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Unconventional superconducting states of interlayer pairing in bilayer and trilayer graphene
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We develop a theory for interlayer pairing of chiral electrons in graphene materials which results in an
unconventional superconducting state with an s-wave spin-triplet order parameter. In a pure bilayer graphene,
this superconductivity exhibits a gapless property with an exotic effect of temperature-induced condensation
causing an increase of the pairing amplitude with increasing temperature. We find that a finite doping opens
a gap in the excitation spectrum and weakens this anomalous temperature dependence. We further explore the
possibility of realizing a variety of pairing patterns with different topologies of the Fermi surface, by tuning the
difference in the doping of the two layers. In trilayer graphene, the interlayer superconductivity is characterized
by a two-component order parameter which can be used to define two distinct phases in which only one of the
components is nonvanishing. For ABA stacking the stable state is determined by a competition between these
two phases. On variation of the relative amplitude of the corresponding coupling strength, a first-order phase
transition can occur between these two phases. For ABC stacking, we find that the two phases coexist with
the possibility of a similar phase transition, which turns out to be second order.
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I. INTRODUCTION

The microscopic theory of superconductivity developed
by Bardeen, Cooper, and Schrieffer1(BCS) is based on the
pairing between electrons from opposite-spin subbands with
the same Fermi surfaces. Generalization of the BCS pairing
to composite systems of two (or more) types of fermions
with different Fermi surfaces2 has attracted great interest
due to its appearance in various areas of physics, including
pairing of ultracold Fermi atoms,3,4 color superconductivity in
dense quark matter,5 and neutron-proton pairing in nuclear
systems.6 Despite the robustness of conventional metallic
superconductivity7 against small mismatches between the
paired Fermi surfaces, several unconventional pairing phases
have been predicted to occur in the presence of larger
mismatches. The best-known cases include the phase of
breached pairing, referring to a state of separated normal
(N) and superconducting (S) phases in the momentum
space,8 pairing between deformed Fermi surfaces with zero
total momentum of Cooper pairs,9 and the inhomogeneous
S Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase.10 These
unconventional phases result from different topologies of the
Fermi surface.

The search for new exotic S states is a subject at the
frontier of low-temperature physics research, because it
sheds light on the pairing symmetry and may lead to an
understanding of the pairing mechanism of superconductivity
in high-Tc superconductors11 and other newly discovered
S materials.12 The recent discoveries of graphene,13,14 the
two-dimensional solid of carbon atoms with honeycomb lattice
structure, and its associated bilayer and trilayer structures
are expected to provide a further opportunity for realizing
unconventional pairing states. Graphene has a specific zero-
gap electronic band structure in which the charge carriers
behave like two-dimensional (2D) massless Dirac fermions
with a pseudorelativistic chiral property. In addition to regular
spin, electrons in graphene possess two additional quantum
degrees of freedom, the so-called pseudospin and valley. These
features, together with the fact that in graphene the carrier type

[electronlike (n) or holelike (p)] and its density can be tuned
conveniently, make these carbon-based material exceptional
for realizing unconventional superconductivity. The unusual
features of superconductivity have already been predicted in
monolayer graphene,15 where the pairing of electrons with
opposite sublattice pseudospins leads to the appearance of
an unusual spin-singlet (p + ip)-wave S phase with no gap
in its excitation spectrum.16 An intrinsic superconductivity,
with plasmon- or phonon-mediated pairing interactions, can
be realized in graphene coated with a metal.16,17 For a coated
bilayer or trilayer graphene, the formation of the S state is
expected to be closely similar to that of graphite intercalated
with alkaline-earth metals, for which a critical temperature
up to 11.5 K has been reported.18 Furthermore, progress has
already been made in proximity-induced superconductivity
by fabrication of transparent contacts between a graphene
monolayer and a superconductor (see, for instance, Refs. 19).
In a very recent study,20 we have explored the exotic nature
of interlayer superconductivity in pure bilayer graphene. The
mechanism by which the interplay between the interlayer
pairing of electrons with the same sublattice chirality and the
asymmetric arrangement of the sublattices of the two layers
results in a gapless superconductivity with an unusual s-wave
spin-triplet symmetry of the order parameter and anomalous
thermodynamic properties was explained. We obtained the
result that the interlayer pairing allows for the possibility
of a temperature-induced condensation causing an increase
of the pairing amplitude (PA) with increasing temperature,
and an entropy of the stable S state which can be higher
than its value in the N state. Motivated by these findings for
the interlayer superconductivity of pure bilayer graphene, we
study the effect of finite doping. Furthermore, considering
the recent interest in the properties of trilayer graphene,21,22

