs
is in the same direction, vg = —vry, which demonstrates that both
Fermi arcs have the same topological charge N = 4-1, which together
satisfy the index theorem Ns(left) — N3(right) = +2, in agreement
with momentum space topology of Weyl points in bulk *He-A on
two sides of the domain wall in Fig. 3. Fermi arcs terminate on the
projections of Weyl points to the interface. The spectrum of bound
states has discontinuity at p, = 0 where the spectrum merges with
the bulk spectrum (the edge of continuum is shown by dashed line).

The bulk spectrum in the plane with fixed p, in momentum
space has no nodes if |p,;| # pr and thus corresponds to
the spectrum of 2D insulator. This insulator is topological
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for |p,| < pr, since it is described by nonzero topological
invariant introduced in Refs. 27-30 for 2 + 1 systems:

- 1
N3(p;) = mtr[[dpxdpyda)Ga,,xG1G3,;}.G1G8wG1i|.
(10)

Here, G is the Green’s function matrix, which in our noninter-
acting models is G = (iw — A)~'. One has Ni(lp.| < pr) =
+1 on one side of the wall and N3(|p.| < pr) = —1 on the
other side. According to the index theorem,>? the difference
between these two values determines the number of the zero
modes at the interface between the 2 4- 1 topological insulators
for each |p.| < pr. As aresult, one has two Fermi arcs at the
soliton wall.

B. Calculation of the spectrum

At first, we note that the spectral problem for the domain
wall can be significantly simplified since the BAG Hamiltonian
(1) with the gap operator given by Eq. (3) is proportional to
the fermionic spin &,. Thus we transform the quasiparticle
wave function ¥ = (u,v)” to remove the spin dependence of
the order parameter i = &,u, ¥ = v, which yields the gap
operator in the form

A = colpy +if(X)py]. (11)

Furthermore, the spectral problem for the AB interface
with the gap operator given by Eq. (9) can be mapped on
the case of a domain wall of the A phase. Let us transform the
quasiparticle wave function components as follows: ii = &, u,
¥ = v. We choose the spin basis x, = (ip;,01 p1 — p,)of the
eigenstates of the operator 6, = 6.p, — &, p, corresponding

/ P} + p?. Thenthe
order parameter is diagonal in spin space and has the form of

to the eigenvalues o, = £1, where p; =

=0

Fermi arc

=
=
5
49

E (Py,Pz)

point d

Ny(pz) =0

FIG. 3. (Color online) Topology of the fermionic bound states on the domain wall in *He-A. Momentum space topology of Weyl points
in bulk *He-A on two sides of the wall prescribes existence of the Fermi arcs in the spectrum of the fermionic states in the soliton or at the
interface between the bulk states with different positions of Weyl points. In the considered case of the domain wall, the Weyl points on two sides
of the interface have the same positions in momentum space, but opposite topological invariants N3. This leads to two Fermi arcs terminating
on the projections of the Weyl points to the plane of domain wall [see Fig. 2(b)] according to the index theorem N3(left) — N3(right) = 2. This
is distinct from the single Fermi arc on the surface of the *He-A in Fig. 2(a).
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Eq. (11), where
f&x)=oLp1filx) — py f2(x). (12)

In order to obtain the bound states, the function (12) has
to satisfy the condition f(4o00)f(—0c0) < 0, which yields
01 py > 0. Thus in contrast to the case of the domain wall
considered above the spin degeneracy is removed since the
proper spin state is determined by the condition of bound state
existence.

The continuous part of the spectrum &.(p) of fermionic
excitations is determined by the eigenstates of Hamiltonian
(1) at the bulk regions |x| > r:

ee@ =% /le(p) — uP + (P2 +p2).  (13)

The states localized at the domain wall are characterized by a
single discrete quantum number which enumerates the energy
branches and by the two continuous quantum numbers which
are the projections of the quasiparticle momentum p,, . onto the
domain wall plane. The energy of localized states is confined
within the region |¢| < min, &.(p).

