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In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature
superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane
anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave,
the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies.
From numerical calculations within the framework of random phase approximation, we find nearly vertical
dispersion relations for spin excitations with anisotropic incommensurability at low energy ω � 90 meV,
which are reminiscent of the experiments. At very high energy ω � 165 meV, we also find energy-dependent
incommensurability. Although there are some important differences between the three cases, unpolarized neutron
measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a
distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass
shape dispersion.
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I. INTRODUCTION

The pseudogap state of high-temperature superconductors
has been studied with numerous experimental tools, yet its
origin is not resolved.1 One view proposes that the pseudogap
state is a particle-hole condensate, a density wave. Of all
such states that break translational symmetry and have strong
momentum dependence of the type dx2−y2 , two candidate
density-wave orders that can couple to inelastic neutron
scattering have been proposed: the singlet dx2−y2 -density wave
(sDDW),2 corresponding to angular momentum � = 2 but
a spin singlet, and the spin density wave order (SDW); in
the general classification of density wave orders,3 the latter
corresponds to � = 0 but a spin triplet. In addition to the
sDDW order, its triplet counterpart4 (tDDW) iσdx2−y2 , where
σ = ±1 corresponds to up and down spins with the ẑ axis
as the axis of spin quantization has also interesting properties
and deserves more attention.4 Recently, Fujimoto proposed
that a triplet d-wave particle-hole condensate may be realized
in the hidden order state of the URu2Si2 system.5 Since
high-Tc superconductors have a rich phase diagram, which
hosts many possible competing orders, it is both important
and interesting to examine the properties of various density
wave order parameters of higher angular momentum. In
this paper, we discuss the three order parameters mentioned
above. In addition, we note that a singlet chiral idx2−y2 + dxy-
density wave6 as well as iσdx2−y2 + dxy density wave states
with interesting topological properties have been explored.7

Owing to limitations of space, we do not discuss these order
parameters here.

Inelastic neutron scattering can directly probe magnetic
excitations. The scattering cross-section is proportional to
the magnetic structure factor, which is proportional to the
imaginary part of the dynamic spin susceptibility via the
fluctuation-dissipation theorem.8 Thus a calculation of the spin
susceptibility will provide a link between theoretical models
and neutron scattering experiments.

In particular, we want to address a recent experiment
in underdoped YBa2Cu3O6.6. The most striking aspect of

this experiment is a vertical dispersion relation of the spin
excitations with a large in-plane anisotropy in the pseudogap
state in contrast to the “hour-glass” dispersion observed in the
superconducting state.9 The qualitatively different behavior
between the superconducting and the pseudogap states sug-
gests different mechanisms. Motivated by the experimental
observations, we study the spin susceptibility of the three
density wave orders mentioned above with hopping anisotropy,
which breaks C4 rotational symmetry and mimics an “elec-
tronic nematic” state, which is a collective phenomenon
not described by the density functional theory.10–12 Here
we consider a phenomenological model,13 where we set the
hopping terms to be anisotropic along a and b axes, and study
the energy-momentum dispersion relations of the dynamical
spin susceptibility. The explicit calculation involves random
phase approximation (RPA) that has been widely discussed in
the literature; for some representative papers, see Refs. 14–17.

The structure of this paper is as follows: in Sec. II, we
sketch the calculation of the spin susceptibility and discuss the
numerical results of the sDDW order. In Sec. III, we discuss
the numerical results of the tDDW order. In Sec. IV, we also
discuss the numerical results of the SDW order. To make the
paper succinct and more accessible, the explicit forms of the
spin susceptibility are shown in Appendix.

II. SPIN SUSCEPTIBILITY: SINGLET DDW

In this section, we set up the calculation of the spin suscep-
tibility using sDDW as an example. In the following sections,
we will give the results of the other order parameters. To
capture the in-plane anisotropic feature of the pseudogap state
in the neutron scattering experiment, we consider the sDDW
order with anisotropic hopping terms. In the momentum space,
the order parameter can be written in terms of the fermion
operators as

〈c†k+Q,αck,β〉 ∝ iδαβWk (1)
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with Wk ≡ W0
2 [cos(kxa) − cos(kyb)], where a and b are lattice

constants. For orthorhombic YBa2Cu3O6.6, a and b are un-
equal, but the difference is very small (a = 3.82Å,b = 3.87Å).