we extend our study to the interlayer pairing in trilayer
graphene. For bilayer graphene, we find that the doping opens
a gap in the excitation spectrum which, in turn, weakens the
temperature-induced condensation such that at high levels of
the doping the temperature dependence of the PA becomes
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similar to that of the conventional BCS gap.7 We present phase
diagrams of interlayer superconductivity for both symmetric
and asymmetric doping, with the two layers having the same
and different levels of doping, respectively.

For trilayer graphene, we examine the interlayer pairing in
two different types of stacking, ABA and ABC, in the pure
case and find a strong dependence on the type of stacking.
We show that the asymmetric ABC stacking can support a
stronger pairing gap than the symmetric ABA stacking. For
ABA stacking, there is a competition between two phases of
interlayer superconductivity in which the pairing is realized
between chiral electrons of the middle layer and those in only
one of the other two layers. This depends on the relative values
of the two corresponding coupling strengths. We explore the
possibility of a phase transition between the two phases by
varying the coupling strength; the transition turns out to be first
order for ABA stacking but second order for ABC stacking.

The paper is organized as follows. In the next section,
we discuss the theoretical modeling of the interlayer super-
conductivity in graphene materials and study the resulting
band structure with different topologies of the Fermi surfaces.
In Sec. III, we discuss the numerical results for the phase
diagram and the order parameter as a function of the various
parameters of both symmetrically and asymmetrically doped
bilayer graphene. Section IV is devoted to the case of interlayer
superconductivity for trilayer graphene. Finally, in Sec. V, we
present our summary and conclusions.

II. THEORY

In order to study interlayer superconductivity, we consider
a model based on graphene materials. We introduce the theory
of interlayer superconductivity for the case of bilayer graphene
and then this theory is developed for the case of trilayer
graphene. Bilayer graphene is composed of two coupled
graphene monolayers with A1 and B1 triangular sublattices in
the top layer and A2 and B2 triangular sublattices in the bottom
layer, according to Bernal stacking in which every A1 site of
the top layer lies directly above a B2 site of the bottom layer. In
the absence of superconductivity, the following Hamiltonian
can be used to describe the π electrons of bilayer graphene:23

HAB
0 =

2∑
l=1

H mono
l + HAB

⊥ , (1)

with the monolayer Hamiltonian

H mono
l = −

∑
σ,i

μlnl,i,σ − t
∑

σ,〈i,j〉
(a†

l,i,σ bl,j,σ + H.c.), (2)

and the nearest-neighbor interlayer hopping Hamiltonian

HAB
⊥ = −t⊥

∑
σ,i

(a†
1,i,σ b2,i,σ + H.c.), (3)

where al,i,σ (bl,i,σ ) and a
†
l,i,σ (b†l,i,σ ) are the annihilation and

the creation operators of an electron in the ith unit cell in
the sublattice A (B) and the layer l. σ = ± denotes the spin
state of the electron; nl,i,σ is the corresponding on-site particle
density operator. The intralayer nearest-neighbor hopping
energy t ≈ 3 eV determines the Fermi velocity in graphene as

vF ≈ 106 m/s, and t⊥ ≈ 0.4 eV (t⊥/t ≈ 0.13) is the dominant
interlayer hopping energy between the nearest neighbors A1

and B2; the chemical potential μl can be controlled by top-
and bottom-gate electrodes independently.