In general, the eigenvalue problem of BAG Hamiltonian
(1) yields a system of differential equations which can not be
solved analytically. However, there are approximate methods
that can help to study qualitative features of the spectrum.
First of all, we will employ the semiclassical approach®
when the momentum operator is approximated by a number
Prx = px(x) thus turning the differential BAG equations into
the algebraic ones. In this case, the spectrum of bound states
is determined by Bohr-Sommerfeld quantization of classical
periodic motion between reflection points discussed in the
Sec. IIIB1. The semiclassical approximation fails when the
distance between reflection points is too small. Particularly
important is the case when two Andreev reflection points come
close together forming the bound state that correspond to the
so called “zeroth branch” of the energy spectrum.'”?> This
case can be treated with the help of another approach—the
quasiclassical approximation when one can use reduced order
Andreev equations for the envelope wave functions discussed
in Sec. IIIB2. The quasiclassical approximation in BdG
equations is applicable as long as the normal reflection can be
neglected. For the structures considered in the present paper,
the normal reflection is crucial to describe properly the zero
modes of the fermionic spectrum. This can be done only with
the help of numerical solution of the exact BdG system of
equations discussed in Sec. I1I B3.

Hereafter, we will choose the model form of Eq. (11) with
f(x) = tanh(x /r) wherer ~ & is width of the domain wall and
& = hvp /Ay is the coherence length where vy = pp/m is the
Fermi velocity. The fermionic spectrum in this configuration
was considered in Ref. 25 in quasiclassical approximation.
Here in Sec. III B3, we will implement an analysis of the
fermionic spectrum beyond the quasiclassics in order to study
the Fermi arcs supporting Majorana states.

1. Semiclassical spectrum

We begin the analysis of the spectrum of localized states
from the semiclassical approximation. Provided the condition
|px|€E > 1 is valid we use the expression for the energy (13)
substituting the local value of the order parameter. In this case,
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we obtain

&= i\/ [p2/2m — 10, )" + P2 + f@p2]. (14

where (, = u — (p% + pzz)/Zm. From Eq. (14), the function
Px = px(x) can be found that describes semiclassical orbits in
(px,x) phase space. In general, the orbits can have two types
of stationary points determined by the nature of quasiparticle
reflection.

The normal reflection occurs at the points x = x{ , defined
by px(x},) = 0 or, equivalently, ’

copyf(xfz) ==4,/e2 — 852 (15)

and exists at the energy interval €,; > |e| > &,2, Where &, =

V(copy)? + 2 and &,» = |14« |. The Andreev reflection occurs
atx = xil,z where Im(p, ) becomes nonzero:

cop_\,f(xfz) =4,/e2 — 852, (16)

and exists if &q1 > le| > €q2, where Eq1 =

co\/p)z, + 2mp, — (mcp)? and €,0 = cov/2mpu, — (mcp)?.

One can see thate,; > g,; and &, > &,, therefore Eq. (14)
determines two qualitatively different types of the enclosed
classical orbits in (py,x) space. That is, for the energies
(i) €41 > |e| > €41, the orbits have only normal reflection
points and for (ii) &,, > |&| > &,2, only Andreev reflection
points. The orbits of type (i) and (ii) are shown in the Fig. 4(a)
by red dashed and green solid lines correspondingly. Provided
(iii) &,1 > &2, there is also the third regime when the orbit has
both normal and Andreev reflection points, which is shown by
the blue dash-dotted line in the Fig. 4. The energy spectrum is
determined by the Bohr-Sommerfeld quantization

%pxdx = 2m(n, + )/)7 17

where n; is integer, y = 1/2 for the orbits with two normal
reflection points and y = 0 for the orbits without normal re-
flection points.2® Semiclassical spectral branches for n, = 1,2
are shown in Fig. 4(b) by solid lines. The number of branches is
doubled when the classical orbits with only Andreev reflection
points merge into the single one with both normal and Andeev
reflection points. The discontinuity of semiclassical branches
in Fig. 4(b) is caused by the emergence of two normal reflection
points on the classical orbits which change abruptly the factor
y in Bohr-Sommerfeld quantization rule (17).