The two-dimensional mean-field Hamiltonian will be

HsDDW =
∑

σ

∑
k

(εkc
†
k,σ ck,σ + εk+Qc

†
k+Q,σ ck+Q,σ

+ iWkc
†
k,σ ck+Q,σ + H.c.), (2)

where the summation is over the reduced Brilloin zone
(RBZ) bounded by (kyb) ± (kxa) = ±π , Q = (π/a,π/b) is
the nesting vector, and εk ≡ ε1k + ε2k with18

ε1k ≡ −2t[(1 + r) cos(kxa) + (1 − r) cos(kyb)], (3)

ε2k ≡ 4t ′ cos(kxa) cos(kyb) − μ

− 2t ′′[(1 + r) cos(2kxa) + (1 − r) cos(2kyb)]. (4)

For r �= 0, we have anisotropic hopping terms which
breaks fourfold rotational symmetry. Note that although the
anisotropy also modifies the next-nearest-neighbor hopping,
it is simply a parameter and is lumped into the definition
of t ′ in our model. The eigenvalues of the Hamiltonian are
λk,± = ε2k ± Ek with Ek ≡ √

ε2
1k + W 2

k .
The one-loop spin susceptibility in the momentum and

Matsubara frequency space is defined as, N being the number
of lattice sites,

χ
ij

0 (q,q ′,iωn) = − 1

N

∫ β

0
dτeiωnτ

〈
T Si

q(τ )Sj

−q ′
〉
, (5)

where i,j = x,y,z, τ is the imaginary time, T is the time-
ordering symbol, and the spin operators are

Si
q ≡

∑
k,α,β

c
†
k+q,ασ̂ i

αβck,β . (6)

Here, σ̂αβ are the Pauli matrices with spin indices α and β. We
can define the longitudinal and the transverse susceptibilities
as χzz

0 (q,q ′,ω) and χ+−
0 (q,q ′,ω), respectively, with S±

q ≡
Sx

q ± iS
y
q and iωn → ω + iδ. For unpolarized measurements,

the scattering intensity I contains both the spin-flip and the
non-spin-flip channels, I ∝ (χzz + 2χ+−)/3. However, in this
paper, we will present the longitudinal and transverse suscep-
tibilities separately so that it can provide more information
about the polarized neutron scattering experiments, which may
be achieved in the future.

For the sDDW order, χzz
0 (q,q ′,ω) = 2χ+−

0 (q,q ′,ω) because
up-spin and down-spin parts of the Hamiltonian are identical.
The explicit form of the one-loop susceptibility is shown in
Eqs. (A1)–(A4), and we calculate the RPA susceptibility as
shown in Eqs. (A5) and (A6) in Appendix. For illustrative
purposes, we set t = 0.15 eV, t ′ = 0.32t , t ′′ = 0.1t ′, W0 =
0.65t , r = −0.1, and kBT = 0.05t . The chemical potential
is set to μ = −0.805t in order to obtain a hole doping
level of nh ≈ 10.07%, approximately the doping level in the
experiment. Other similar choices of the parameters do not
change the conclusions.

In Fig. 1, the constant energy cuts of the imaginary
part of the transverse spin susceptibility along a∗ axis for
ω � 0.6t are plotted. The results along b∗ axis are simi-
lar and are not shown here. Away from Q = (π/a,π/b),
the magnetic excitations are peaked at the incommensurate
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FIG. 1. Constant energy cuts of Imχ+−
RPA(q,ω) along a∗ axis when

qy = π/b and 0.1t � ω � 0.6t for the sDDW order. The weakly
energy-dependent incommensurate peak positions are marked with
dashed lines. The results of Imχzz

RPA(q,ω) are similar and omitted.

positions (qxa,qyb) = (π ± δa,π ) and (π,π ± δb), where we
define the incommensurability δa and δb along a∗ and b∗ axes,
respectively. From the numerical results, one finds that δa and
δb are weakly energy dependent, similar to the inelastic neutron
scattering experiment.9 Furthermore, a prominent anisotropy
in the incommensurability δb < δa can be seen. With the
hopping anisotropy r = −0.1, we obtain δa ≈ (0.30 ± 0.01)π
and δb ≈ (0.235 ± 0.015)π , which gives δb/δa ≈ 0.78, which
would be again similar to δb/δa ≈ 0.6 reported in the neutron
scattering experiments.9

One may further adjust the parameters of this model to fit
the experimental data, but that is not the goal of this paper.
We have varied the chemical potential μ to check how the
dispersion relations vary with hole doping; results for different
doping levels are qualitatively similar. In the doping range
8% � nh � 20%, there are always weakly energy-dependent
incommensurate excitations, and the incommensurability δa

and δb increase with increasing doping level nh as shown in
Fig. 2.