By introducing an attractive interaction between the elec-
trons of the sublattices A1 and B2 through the following
potential:

V AB
⊥ = −g⊥1

∑
σ,σ ′,i

a
†
1,i,σ a1,i,σ b

†
2,i,σ ′b2,i,σ ′ , (4)

interlayer superconductivity can be produced. Here, g⊥1 is
the S coupling energy.17,24 The interaction potential (4) has
the on-site local properties in the 2D plane of the bilayer
graphene. Therefore, the wave function of the two-body
problem associated with the two coupled electrons and
the corresponding pairing potential are not extended in the
bilayer plane. This results in the introduction of isotropic
s-wave symmetry for the orbital part of the order parameter.
Because the coupling occurs between two electrons with
opposite pseudospin degrees of freedom, the Pauli exclusion
principle imposes a pairing in the spin-triplet channel.
Therefore, the total wave function, including the product of
orbital, spin, and pseudospin parts, will be antisymmetric
under the exchange of electrons. The followings-wave
spin-triplet order parameter can be used to decouple the total
Hamiltonian of the bilayer graphene (HAB = HAB

0 + V AB
⊥ ):

�i,⊥1 = −g⊥1〈a1,i,↓b2,i,↑ + a1,i,↑b2,i,↓〉. (5)

In the lattice space, as is shown in the left panel of Fig. 1,
�i,⊥1 describes the interlayer pairing of the two electrons in
the sublattices A1-B2, and the spins ↑-↓ (and ↓-↑). In the
momentum space, for the case of t⊥ = 0, when the electronic
band structures of the two monolayers are not affected by
each other, there is a simple description for binding of the

FIG. 1. (Color online) Left panel: Lattice structure of bilayer
graphene. Interlayer S correlations in real space are shown by wavy
lines which couple electrons of different layers with opposite pseu-
dospin degrees of freedom. Right panel: Interlayer superconductivity
in momentum space is shown by coupling of two time-reversed
momentum states |−k〉 and |k〉 which are located in valleys K1

and K ′
2 and belong to different layers. Since interlayer pairing is

antisymmetric with respect to the pseudospin degree of freedom,
pairing between components |A1〉 and |B2〉 is possible.
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two time-reversed electronic states due to the presence of an
attractive interaction, as we discuss in the following.

At low energies, the chiral momentum states |k〉 located
in Dirac cone-shaped band structures in the two inequivalent
valleys are coherent superpositions of sublattice pseudospin
states |A〉 and |B〉,

|k〉 = |A〉 + exp(iϕk)|B〉, (6)

where φk is the angle of the momentum direction in the
graphene plane. Interlayer superconductivity induces partial
pairing between the time-reversed momentum states |k〉 and
|−k〉 located in the Dirac cones of different layers such that
the coupling takes place only between the |A1〉 and |B2〉
pseudospin parts of the electron wave functions in layers 1 and
2, respectively. Since the pairing of the time-reversed chiral
momentum states is partial, the interlayer superconductivity
(5) gives rise to even parity of the order parameter in the
frequency space.25

After decoupling of the interacting part of HAB by the
order parameter (5), one can diagonalize the Hamiltonian in
2D momentum space. The general expression of the spectrum
is large, but for t⊥ = 0, we obtain a simple expression for the
spectrum E

γ

kl, which is

αE
γ

kl = α

[√
�2

⊥1 + 2
(
μ2 + ε2

k

) + lA

2
− γ h

]
, (7)

A =
√

�4
⊥1 + 4ε2

k

(
�2

⊥1 + 4μ2
)
, (8)

where l,γ,α = ± indicate different branches of the spectrum.
Here εk = (3/2)t |k|, μ = (μ1 + μ2)/2, and h = (μ1 − μ2)/2
are the free band dispersion, mean doping, and doping
difference, respectively. Without loss of generality, we assume
μ1 � μ2. The branch E−

kl does not cross the Fermi surface
for any values of the parameters h, μ, �⊥1, and l, such that
to break a paired state and send quasiparticles to this state
a finite energy is needed. This situation resembles metallic
superconductors. Nevertheless, E+

kl can cross the Fermi energy
through one point for l = 1 and either one or two points for
l = −1. As a result, it generates gapless excitation modes. In
Fig. 2 the quasiparticle excitation spectrum is shown. There
are four possible features for E+

kl. Each feature, with its own
topology of the Fermi surface, can be accessed by tuning
the value of h. The boundaries between the four ranges of
h associated with different topologies of the Fermi surfaces
can be determined by analyzing the roots of E+

kl = 0; these
have three critical values

hc1 = μ

√
�2

⊥1 − t2
⊥

�2
⊥1 − t2

⊥ + 4μ2
, (9)

hc2 = μ, (10)

hc3 =
√

�2
⊥1 − t2

⊥ + μ2. (11)