From the above semiclassical consideration, we obtain that
the energy of localized states is not bounded as a function of
py and p.. Indeed, let us consider the case (i) and assume
VE&r — 2 L colpy| < |l In this case, we can put f(x) =
x/r in the Eq. (14), which yields then the harmonic oscillator
spectrum

gns(pwpz) = |Mx| + w(ng + 1/2)’ (18)

where @ = co(|pyl/prr)a/214/|1tx]. One can see that the
Eq. (18) yields & > |u,|. Hence the energy branches at

Uy < 0can have arbitrary high energy when , — —oo. This
tendency can be seen in the Fig. 4(b).

Besides the energy branches determined by Bohr-
Sommerfeld quantization with n; > 1, there exists a so-called
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FIG. 4. (Color online) (a) Closed orbits p, = p,(x) determined
by the semiclassical Eq. (14) at the domain wall for p, =0, p, =
0.5pF, and co/vF = 2.5 1073, Shown by red dashed, green solid,
and blue dash-dotted curves are the regimes (i)—(iii) discussed in the
text. The positions of Andreev x, , and normal x,,; , reflection points
on the semiclassical orbits are indicated. (b) Comparison of energy
spectrum given by quasiclassical and semiclassical approximations.
The quasiclassical spectrum given by Eq. (24) is shown for n, = 0,1
by dashed red and blue lines. The quasiclassical approximation takes
into account only Andreev reflection hence the spectrum is doubly
degenerate by sign(p,). The semiclassical approach describes both
Andreev and normal reflection hence the degeneracy by sign(p,) is
removed. The branches given by Bohr-Sommerfeld quantization (17)
of semiclassical orbits with n; = 1,2 are shown by solid magenta
lines. The number of semiclassical branches is doubled due to the
normal reflection when the Andreev orbits shown in (a) by green
solid lines merge into the single one shown by blue dash-dotted line
with both normal and Andreev reflection points.

“zeroth branch” of the spectrum that contains the zero-
energy modes ¢ = 0. This branch can not be obtained from
the semiclassical approach therefore a different treatment is
needed.!”

2. Quasiclassical approximation

To find the zeroth branch analytically, we assume the
restriction (py/pr)p<& > 1, where p, = /2mu, is a con-
stant number. Qualitatively, this restriction corresponds to the
regime (iii) in Fig. 4 when the deviation p,(x) of momentum
Px(x) = /2muy + p,(x) along the orbit is much smaller than
its average value |p,| < +/2mu,. In this case, we can neglect
the second-order terms in p, still treating it as an operator so
that [e(p) — u] = —iv,d,, where the projection of the Fermi
velocity on the x axis is vy = p,/m = £,/ p% — p? — p2/m.
This allows to consider the regimes when the closed orbits
become so small that semiclassical approximation does not
apply. In particular, it allows to calculate the zeroth branch
that appears when the distance between Andreev reflection
points is much smaller than the coherence length &. In this
way, one obtains a system of abridged equations for the wave
function envelopes, which is called the system of quasiclassical
Andreev equations. The quasicalssical approximation inher-
ently misses the normal reflection of particles from the order
parameter inhomogeneities. As we will see below, the normal
reflection is crucial to describe the Fermi arcs and Majorana
states at the domain wall considered. However, away from the
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Fermi arcs, the quasicalssical approximation matches the exact
spectrum obtained numerically.

To obtain analytical solutions of Andreev equations, first,
let us introduce the transformation of the quasiparticle wave
function ¥ = (u,v)7:

g+ =v+u, 19)

g-=v—u, (20)

so that the system of Andreev equations acquires the form

h x
(o )
€ = CoPx h- 8-

where h1 = —iv,0x L ico f(x)p,.
The system (21) can be transformed to the decoupled
second-order equations

[92 4+ Upy cosh ™ x]gy = Eg., (22)

[97 + Up—cosh™*x]g_ = Eg_, (23)

where E = (r/§)* + «® — (pre/px Do), Uy = a + o, a =
rcopy /vy, and Up—(py) = Ups(—py). Equation (22) has eigen-
values