Note that hopping anisotropy is not necessary for the
existence of the nearly vertical dispersions. To demonstrate
this, the numerical results with isotropic hopping are plotted
in Fig. 3. Here r is set to 0, μ = −0.806t , and the hole doping
level is nh = 10.03%. All the other parameters are the same
as in Fig. 1. One can still find nearly vertical dispersions with
incommensurability δa ≈ (0.255 ± 0.015)π even without the
hopping anisotropy.19

The neutron scattering experiments show vertical disper-
sions in the energy range 30 meV � ω � 60 meV,9 and the
numerical results exhibit a nearly vertical dispersions up to
ω � 0.6t = 90 meV with the chosen parameters, which are

8 10 12 14 16 18 20
nh

0.20
0.25
0.30
0.35
0.40
0.45
Δ Π

Δb

Δa

FIG. 2. Doping-dependence of incommensurability δa and δb.
Here μ is adjusted to obtain different doping levels, and all the other
parameters are the same as in Fig. 1.

214510-2



SPIN DYNAMICS OF POSSIBLE DENSITY WAVE STATES . . . PHYSICAL REVIEW B 86, 214510 (2012)

0.8 1.0 1.2 1.4
qxa Π

0.1
0.2
0.3
0.4
0.5
0.6
0.7

ImΧRPA qx,qy
Π
b

,Ω

0.6t

0.5t

0.4t

0.3t

0.2t

0.1t

FIG. 3. Constant energy cuts of Imχ+−
RPA(q,ω) along a∗ axis when

qy = π/b for the sDDW order. Here r = 0, μ = −0.806t , and all the
other parameters are the same as in Fig. 1.

similar to experiments. It is interesting to see how the excitation
peaks evolve at higher energies, so in Fig. 4, we present
the numerical results along the a∗ axis for 0.7t � ω � 1.4t ,
where all the parameters are the same as in Fig. 1 except for
the energy ω. The results along b∗ axis are again so similar
that they are not shown here. In Fig. 4, one finds that the
high-energy spin excitations are strongly energy dependent.
The incommensurate peaks move toward q = Q in the range
0.7t � ω � 0.9t , and eventually disappear at ω ≈ 1.0t , where
the intensity around q = Q is enhanced. When ω ≈ 1.1t , a
central peak emerges at the commensurate position q = Q.
As the energy is further increased, the central peak splits
into to two peaks deviating from Q with incommensurability
δ′
a and δ′

b, which are marked by dashed lines. Unlike the
low-energy incommensurability δa and δb, δ′

a and δ′
b are energy

dependent and increase with increasing energy. Note that to
observe δ′

a and δ′
b, the neutron scattering experiment needs to

be performed with very high energy (ω � 1.1t = 165 meV),
or perhaps high-energy resonant inelastic x-ray scattering can
be of use.20

The reason for the unusual vertical dispersions at low
energies and a different behavior at high energies can be
understood by examining the imaginary part of Eq. (A3). In
this equation, the first two terms are interband contribution
arising from the scattering from the upper band (ε2k + Ek) to
the lower band (ε2k+q − Ek+q), and the scattering from the
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FIG. 4. Constant energy cuts of Imχ+−
RPA(q,ω) along a∗ axis when

qy = π/b and 0.7t � ω � 1.4t for the sDDW order. The energy-
dependent incommensurate peak positions are marked with dashed
lines.
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FIG. 5. Energy spectrum (λk,± + μ) of the sDDW system as
(kxa,kyb) goes along the route (0,0) → (π,0) → (π,π ) → (0,0). The
solid (dashed) arrows indicate the interband (intraband) scattering,
and the dashed line is the chemical potential μ. The parameters are
the same as in Fig. 1.

lower (ε2k − Ek) to the upper (ε2k+q + Ek+q) bands. The last
two terms, on the other hand, are intraband scattering. For the
purpose of illustration, an example of the band structure and
the scattering process are plotted in Fig. 5, where the interband
and intraband scatterings are shown with arrows.