It is easy to see that, in general, hc1 � hc2 � hc1.
In the case of μ 	= 0, from Eqs. (9) and (10) one can see

that hc1 	= hc2 	= 0. In this case, one possible type of Fermi
surface topology with no effective Fermi surface for either
l = ±1 occurs when h < hc1. In this situation a gap opens and

(a)

l  = -1
l  =  11

0

1

2

E
kl

1

(b)

(c)

0 1 2

1

0

1

2

∋

k 1

E
kl

1

(d)

0 1 2

k 1

∋

FIG. 2. (Color online) The quasiparticle excitation spectrum E+
kl

versus εk in the S state. The dispersions correspond to the regimes of
(a) BCS pairing with no effective Fermi surface for both branches
l = ±1, (b) Sarma pairing with two effective Fermi surfaces for
the branch l = −1 but no Fermi surface for the other branch l = 1,
(c) pairing with a single Fermi surface in l = −1 but no Fermi surface
for the other branch l = 1, and (d) pn pairing with a single Fermi
surface in each branch l = ±1.

the pairing becomes of BCS type [see Fig. 2(a)]. The value
of the energy gap is 2hc1. But for μ = 0, this regime vanishes
and the pairing becomes gapless.

In the range hc1 < h < hc2 there is a different type of Fermi
surface topology. For l = 1, there is no effective Fermi surface
and the excitation is gapful, whereas the branch l = −1 crosses
the Fermi level at two points and consequently generates two
effective Fermi surfaces, as depicted in Fig. 2(b). This Fermi
surface topology corresponds to Sarma pairing in the phase
diagram and vanishes at μ = 0.

Another type of Fermi surface topology can be realized
for hc2 < h < hc3. In this range, there is no crossing point
between the branch l = 1 and the Fermi surface, while the
branch l = −1 crosses the Fermi surface at one point with a
large Fermi momentum. Therefore, as is shown in Fig. 2(c),
because of the large Fermi surface, the first excitation band
goes to the N state and the second band remains gapped. This
topology defines an additional S phase which corresponds to
the gapped mixed (GM) regime in the phase diagram.

The last possible Fermi surface topology can be determined
when hc3 < h. In this range, both branches l = ±1 have
one effective Fermi surface [see Fig. 2(d)]. The branch l =
−1 (1) crosses the Fermi surface with a large (small) Fermi
momentum and goes to the N (S) state. It is interesting to note
that the splitting of the Fermi surfaces by h in this case results
in electronlike and holelike Fermi surfaces in the absence
of superconductivity. So the interlayer superconductivity par-
tially pairs n- and p-type momentum states. The corresponding
phase will be referred to as the pn phase26 in the phase diagram.

According to the above four different topologies for
the effective Fermi surfaces, the gap equation has different
solutions.
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FIG. 3. (Color online) For symmetric doping of bilayer graphene,

h = 0: (a) The gap solution �⊥1 versus T for different levels of
the mean doping μ at t⊥ = 0. (b) The mean-field phase diagram
of the chiral superconductivity showing the dependence on the
interlayer hopping energy t⊥ and the temperature T for μ/g⊥1 =
0,0.03,0.06,0.09 (from bottom to top, respectively). The line of
transition from the N to the S phase is shown, where the dashed
and solid parts indicate the first- and second-order transitions,
respectively.

III. INTERLAYER SUPERCONDUCTIVITY IN DOPED
BILAYER GRAPHENE

We obtain the gap equation by minimizing the thermody-
namic potential


S = �2
⊥1

g⊥1
− 1

β

∑
k,γ,l,α

ln
(
1 + e−βαE

γ

kl

)
(12)

with respect to the order parameters �⊥1 and ∂
/∂�⊥1 = 0.
By solving the gap equation self-consistently, one can obtain
�⊥1.