Eng=(1+2n, — /1 +4Up)* /4 = (n, — a)’,

where n, > 0 is integer, which results in the quasiclassical
spectral branches'”>

| Px|
PF
Note that the energy branches (24) are twofold degenerate with
respect to the sign change of p, projection.
The zeroth spectral branch is given by the Eq. (24) with
ng =0:

Eng = :|:A0

\/Zanq —n2 + (/). (24)

go(py,pz) = cosign(py)| px|. (25)

The dependencies of zeroth branch (25) gy = go(1,) at fixed
py and &y = go(p,) at fixed p, are shown in Fig. 5 by red
dashed lines and in Fig. 6 by blue dashed lines correspondingly.
At p, = 0, this spectral branch is discontinuous and merges

the edge of continuum &, = :I:co,/p%- — p}atp, = +0.

Substituting the energy of zeroth branch into Eq. (16)
for the coordinates of Andreev reflection points, we obtain
a1 2l = pr' (r/E)(pr/|py)) ~ pr' provided |p,| is not too
small. For such a small distance between reflection points, the
semiclassical approximation is not valid and therefore it can
not describe the zeroth branch.

The spectral branches with n, > 0 given by Eq. (24) exist
only in the limited range of parameters /pr/& < |p«| < pZ,
where p¥ = |py|ng/[n; — (r/§)*] provided that n, > r/€. At
px = p5, the branch merges the continuum. This behavior is
demonstrated in Fig. 4(b) where the energy branches (24) with
ng = 0,1 are shown by dashed red and blue lines as a function
of wy = ju — (p} + p?)/2m for the parameters r = & /2 (width
of the domain wall), cy/vF = 2.5 x 1072 and py =0.5pF.
The zeroth branch merges the continuum at p, = 0 where
the spectrum Eq. (25) is discontinuous. This behavior is shown
by dashed blue lines in Fig. 6.
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FIG. 5. (Color online) The spectrum of surface states at the A
phase domain wall and the AB interface ¢ = e(u,), where u, =
w — (p? + p?)/2m.The parameters are r = & /2 (width of the domain
wall) and co/vr =2.51072, |p,| = 0.5pF. Shown by solid red and
blue lines are the spectral branches determined by the exact solution
of BAG Eq. (1). Thick red solid lines show the zeroth branches at p, =
40.5pr. Dashed lines represent quasiclassical energy branches (24)
for n, = 0 (red line) and n, = 1 (blue line) degenerate by sign(p;).
The degeneracy by sign(p,) is removed at the region |u,| < @ and
1y < 0 where each quasiclassical branch splits by two modes. In
accordance with general topological argument, the only one zeroth
branch remains at fixed value of p, (and spin projection o, for the
domain wall of the A phase) shown by the red solid line. The spectrum
of delocalized states is shown by yellow shading and the edge of
continuum by thin dotted line.

3. Exact spectrum near the Fermi arcs

As pointed out by Nakahara® all quasiclassical branches
(25) formally contain zero energy states at p, = 0 but Eq. (25)

Continuum

*

Opy

elc

FIG. 6. (Color online) The lowest-energy spectral branches of
the surface states at the domain wall of the A phase and at the AB
interface as functions of p, at fixed p,. Shown by blue dashed line is
the quasiclassical zeroth branch (25), which ends at p, = £p7, where

Py =4/ pr— p?. Exact branches shown by solid red lines continue at
Ipy| > p}. At py, = 0, the discrete spectrum merges with continuum
shown by the yellow shading. (Inset) Zoomed area demonstrating in
detail the splitting of quasiclassical zeroth branch and the behavior
of exact branches near the end point of quasiclassical one.
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is applicable if (p,/pr)p:& > 1. In the limit p, — 0, and
arbitrary values of p, and p., the spectrum can be found
numerically by solving the eigenvalue problem for the Eq. (21).
The resulting several lowest energy spectrum branches & =
e(u,) are shown in the Fig. 5 by solid red and blue lines
as a function of puy, = — (p% + pzz)/Zm. Remarkably, the
twofold degeneracy p, — — p, of the quasiclassical spectrum
is broken at 0 < u, < i and at pu, < 0. Therefore each of
the quasiclassical energy branches (25) found by Nakahara
splits by two modes as u, — +0 (and p, = /2mu, — 0).
The splitting is caused by normal reflection of quasiparticles
from the order parameter spatial inhomogeneity. The normal
reflection is particularly important for the quasiparticle tra-
jectories passing almost parallel to the domain wall plane
when p, — 0. In this case, the normal reflection leads to
the drastic change in the spectral branches behavior near the
zero-energy point shown in Fig. 5 (compare the dashed and
solid lines). The influence of normal reflection on the spectrum
of bond fermions was analyzed above in the framework of
semiclassical approach in Sec. Il B1. Comparing the Figs. 4(b)
and 5, one can see that the semiclassical approach qualitatively
describes the doubling of spectral branches due to the normal
reflection but gives rather large quantitative discrepancy with
the exact spectrum.