The interband and intraband terms of Eq. (A3) for
0.1t � ω � 0.6t are plotted in Figs. 6 and 7, respectively.
The results for higher energy 0.7t � ω � 1.4t are not shown
because they are very similar. From Figs. 6 and 7, one finds
that the intensity near q = Q is mainly from the contribution
of the interband terms, whereas the contribution of the
intraband terms arise when q is away from Q. From Eq. (A3),
we can see that at q = Q, the intraband terms vanish and only
the interband terms contribute, leading to magnetic excitations
peaked around ω ≈ 1.1t . In the vicinity of q = Q, interband
terms still dominate, and we may expand them to first order
in δq ≡ |q − Q| and obtain

−π

N

∑
k

[nF (ε2k ± Ek) − nF (ε2k+q ∓ Ek+q)]

× δ(ω − ε2k ∓ Ek + ε2k+q ∓ Ek+q)


 π

N

∑
k

[
nF (ε2k ∓ Ek) − nF (ε2k ± Ek)

+ ∂nF (E)

∂E

∣∣∣∣
E=ε2k∓Ek

��k(ε2k ∓ Ek) · δq

]

× δ(ω ∓ 2Ek + ��k(ε2k ∓ Ek) · δq),

which will be peaked at δq = (±2Ek − ω)/[ ��k(ε2k ∓ Ek)].
However, for low energies, the energy conservation condition
cannot be satisfied unless Ek is very small, which diminishes
the difference between the Fermi functions and thus
suppresses the intensity. Therefore there is no enhanced peak
in the vicinity of q = Q for low energies. For higher energies,
the energy conservation factor will be satisfied, and the
intensity at the incommesurate positions (δ′

a and δ′
b) will be

enhanced and the excitation peaks can be seen as ω � 1.1t in
Fig. 4.

In contrast, away from q = Q, the intraband terms dom-
inate. The peak positions of the energy conservation factor,
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FIG. 6. Constant energy cuts of the interband terms of
Imχdiag(q,ω) in Eq. (A3) along a∗ axis when qy = π/b for 0.1t �
ω � 0.6t .

δ(ω − ε2k ∓ Ek + ε2k+q ± Ek+q), move away from Q with
increasing ω. On the other hand, the coherence factor
[1 + (ε1kε1k+q + WkWk+q)/(EkEk+q)] vanishes at q = Q and
develops with increasing |q − Q|. For the chosen parameters,
the energy dependence of these two opposite effects almost
cancels out in the energy range 0 � ω � 0.6t , leading to the
weakly energy-dependent positions of local maxima (δa and
δb) as in Fig. 7. Such a dispersionless feature is sensitive to the
parameters because it depends on whether the contribution of
the intraband terms overcomes that of the interband terms away
from Q. The nature of the excitation peaks due to the interband
terms is distinct from the intraband terms. The dominant
contribution of the interband terms are determined by the
energy conservation factor and the Fermi functions, leading
to sharper excitation peaks at (π ± δ′

a,π ) and (π,π ± δ′
b),

whereas the intraband terms also depend on the coherence
factor, resulting in relatively broadened local maxima instead
of sharp peaks at (π ± δa,π ) and (π,π ± δb).

III. THE TRIPLET d-DENSITY WAVE ORDER

We now consider the tDDW order, and choose the spin
quantization axis to be the z axis without any loss of generality,
that is,

〈c†k+Q,αck,β〉 ∝ i(d̂ · �σαβ)Wk = i(ẑ · �σαβ)Wk. (7)
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FIG. 7. Constant energy cuts of the intraband terms of
Imχdiag(q,ω) in Eq. (A3) along a∗ axis when qy = π/b for 0.1t �
ω � 0.6t .
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FIG. 8. Constant energy cuts of Imχzz
RPA(q,ω) (upper) and

Imχ+−
RPA(q,ω) (lower) for the tDDW order along a∗ axis when

qy = π/b. The parameters are the same as in Fig. 3.

The tDDW mean-field Hamiltonian is therefore

HtDDW =
∑

σ

∑
k

(εkc
†
k,σ ck,σ + εk+Qc

†
k+Q,σ ck+Q,σ

+ iσWkc
†
k,σ ck+Q,σ + H.c.), (8)

which has the same eigenvalues as the sDDW Hamiltonian.
The explicit form of the one-loop and RPA susceptibilities are
given in Eqs. (A7)–(A12) in Appendix.