For symmetric doping of bilayer graphene, h = 0, the
solution of the gap equation �⊥1 versus temperature, and the
phase diagram of the chiral superconductivity in the t⊥-T plane
are shown in Fig. 3 for different levels of the mean doping. In
Fig. 3(a), the low-temperature solutions of the gap equation
increase with increasing mean doping, and at high mean doping
the PA decreases monotonically with temperature, resembling
BCS-like behavior. This can be understood as follows: In the
absence of doping, the S state is gapless and N fermions will
exist as well and this weakens the PA; in the presence of
mean doping, a gap opens and the PA strengthens. Finally,
for high mean doping, the Fermi surface becomes large and
the band structure is not important, as in conventional s-wave
symmetry, which results in BCS-like behavior of the PA. The
phase diagram of the chiral superconductivity in the t⊥-T plane
is shown in Fig. 3(b), and the line of transition from the N to
the S phase is shown, where the dashed and solid parts indicate
the first- and second-order phase transitions, respectively. One
can see that the low-temperature region of the S state increases
with the mean doping. This is due to the increase of the PA
with the mean doping [shown in Fig. 3(a)]. Since t⊥ normally
couples the two layers of the bilayer graphene, larger values
of t⊥ are required to cause a larger PA to disappear.

In the case of asymmetrically doped bilayer graphene,
h 	= 0, the solution of the gap equation �⊥1 versus the doping
difference h at zero temperature and the phase diagram of the
chiral superconductivity in the h-T plane are shown in Fig. 4
for different levels of the mean doping and t⊥ = 0. As depicted
in Fig. 4(a), at finite mean doping the behavior of �⊥1 with
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FIG. 4. (Color online) For asymmetric doping of bilayer
graphene, h 	= 0: (a) TNonzero solutions of the gap equation �⊥1

versus T for different levels of the mean doping μ at t⊥ = 0. (b) The
mean-field phase diagram of the chiral superconductivity showing
dependence on the doping difference h and the temperature T for
μ/g⊥1 = 0,0.03,0.06,0.09 (from top to bottom, respectively). The
line of transition from the N to the S phase is shown, where the
dashed and solid parts indicate the first- and second-order transitions,
respectively.

respect to h is constant up to a certain value hc1, decreases
until it develops a minimum at hc2, and then increases; at a
critical h, the PA becomes constant and at hc3 it abruptly goes
to zero. These four steps of behavior of �⊥1 correspond to the
four different topologies of the Fermi surface discussed above.
Approaching μ = 0, the BCS and Sarma states disappear
completely. The phase diagram in the h-T plane is shown
in Fig. 4(b), for different levels of the mean doping. The
stable S region is separated from the N region by a phase
transition line in which the dashed and solid parts indicate
the first- and second-order phase transitions, respectively. At
low (high) temperature and high (low) doping difference, the
phase transition is of first (second) order. By increasing the
mean doping, the range of the stable S state is decreased.

In Fig. 5, the phase diagram of the S state in the μ-h plane
is shown at zero temperature. The solid thin lines indicate the
boundaries of the different phases and the thick dashed line
represents the first-order phase transition from the S to the N
state. One can see that the BCS, Sarma, and GM phases are
stable, while the pn phase is unstable. At μ = 0, the BCS and
Sarma states vanish and the only stable state is the GM phase.
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FIG. 5. (Color online) For asymmetric doping of bilayer
graphene, h 	= 0, the phase diagram of S states in the μ-h plane
is shown at zero temperature. Solid thin lines indicate the boundaries
of different phases and the thick dashed line represents the first-order
phase transition from the S to the N state.
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FIG. 6. (Color online) Lattice structure of trilayer graphene.
(a) Lattice structure of ABA-stacked trilayer graphene in which the
sublattices A1,B2, and A3 from different layers are overlapped (left
panel). In the right panel, interlayer correlations between electrons of
sublattices A1 and B2 (B2 and A3) from the first and second (second
and third) layers are indicated by wavy lines. (b) Lattice structure
of ABC-stacked trilayer graphene in which the sublattices A1 and
B2 from the first and second layers and also A2 and B3 from the
second and third layers are overlapped (left panel). The S correlations
between interlayer nearest-neighbor sublattices are shown in the right
panel.