In accordance with general topological argument in
Sec. IIT A, the only one zeroth branch remains at each fixed
value of momentum projection p, (and spin projection o,
for the domain wall of the A phase). Exact zeroth branches
for p, = £0.5pF are shown in the Fig. 5 by thick red solid
lines. The spectrum in Fig. 5 is invariant with respect to the
transformation &(py,0) = —&(—p,, — o), where o = o, for
the case of domain wall and 0 = o, for that of the AB
interface. Note that in contrast to the quasiclassical zeroth
branch shown by red dashed line the exact zeroth branch
intersects the Fermi level at finite value of i, = w9 > 0. This
crossing point determines the positions of Fermi arcs shown
in the Fig. 2(b) by blue and green solid lines. For example,
the Fermi arcs cross the line p, =0 at p, = £p,, where
Pyo = /2m(u — pyo) < pr.

Near the projection of Weyl point on p,, p. plane in the limit
py — 0and |p;| — pr the behavior of zeroth branch can be
found analytically using the approach of Ref. 20. We will treat
the first term in the Hamiltonian (1) as perturbation. The rest
of the terms form the zero-order Hamiltonian

Hy = £ px — £2py f(x), (26)
where p, = —id,. We assume the model form of the domain

wall f(x) = tanh(x/r). The Hamiltonian (26) has zero-energy
eigenstate with the wave function components ¥y = (1, p),

uy =0, 27)
vo = N™"2cosh™(x/r), (28)

where  =rpy,and N = ffooo cosh™2%(x/r)dx. The perturba-
tion of the zero-energy level is given by

80(pmpy) = ﬁ — Mx, (29)
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where 15)2( = (Yo ﬁ)zch/f()). The Fermi arc is then given by
P =pr =Py = Py (30)

In the limit p, — 0, we obtain ﬁ)zc = pi so that the Fermi arc is
given by p2 = p% -2 pi and ends at p, = & pr in accordance
with general topological arguments. Equation (29) describes
analytically the zeroth branch of the spectrum shown by thick
red lines in Fig. 5 near the projections of Weyl points on p, p,
plane.

The splitting of quasiclassical zeroth branches & = o(py)
at fixed value of p, = 0is shown in Fig. 6. Red solid lines is the
exact spectrum obtained numerically and blue dashed lines are
the quasiclassical zeroth branches (25). Away from the level
& = 0, the correspondence of quasiclassical and exact spectra
is of a very good accuracy. The splitting takes place in the
small vicinity of p, = £p] where the quasiclassical branch
intersects the Fermi level. The behavior of spectral branches
near this point is shown in the zoom inset in Fig. 6. All branches
are discontinuous at p, = 0 where they merge the continuum
at p, = £0. Shown in Fig. 6 the spectrum of bound fermionic
states at the domain wall in He-A at p, = 0 coincides with
the spectrum of electronic states at domain walls in p 4 ip
superconductor SroRuQy.