The constant energy cuts of the imaginary part of the spin
susceptibility of the tDDW order along a∗ axis are shown in
Fig. 8. The hopping anisotropy r is set to 0 for simplicity
and the parameters are the same as in Fig. 3. The longitudinal
susceptibility behaves similar to the sDDW order, whereas the
transverse susceptibility is significantly different in the vicinity
of q = Q. In comparison with the sDDW order, the intensity of
Imχ+−

RPA(q,ω) of the tDDW order is suppressed in the vicinity of
q = Q. The intensity exhibits a V-shaped curve around q = Q

at ω = 0.1t , which evolves gradually to a U-shaped curve at
ω = 0.6t . Here we can also see the nearly vertical dispersion of
the incommensurate spin excitations δa ≈ (0.255 ± 0.015)π .
Notice that for unpolarized measurements, with I ∝ (χzz +
2χ+−)/3, there will still be the vertical dispersion away from
q = Q.

The difference between the sDDW and tDDW order is
that in χ+−

diag(q,ω) of the tDDW order, Eq. (A9), the WkWk+q

term of the coherence factor changes sign and reduces the
interband contribution. As a result, the intensity in the vicinity
of q = Q is suppressed. The significant difference between
the transverse and the longitudinal susceptibilities should
permit one to distinguish the singlet and the triplet orders
in spin-polarized measurements. On the other hand, the sign
change of WkWk+q does not affect the intraband terms as much
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FIG. 9. Constant energy cuts of Imχzz
RPA(q,ω) (upper) and

Imχ+−
RPA(q,ω) (lower) for the SDW order along a∗ axis when qy =

π/b. Here, �s = 0.65t , μ = −1.026t , and the other parameters are
the same as in Fig. 8.

as the interband terms, so the nearly vertical dispersions due to
the intraband contribution can still be seen away from q = Q.

IV. THE SPIN DENSITY WAVE ORDER

Finally, we also consider the SDW order, which has the
order parameter

〈c†k+Q,αck,β〉 ∝ (ẑ · �σαβ)�s. (9)

The SDW mean-field Hamiltonian will be

HSDW =
∑

σ

∑
k

(εkc
†
k,σ ck,σ + εk+Qc

†
k+Q,σ ck+Q,σ

+ σ�sc
†
k,σ ck+Q,σ + H.c.), (10)

where the eigenvalues now become λS
k,± = ε2k ± ES

k with

ES
k ≡

√
ε2

1k + �2
s . The explicit forms of the spin susceptibili-

ties are given in Eqs. (A13)–(A17) in Appendix.
The constant energy cuts of Imχzz

RPA(q,ω) and Imχ+−
RPA(q,ω)

for the SDW order along a∗ axis are plotted in Fig. 9. Here
we set the SDW gap to be �s = 0.65t and μ = −1.026t . The
hole doping level is nh = 10.02%. The results are interesting:
Imχzz

RPA(q,ω) and Imχ+−
RPA(q,ω) for SDW order seem to be

“interchanged” in comparison with those for the tDDW order
in Fig. 8. In addition to this interchange, there is also a
difference in the intensity around q = Q between tDDW and
SDW, which could be observed if spin-polarized experiments
with high resolution could be achieved, although one cannot
be sure because of the non universal nature of this difference.
Away from q = Q, we can also see the vertical dispersions of
the incommensurate spin excitations with δa ≈ 0.28π . Again,

for unpolarized measurements, there will still be the vertical
dispersion away from q = Q.

To understand the swap of the susceptibilities between
tDDW and SDW, we should compare Eqs. (A3) and (A9)
for the tDDW with Eqs. (A15) and (A16) for the SDW; we can
see that at q = Q, WkWk+q = −W 2

k in tDDW, and this leads to
a minus sign, while �2

s in SDW does not. Therefore the form
of the coherence factors of SDW is opposite to tDDW in the
vicinity of q = Q. As a result, the intensity of Imχ+−

RPA(q,ω)
for SDW in the vicinity of q = Q is enhanced due to the
dominant interband contribution, whereas the intensity of
Imχzz

RPA(q,ω) is suppressed in the vicinity of q = Q. Thus the
difference in coherence factors leads to the “interchanging”
behavior between tDDW and SDW; the different momentum
dependence of the order parameters also leads to distinct
momentum dependence around q = Q. Away from q = Q,
on the other hand, both Imχ+−

RPA(q,ω) and Imχzz
RPA(q,ω) show

vertical dispersion relations due to intraband contributions.

