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Coherent sliding dynamics and spin motive force driven by crossed magnetic
fields in a chiral helimagnet
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We demonstrate that the chiral soliton lattice formed from a chiral helimagnet exhibits a coherent sliding
motion when a time-dependent magnetic field is applied parallel to the helical axis, in addition to a static field
perpendicular to the helical axis. To describe the coherent sliding, we use the collective coordinate method and a
numerical analysis. We also show that the time-dependent sliding velocity causes a time-varying Berry cap which
creates a spin motive force. A salient feature of the chiral soliton lattice is the appearance of a strongly amplified
spin motive force which is directly proportional to the macroscopic number of solitons (magnetic kinks).

DOI: 10.1103/PhysRevB.86.214426 PACS number(s): 75.47.−m, 75.30.−m, 85.75.−d

I. INTRODUCTION

Spin-based electronics (spintronics) is now an emerging
field. An essential notion behind this emergence is the fact that
the “spin magnetic current,” which does not rely on an electric
current, would greatly reduce the energy loss and switching
time during information read-write processes. At the heart of
spintronics is the requirement to drive the motion of magnetic
textures in a controllable manner. There are two ways to
drive the motion, i.e., incoherent and coherent methods.1

The incoherent method is typically realized by injecting a
spin-polarized current into a sample.2 On the other hand, the
coherent method is realized in a magnetically ordered state
by twisting the phase angle of the magnetic order parameter
which directly couples to a magnetic field. In the coherent
method, the phase rigidity (stiffness) of the whole spin system
makes it possible to transmit the spin rotation at one end of
a sample to the other end via spin torque transfer. Although
the coherent method has potential advantages, it has not been
extensively studied in the context of present-day spintronics,
because it is not so easy to prepare a rigid phase object
which transports an experimentally measured quantity in a
controllable manner. It is interesting to seek for the possibility
of realizing the coherent method.

In this paper we propose that chiral helimagnets are
promising candidates to realize the coherent method. The
chiral helimagnetic (CHM) state is characterized by the vector
spin chirality as an order parameter. The structure is sta-
bilized by the antisymmetric Dzyaloshinskii-Moriya (DM)
interaction and realized in crystals without rotoinversion
symmetry. A guiding principle for materializing this effect
is symmetry-adapted material synthesis, i.e., the interplay of
crystallographic and magnetic chirality plays a key role there.

The CHM state is, however, nothing more than a non-
collinear linear (harmonic) spin structure. To carry a phys-
ically measurable quantity, we need a nonlinear structure.
Fortunately, under a magnetic field applied perpendicular
to the helical axis, the CHM is transformed to a nonlinear
magnetic structure called a chiral soliton lattice (CSL) (see
Fig. 1), which is equivalent to a magnetic kink crystal.3,4 In
the CSL state, the ground state possesses a periodic array of
commensurate and incommensurate domains partitioned by

discommensurations. Recently, using Lorenz microscopy and
small-angle electron diffraction, the CSL was experimentally
verified in the hexagonal chiral magnet Cr1/3NbS2.5 The
present authors have discussed the physical possibilities of
the CSL state from various viewpoints.6–9

As pointed out in Refs. 6 and 8, the CSL exhibits a coherent
collective sliding motion in the nonequilibrium state. Once the
sliding is triggered, the CSL maintains its persistent motion
assisted by the dynamical generation of inertial mass. The
mass generation can be understood by the Döring-Becker-
Kittel mechanism of the moving domain wall.10–12 In this
mechanism, the longitudinal (out-of-plane) component of the
slanted magnetic moment inside the domain wall emerges as a
consequence of translational motion. An additional magnetic
energy associated with the resultant demagnetization field is
interpreted as the kinetic energy of the wall.

The incoherent current injection method to drive the sliding
has already been proposed by the present authors.9 In this
paper, we demonstrate that crossed magnetic fields can cause
the coherent motion of the whole CSL. Here, we mean “crossed
fields” that in addition to a static field perpendicular to the
helical axis, which stabilizes the CSL formation, a magnetic
field parallel to the helical axis is imposed.