Upon increasing μ, the ranges of the BCS and Sarma phases
increase, with this property: that the range of the BCS state is
larger than that of the Sarma phase.

IV. INTERLAYER SUPERCONDUCTIVITY
IN TRILAYER GRAPHENE

In this section, we extend the theory of interlayer supercon-
ductivity to the case of trilayer graphene. Trilayer graphene
consists of a monolayer graphene on the bottom of the bilayer
graphene. There are two known manners of stacking in bulk
graphite, which are called ABA and ABC,21 as shown in Fig. 6.
In ABA stacking, the atoms of the bottommost monolayer lie
exactly below those of the top layer of the bilayer, while
for ABC stacking, one type of sublattice of the bottommost
monolayer lies under the center of the hexagons in the bottom
layer of the bilayer graphene. This subtle difference in stacking
order affects the physical properties remarkably. Near the

Dirac point, the electrons in ABC stacking behave as massive
fermions, while in ABA stacking, the electrons behave as both
massive and massless Dirac fermions.22 We consider the total
Hamiltonian of the π electrons in trilayer graphene without S
correlation,22

H tri
0 =

3∑
l=1

H mono
l + H

ABA(C)
⊥ , (13)

where H
ABA(C)
⊥ are the nearest-neighbor interlayer hopping

Hamiltonians of ABA- (ABC-) stacked layers and have the
following forms:

HABA
⊥ = HAB

⊥ − t⊥
∑
σ,i

(b†2,i,σ a3,i,σ + H.c.), (14)

HABC
⊥ = HAB

⊥ − t⊥
∑
σ,i

(a†
2,i,σ b3,i,σ + H.c.). (15)

To induce interlayer superconductivity, we introduce the
nearest-neighbor interlayer attractive interaction

V ABA
⊥ = V AB

⊥ − g⊥2

∑
σ,σ ′,i

b
†
2,i,σ b2,i,σ a

†
3,i,σ ′a3,i,σ ′ (16)

for the ABA trilayer and

V ABC
⊥ = V AB

⊥ − g⊥2

∑
σ,σ ′,i

a
†
2,i,σ a2,i,σ b

†
3,i,σ ′b3,i,σ ′ (17)

for ABC trilayer graphene. g⊥2 couples the electrons of the
sublattice B2 (A2) and A3 (B3) in the ABA (ABC) arrangement.
The first terms of Eqs. (16) and (17) can be decoupled by
Eq. (5). Following the discussion of Sec. II, we determine the
S order parameters between the second and the third layers,

�i,⊥2 = −g⊥2〈b2,i,↓a3,i,↑ + b2,i,↑a3,i,↓〉 (18)

for decoupling the second term of Eq. (16) and

�i,⊥2 = −g⊥2〈a2,i,↓b3,i,↑ + a2,i,↑b3,i,↓〉 (19)

for decoupling the second term of Eq. (17). In momentum
space, the total Hamiltonian of trilayer graphene (HABA(C) =
H tri

0 + V
ABA(C)
⊥ ) can be diagonalized. With the procedure of

Sec. III, we can calculate the PAs for different stackings of the
trilayer. Figure 7 shows the nonzero stable solutions of �⊥1 and
�⊥2 in terms of temperature for pure ABA and ABC trilayers at
t⊥ = 0. As in the bilayer case, there is an enhancement of the

ABA

ABC

0. 0.1 0.2
0.