V. CONCLUSION

In conclusion, we have attempted to provide an expla-
nation of a recent neutron scattering measurement in an
underdoped high-temperature superconductor, which points
to the fact that the pseudogap state is not a continuation of
the superconducting state below Tc. The salient feature is
a vertical dispersion seen above Tc in the spin excitations,
as opposed to an hourglass shape dispersion seen below Tc.
We have also explicitly checked that the consistency with
experiments does not require any fine tuning of the parameter.
In fact, as demonstrated, the vertical dispersion observed in
our calculation does not require a-b anisotropy (see Fig. 3);
of course, on phenomenological grounds, anisotropy should
be included, as it has been included here. Note that our peaks
appear to be sharper than those observed in experiments.

Although couched in the language Hartree-Fock theory
augmented by RPA, a thorough analysis of the properties
of various alternate order parameters should be a useful
guide. We also checked a band structure to contain electron
pockets as well, but the robust aspects of the conclusions were
unchanged. The vertical dispersion feature appears to persist in
the doping range 8% � nh � 20%. At higher energies, we find
energy-dependent incommensurability due to the interband
contributions. We also contrast the spin dynamics of the tDDW
and SDW orders, which exhibit different features around
q = Q, which could, in principle, allow one to identify the
spin nature of the underlying phase in a spin-polarized neutron
scattering experiment with high resolution. The transverse
and the longitudinal spin dynamics are interchanged between
SDW and tDDW. In principle, a whole class of higher
angular momentum particle-hole condensates are possible.
Experimental evidence of these order parameters should be
a major step forward. The tDDW is such an unconventional
hidden order that its discovery would be of great importance.
Note that tDDW is even invariant under time reversal.
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APPENDIX: THE EXPLICIT FORMS OF SPIN SUSCEPTIBILITY

In the density wave systems we considered above, the Green’s functions form matrices

Ĝσ (k,iωm) ≡
(

gσ (k,k,iωm) gσ (k,k + Q,iωm)

gσ (k + Q,k,iωm) gσ (k + Q,k + Q,iωm)

)
,

where

gσ (k,k′,iωm) = −
∫ β

0
dτeiωmτ 〈T ck,σ (τ )c†k′,σ 〉.

The one-loop spin susceptibility also has diagonal and off-diagonal terms:

χzz
0 (q,q ′,iωm) = δq,q ′χzz

diag(q,iωm) + δq,q ′+Qχzz
off(q,iωm),

χ+−
0 (q,q ′,iωm) = δq,q ′χ+−

diag(q,iωm) + δq,q ′+Qχ+−
off (q,iωm),

where the subscripts “diag” and “off” refer to the diagonal and off-diagonal terms of the one-loop spin susceptibility, respectively.
With a quadratic Hamiltonian, these terms can be written in terms of the Green’s function matrices by applying Wick’s theorem,

and we have

χzz
diag(q,iωm) = 1

βN

∑
k,n,σ

Tr[Ĝσ (k + q,iεn + iωm)Ĝσ (k,iεn)],

χzz
off(q,iωm) = 1

βN

∑
k,n,σ

∑
j �=l

[Ĝσ (k + q,iεn + iωm)Ĝσ (k,iεn)]j l,

χ+−
diag(q,iωm) = 1

βN

∑
k,n

Tr[Ĝ↑(k + q,iεn + iωm)Ĝ↓(k,iεn)],

χ+−
off (q,iωm) = 1

βN

∑
k,n

∑
j �=l

[Ĝ↑(k + q,iεn + iωm)Ĝ↓(k,iεn)]j l,

where Tr is the trace and Ĝσ (k,iεn) can be obtained from the Hamiltonian.
For sDDW, the up-spin and down-spin components are identical. For σ =↑ or ↓, we have

Ĝσ (k,iε) = 1

(iε − ε2k)2 − E2
k

⎛
⎝ iε + ε1k − ε2k iWk

−iWk iε − ε1k − ε2k

⎞
⎠ .