Once the coherent motion occurs, the natural question
arises as to whether the motion has observable consequences
for the spin motive force (SMF).13 It is quite natural to expect
that the time dependence of the longitudinal magnetic field
manifests itself in the temporal regime of the SMF. The
time dependence of the spin motive force can be classified
into three types, i.e., (i) transient, (ii) continous ac, and
(iii) continous dc. For example, domain wall motion14 and
electron transport through ferromagnetic nanoparticles15

lead to type (i) SMF. Vortex core dynamics of a magnetic disk
caused by an oscillating magnetic field directed in the disk
plane induces a continous ac spin motive force of type (ii).16

Resonant microwave excitation of a comb-shaped ferromag-
netic thin film produces a continous dc spin motive force
of type (iii).17 We will demonstrate that the time-dependent
longitudinal field, as shown in Fig. 1, possibly causes SMFs
of types (i) and (ii) in the chiral helimagnet. As a remarkable
feature, we note that our CSL is a macroscopically ordered
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FIG. 1. (Color online) Schematic picture of the CSL. SMF
generation needs a static transverse field Hx and a time-dependent
longitudinal field Hx .

object, which contains macroscopic amounts of magnetic
solitons. Due to this very large number of solitons, the SMF is
expected to be strongly amplified as compared with the SMF
caused by a single magnetic domain wall in a ferromagnet.

In Sec. II, we present the model and summarize the
necessary background on the CSL dynamics. In Sec. III, we
demonstrate that under the presence of the longitudinal field,
the CSL becomes unstable and coherent motion occurs. In
Sec. IV, we present a numerical analysis of the dynamics to
support the analytical considerations presented in Sec. III. In
Sec. V, we discuss the SMF associated with coherent motion.
We give concluding remarks in Sec. VI.

II. STATIC DEFORMATION OF A CSL UNDER
CROSSED MAGNETIC FIELDS

A. Basic equations of the chiral soliton lattice

1. Static structure

A monoaxial chiral helimagnet is described by an effective
one-dimensional Hamiltonian,

H = −J
∑

i

Si · Si+1 − D ·
∑

i

Si × Si+1 + H̃ ·
∑

i

Si ,

(1)

where Si is the local spin moment at the site i, J > 0 is
the nearest-neighbor ferromagnetic exchange interaction, and
D = D êz is the monoaxial Dzyaloshinskii-Moriya interaction
along a certain crystallographic chiral axis (taken as the z axis).
We take the z axis as the monoaxis and apply the magnetic field
H̃ = gμB H = gμB(Hx,0,Hz) in the xz plane, where g is the
electron g factor and μB = |e| h̄/2m is the Bohr magneton.

In the semiclassical approach, because of the slowly varying
nature of the spin variables, it is legitimate to introduce the
continuous field variable S(z) = ∑

i Siδ(z − zi) ≡ Sn(z). The
unit vector field n(z) is represented as

n(z) = [sin θ (z) cos ϕ(z), sin θ (z) sin ϕ(z), cos θ (z)], (2)

by using the polar angles θ (z) and ϕ(z). The continuum version
of the Hamiltonian (1), H = ∫ L

0 dzH, where L denotes the
linear dimension of the system, includes the Hamiltonian
density,

H = JS2

2a0
(∂zn)2 − S2

a2
0

D · n × ∂zn + S

a3
0

H̃ · n. (3)

Here a0 is the atomic lattice constant along the chiral axis
[a0 � 10 Å in Cr1/3NbS2 (Ref. 5)].

For H = 0, the Hamiltonian (1) gives an xy-planar heli-
magnetic structure θ (z) = π/2 and ϕ(z) = Q0z with the mod-
ulation wave number being given by Q0 = a−1

0 arctan(D/J ) �
a−1

0 D/J .
For a nonzero transverse field perpendicular to the chiral

axis, the CSL structure becomes the ground state characterized
by θ = π/2 and

ϕ0(z) = 2am

(
πQ0

4E
z

)
,

where am is the Jacobi amplitude function with the elliptic
modulus κ (0 � κ < 1), and E = E(κ) is the complete
elliptic integral of the second kind. The elliptic modulus κ

is determined from the condition

κ = 4E

πQ0a0

√
H̃x

JS
. (4)

This equation is also written as H̃x/H̃ c = (κ/E)2 by introduc-
ing the critical field corresponding to κ = 1,

H̃c = (πQ0/4)2JSa2
0 ∼ D2/J, (5)

at which an incommensurate-to-commensurate phase transi-
tion occurs. The spatial period of the CSL is given by LCSL =
8KE/πQ0, which continuously increases from LCHM =
2π/Q0 to infinity when the magnetic field increases from zero
to Hc. Here, LCHMis the spatial period of CHM under zero
field. K = K(κ) is the complete elliptic integral of the first
kind.