0.1

0.2

0.3

T g 1,2

1,
2

g
1,

2

FIG. 7. (Color online) Solutions of gap equations �⊥(1,2) versus
temperature for ABA and ABC stacking at μ = 0 and t⊥ = 0.
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FIG. 8. (Color online) Finite-temperature thermodynamic po-
tential contours in the �⊥1-�⊥2 plane showing stable points. In
the case of ABA stacking, steps (a) g⊥1 > g⊥2 (g⊥1/g⊥2 = 1.02),
(b) g⊥1 = g⊥2, and (c) g⊥1 < g⊥2 (g⊥1/g⊥2 = 0.98) indicate first-
order phase transitions between �⊥1 and �⊥2, whereas in the case of
ABC stacking, steps (d) g⊥1 > g⊥2 (g⊥1/g⊥2 = 3.11), (e) g⊥1 = g⊥2,
and (f) g⊥1 < g⊥2 (g⊥1/g⊥2 = 0.32) imply that second-order phase
transitions occur.

PA at intermediate temperatures. However, the values of the
ABC trilayer order parameter are larger than those of the ABA
trilayer, and as a result, in this case, the simultaneous existence
of �⊥1 and �⊥2 promotes the interlayer superconductivity. We
will discuss below the case of ABA stacking. It is interesting
to note that there is a mutual influence between the interlayer
PAs. The manner of the effect strongly depends on the type of
layer arrangement. This effect can be investigated by studying
the competition between �⊥1 and �⊥2 with respect to the
relative values of g⊥1 and g⊥2. In Fig. 8, a contour plot of the
thermodynamic potential in the �⊥1-�⊥2 plane for ABA- and
ABC-stacked layers is shown for μ = 0 and t⊥ = 0. In the ABA
trilayer graphene, if g⊥1 > g⊥2, the global (local) minimum of
the thermodynamic potential lies on the �⊥1 (�⊥2) axis [see
Fig. 8(a)]. On increasing g⊥2 so that g⊥1 = g⊥2, the thermody-
namic potential shows many stationary points where the global
minimum is a quarter of a circle as shown in Fig. 8(b). This

behavior of the global minimum is due to the symmetry of the
parameter space. On further increase of g⊥2, so that g⊥1 < g⊥2,
the minimum of the thermodynamic potential passes to a
nonzero �⊥2 but zero �⊥1 [see Fig. 8(c)]. On the other hand,
on varying g⊥1 and g⊥2, the stable point jumps between the two
axes, implying a first-order phase transition between �⊥1 and
�⊥2. The situation for the ABC trilayer is different. Figure 8(d)
shows that if g⊥1 > g⊥2, the dominant PA is �⊥1 and the other
has a small value. On the other hand, the thermodynamic
potential has one point of the global minimum without a
local minimum. This stationary point moves continually in
the �⊥1-�⊥2 plane on variation of g⊥1 and g⊥2. At the same
values of g⊥1 and g⊥2, the PAs have equal magnitude [see
Fig. 8(e)]. Finally, �⊥2 will be larger than �⊥1 if g⊥1 < g⊥2,
as is shown in Fig. 8(f). Therefore, changing the g⊥’s exhibits
a second-order phase transition between the order parameters.

V. CONCLUSION

In conclusion, we have analyzed in bilayer and trilayer
graphene s-wave spin-triplet superconductivity, which can be
realized by an interlayer pairing between chiral electrons of
different layers. For bilayer graphene, we have shown that the
gapless property of the interlayer S state of a pure sample
and its associated temperature-induced enhancement of the S
order parameter are suppressed by finite mean doping. We
have explored the possibility of realizing four distinct pairing
regimes with different topologies of the Fermi surfaces by
tuning the difference in the doping levels of the two layers.
These include the BCS regime in which the two relevant
branches of excitations are gapped and S [Fig. 2(a)], the Sarma
regime with one branch gapped and the other gapless, both S
[Fig. 2(b)], the gapped mixed regime with one branch gapped
and S and the other N [Fig. 2(c)], and the pn regime with both
branches being gapless, one S and the other N [Fig. 2(d)].

For trilayer graphene, we have shown that the interlayer
pairing strongly depends on the type of stacking, with ABC
stacking supporting a higher pairing amplitude than ABA
stacking. For imbalanced coupling strengths of the middle
layer with the two outer layers, we distinguish two phases
which are characterized by the pairing of the middle layer
with only one of the outer layers. We have found a phase
transition between these two phases by varying the ratio of
the coupling strengths; the transition is first order for the ABA
stacking but second order for the ABC stacking.
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