Therefore we have

χzz
0 (q,q ′,ω) = δq,q ′χdiag(q,ω) + δq,q ′+Qχoff(q,ω), (A1)

χ+−
0 (q,q ′,ω) = 1

2χzz
0 (q,q ′,ω), (A2)

where

χdiag(q,ω) = 1

N

∑
k

(
1 − ε1kε1k+q + WkWk+q

EkEk+q

)[
nF (ε2k + Ek) − nF (ε2k+q − Ek+q)

ω − ε2k − Ek + ε2k+q − Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q + Ek+q)

ω − ε2k + Ek + ε2k+q + Ek+q + iδ

]

+ 1

N

∑
k

(
1 + ε1kε1k+q + WkWk+q

EkEk+q

)[
nF (ε2k + Ek) − nF (ε2k+q + Ek+q)

ω − ε2k − Ek + ε2k+q + Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q − Ek+q)

ω − ε2k + Ek + ε2k+q − Ek+q + iδ

]
,

(A3)

χoff(q,ω) = i

N

∑
k

(−ε1kWk+q + ε1k+qWk

EkEk+q

) [
− nF (ε2k + Ek) − nF (ε2k+q − Ek+q)

ω − ε2k − Ek + ε2k+q − Ek+q + iδ
− nF (ε2k − Ek) − nF (ε2k+q + Ek+q)

ω − ε2k + Ek + ε2k+q + Ek+q + iδ

+ nF (ε2k + Ek) − nF (ε2k+q + Ek+q)

ω − ε2k − Ek + ε2k+q + Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q − Ek+q)

ω − ε2k + Ek + ε2k+q − Ek+q + iδ

]
, (A4)

where nF (E) is Fermi-Dirac distribution function, and δ is set to 0.06t for the numerical calculation in order to obtain smooth
curves. Applying random phase approximation, we obtain the RPA susceptibility14

χ̂ zz
RPA(q,q ′,ω) =

∑
q1

χ̂ zz
0 (q,q1,ω)

Î − Uχ̂zz
0 (q1,q ′,ω)

, (A5)

χ̂+−
RPA(q,q ′,ω) =

∑
q1

χ̂+−
0 (q,q1,ω)

Î − Uχ̂+−
0 (q1,q ′,ω)

, (A6)
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where χ̂ zz
0 (q,q ′,ω) and χ̂+−

0 (q,q ′,ω) are the 2 × 2 matrices from Eqs. (A1) and (A2), respectively. For the numerical calculation,
we set U = W0 = 0.65t and compute the imaginary part of the diagonal terms of the RPA susceptibility (q = q ′).

For the tDDW order, the Green’s function matrices become

Ĝσ (k,iε) = 1

(iε − ε2k)2 − E2
k

⎛
⎝ iε + ε1k − ε2k iσWk

−iσWk iε − ε1k − ε2k

⎞
⎠ ,

where σ = +1 for up spin and σ = −1 for down spin, and the spin susceptibility will become

χzz
0 (q,q ′,ω) = δq,q ′χzz

diag(q,ω), (A7)

χ+−
0 (q,q ′,ω) = δq,q ′χ+−

diag(q,ω) + δq,q ′+Qχ+−
off (q,ω), (A8)

where χzz
diag(q,ω) is the same as χdiag(q,ω) in Eq. (A3), and

χ+−
diag(q,ω) = 1

2N

∑
k

(
1 − ε1kε1k+q − WkWk+q

EkEk+q

)[
nF (ε2k + Ek) − nF (ε2k+q − Ek+q)

ω − ε2k − Ek + ε2k+q − Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q + Ek+q)

ω − ε2k + Ek + ε2k+q + Ek+q + iδ

]

+ 1

2N

∑
k

(
1 + ε1kε1k+q − WkWk+q

EkEk+q

)[
nF (ε2k + Ek) − nF (ε2k+q + Ek+q)

ω − ε2k − Ek + ε2k+q + Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q − Ek+q)

ω − ε2k + Ek + ε2k+q − Ek+q + iδ

]
,

(A9)

χ+−
off (q,ω) = −i

2N

∑
k

(
ε1kWk+q + ε1k+qWk

EkEk+q

)[
− nF (ε2k + Ek) − nF (ε2k+q − Ek+q)

ω − ε2k − Ek + ε2k+q − Ek+q + iδ
− nF (ε2k − Ek) − nF (ε2k+q + Ek+q)

ω − ε2k + Ek + ε2k+q + Ek+q + iδ

+ nF (ε2k + Ek) − nF (ε2k+q + Ek+q)