IV. DISCUSSION

In contrast to the Fermi arcs on *He-A surface,'® the
Fermi arcs on the domain wall in *He-A and on the AB
interface can not be obtained in the framework of quasiclassical
approximation. Indeed, the quasiclassical approximation when
applied to these systems yields that any of the subgap spectral
branches given by Eq. (24) intersects the Fermi level.”> Thus
the number of zero modes in quasiclassics is model depended
and does not satisfy the index theorem. The reason behind this
discrepancy is that the zero modes exist for p, = 0 [see dashed
lines in Fig. 4(b)], which corresponds to the quasiclassical
trajectories almost parallel to the plane of domain wall
when one needs to get into account the normal reflection of
quasiparticles from the order parameter inhomogeneity along
the x axis. Since the normal reflection is inherently missing in
quasiclassical Andreev equations (without diagonal potential),
this approximation fails to describe zero modes and Fermi arcs
on the domain wall in *He-A and the AB interface.

The modification of quasiclassical results due to the normal
reflection can be analyzed by employing the semiclassical
approximation (see Sec. III B1), which yields three possible
types of closed orbits in (p,,x) phase space. In case when
quasiclassical approximation is valid the regime (ii) of only
Andreev reflection is realized with two separate orbits at p, >
0 and p, < 0 shown by the green solid lines in Fig. 4(a). The
Bohr-Sommerfeld quantization (17) yields the same energy of
bound states for the two orbits, which is degenerate by sign(p,)
and coincides well with quasiclassical result for n, > 0. How-
ever, for smaller u,, two Andreev orbits merge into a single
one shown in Fig. 4(a) by blue dash-dotted line. This orbit
has both Andreev and normal reflection points and therefore is
not described by the quasiclassical approximation. Moreover,
merging of Andreev orbits doubles the orbit area. Therefore
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the number of subgap states according to Bohr-Sommerfeld
quantization is doubled, which is manifested by the appearance
of the second semiclassical branch in Fig. 4(b) simultaneously
with merging of two Andreev orbits in Fig. 4(a). In exact
spectrum obtained by solving numerically the BdG system
the branch doubling is manifested in splitting of quasiclassical
branches in Figs. 5 and 6. Thus the branch splitting is the direct
result of normal reflection of quasiparticles moving almost
parallel to the domain wall.

Affected by the enhanced normal reflection the behavior of
the energy branches changes in p, — 0 limit qualitatively
compared to the quasiclassical result. At a fixed value of
momentum projection p, (and spin projection o, in case of
A phase domain wall), there is only one branch left, which
intersects the Fermi level and supports Majorana states in
accordance with the topological index theorem. The rest of
spectral branches become non-monotonic at small values of
|px| = /2mpy at w, > 0 and turn upwards at u, < 0 as can
be seen in the Fig. 5.

V. CONCLUSION

We demonstrated that Fermi arcs on the domain wall in
the A-phase and at the interface between the A and the
B phases of superfluid 3He obey the index theorem, which
connects topological properties of bulk states on two sides of
the walls with topology of zero-energy bound states. In contrast
to the other systems supporting Fermi arcs, the bulk-edge
correspondence here can be established only beyond the
quasiclassical approximation by solving the exact BdG system
numerically. The domain wall in A phase contains four Fermi
arcs, if one takes into account spin degrees of freedom, while
the AB interface contains two Fermi arcs, i.e., the same number
as the surface of the A phase. The reason for this difference is
that the Fermi arc is determined by the Weyl points in the bulk
states on two sides of the wall. The *He-B, though being a
topological superfluid, does not contain Weyl points and thus
does not contribute to the number of the Fermi arcs. Note that
the spectrum of localized fermions at the domain wall of the
A phase is identical to the spectrum of electronic states bound
at the domain wall in p + ip superconductor Sr,RuQOj.

Majorana fermions living on the Fermi arc at the AB
interface may give an additional contribution to the calculated
friction force acting on the moving interface®® at very low
temperatures. This is important for the development of the
Kelvin-Helmholtz instability of the moving AB interface
observed in Ref. 34 (see also Chap. 27 of Ref. 2). The latter
instability has an analog with the ergoregion instability of
black holes discussed in Chap. 32 of Ref. 2.

We considered the simplest most symmetric realizations
of the A-A and A-B interfaces. The problem for future
investigations is whether the Fermi arc survives or not, if the
symmetry of the interface is violated. For that the relative
homotopy group formalism applied to Green’s function®® is
probably required.
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