ω − ε2k − Ek + ε2k+q + Ek+q + iδ
+ nF (ε2k − Ek) − nF (ε2k+q − Ek+q)

ω − ε2k + Ek + ε2k+q − Ek+q + iδ

]
. (A10)

The RPA susceptibility of the tDDW order will be

χzz
RPA(q,q ′,ω) = χzz

0 (q,q ′,ω)

1 − Uχzz
0 (q,q ′,ω)

, (A11)

χ̂+−
RPA(q,q ′,ω) =

∑
q1

χ̂+−
0 (q,q1,ω)

Î − Uχ̂+−
0 (q1,q ′,ω)

, (A12)

where χzz
0 (q,q ′,ω) is from Eq. (A7) and χ̂+−

0 (q,q ′,ω) is a 2 × 2 matrix from Eq. (A8).
For the SDW order, the Green’s function matrices become

Ĝσ (k,iε) = 1

(iε − ε2k)2 − (ES
k )2

⎛
⎝ iε + ε1k − ε2k σ�s

σ�s iε − ε1k − ε2k

⎞
⎠ .

The longitudinal and transverse spin susceptibility are

χzz
0 (q,q ′,ω) = δq,q ′χzz

diag(q,ω), (A13)

χ+−
0 (q,q ′,ω) = δq,q ′χ+−

diag(q,ω) + δq,q ′+Qχ+−
off (q,ω), (A14)

where χzz
diag(q,ω), χ+−

diag(q,ω), and χ+−
off (q,ω) now become

χzz
diag(q,ω) = 1

N

∑
k

(
1 − ε1kε1k+q + �2

s

ES
k ES

k+q

)[
nF

(
ε2k + ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω − ε2k − ES

k + ε2k+q − ES
k+q + iδ

+ nF

(
ε2k − ES

k

) − nF

(
ε2k+q + ES

k+q

)
ω − ε2k + ES

k + ε2k+q + ES
k+q + iδ

]

+ 1

N

∑
k

(
1 + ε1kε1k+q + �2

s

ES
k ES

k+q

)[
nF

(
ε2k + ES

k

) − nF

(
ε2k+q + ES

k+q

)
ω − ε2k − ES

k + ε2k+q + ES
k+q + iδ

+ nF

(
ε2k − ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω − ε2k + ES

k + ε2k+q − ES
k+q + iδ

]
,

(A15)

χ+−
diag(q,ω) = 1

2N

∑
k

(
1 − ε1kε1k+q − �2

s

ES
k ES

k+q

)[
nF

(
ε2k + ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω − ε2k − ES

k + ε2k+q − ES
k+q + iδ

+ nF

(
ε2k − ES

k

) − nF

(
ε2k+q + ES

k+q

)
ω − ε2k + ES

k + ε2k+q + ES
k+q + iδ

]

+ 1

2N

∑
k

(
1 + ε1kε1k+q − �2

s

ES
k ES

k+q

) [
nF

(
ε2k + ES

k

) − nF (ε2k+q + ES
k+q)

ω − ε2k − ES
k + ε2k+q + ES

k+q + iδ
+ nF

(
ε2k − ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω − ε2k + ES

k + ε2k+q − ES
k+q + iδ

]
,

(A16)
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χ+−
off (q,ω)

= �s

2N

∑
k

[(−ES
k + ES

k+q

ES
k ES

k+q

)
nF

(
ε2k + ES

k

) − nF

(
ε2k+q + ES

k+q

)
ω + ε2k + ES

k − ε2k+q − ES
k+q + iδ

+
(

ES
k − ES

k+q

ES
k ES

k+q

)
nF

(
ε2k − ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω + ε2k − ES

k − ε2k+q + ES
k+q + iδ

+
(

ES
k + ES

k+q

ES
k ES

k+q

)
nF

(
ε2k + ES

k

) − nF

(
ε2k+q − ES

k+q

)
ω + ε2k + ES

k − ε2k+q + ES
k+q + iδ

−
(

ES
k + ES

k+q

ES
k ES

k+q

)
nF

(
ε2k − ES

k

) − nF

(
ε2k+q + ES

k+q

)
ω + ε2k − ES

k − ε2k+q − ES
k+q + iδ

]
. (A17)

The RPA susceptibility of the SDW order is in the same form as the tDDW order in Eqs. (A11) and (A12).
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