2. Individual spin dynamics

Next, we write down the basic equations for the dynam-
ics. Using the Hamiltonian density (3), we construct the
Lagrangian density

L̃ = h̄S

a3
0

(cos θ − 1) ∂tϕ − H. (6)

To incorporate the damping effect, we use the Rayleigh
dissipation described by

W̃ = αh̄S

2a3
0

(∂t n)2 (7)

with α being a small coefficient specifying the Gilbert
damping. The Euler-Lagrange equations of motion are then
given by

h̄S

a3
0

sin θ ∂tθ = δH
δϕ

+ δW̃
δϕ̇

, (8a)

h̄S

a3
0

sin θ ∂tϕ = −δH
δθ

− δW̃
δθ̇

, (8b)

which lead to the Landau-Lifshitz-Gilbert (LLG) equations

h̄S sin θ∂tθ = −JS2a2
0

{
sin2 θ∂2

z ϕ + sin 2θ (∂zϕ) (∂zθ )
}

+DS2a0 sin 2θ (∂zθ ) −H̃xS sin θ sin ϕ

+αh̄S sin2 θ (∂tϕ), (9a)

h̄S sin θ∂tϕ = JS2a2
0

{
∂2
z θ− 1

2 sin 2θ (∂zϕ)2
}

+DS2a0 sin 2θ (∂zϕ) − H̃xS cos θ cos ϕ

+ H̃zS sin θ − αh̄S∂tθ. (9b)
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The LLG equations describe the individual (not collective)
spin dynamics.

3. Collective dynamics

To consider the sliding motion of the CSL, we use the
collective coordinate method18 introduced in Ref. 8. In this
formulation, the CSL dynamics is fully described by two
dynamical variables, the center-of-mass position Z and the
out-of-plane quasizero mode (OPQZ) coordinate ξ0. Using
them the sliding solution is written as

ϕ(z,t) = ϕ0[z − Z(t)], (10a)

θ (z,t) = π/2 + ξ0(t)u0[z − Z(t)]. (10b)

The zero-mode wave function

u0(z) =
√

K

LE
dn

(
πQ0

4E
z

)
= 2

πQ0

√
KE

L
∂zϕ0(z) (11)

serves as the basis function of the θ fluctuations localized
around each soliton and ξ0(t) is the OPQZ coordinate. Here
dn is the Jacobi dn function. The function u0(z) exactly
corresponds to the topological charge distribution because
a phase gradient ∂zϕ0(z) represents a topological charge
localized around each soliton. Using these variables, the
Lagrangian L = ∫

dzL̃ and the Rayleigh term W = ∫
dzW̃

are respectively written as

L = h̄S

a3
0

Kξ0Ż − ε
(θ)
0

a3
0

ξ 2
0 + S

√
L

a3
0

H̃zξ0 (12)

and

W = αh̄S

2a3
0

(
MŻ2 + ξ̇ 2

0

)
, (13)

where K = ∫ L

0 dzu0(z)∂zϕ0(z) and K = ∫ L

0 dz[∂zϕ0(z)]2 as

given in Ref. 8. Furthermore, ε
(θ)
0 � D2S2/2J is an energy

gap of the θ mode caused by the DM interaction which plays
the role of an easy-plane anisotropy. We here note the useful
relation

ε
(θ)
0

/
H̃c = 8S/π2 (14)

[see Eq. (16) of Ref. 8]
Under the weak-field condition, κ � 1, we have K �

Q0

√
L and M � Q2

0L. We have ξ0(t) �= 0 only for nonequi-
lbrium states where the CSL exhibits sliding motion. The
emergence of such coherent collective transport in nonequi-
librium states is a manifestation of the dynamical off-diagonal
long-range order. Using Eqs. (10a) and (10b), Eqs. (9a)
and (9b) lead to the equations of motion (EOMs) for the
collective dynamics,

h̄Kξ̇0 = −αh̄MŻ, (15a)

h̄KŻ = 2S−1ε
(θ)
0 ξ0 + αh̄ξ̇0 −

√
LH̃z. (15b)

This set of EOMs differs from Eqs. (37) given in Ref. 8 in that
the sd interaction is absent and a longitudinal field is present.
In Ref. 8, the incoherent driving of the CSL sliding motion
was caused by spin torque transfer from the spin-polarized
current to the local spins. On the other hand, in the present
case, we are discussing coherent driving caused by a uniform
time-dependent magnetic field H̃z.

Equations (15a) and (15b) are readily solved to give

Ż(t) = Ce−t/τCSL − e−t/τCSL

(1 + α2)h̄Q0

∫ t

et ′/τCSL
dH̃z(t ′)

dt ′
dt ′,

(16a)

ξ0(t) = De−t/τCSL + α
√

Le−t/τCSL

(1 + α2)h̄

∫ t

et ′/τCSLH̃z(t
′)dt ′,

(16b)

where we used the relation M/K2 = 1 for a weak field. The
constants C and D are determined by the initial conditions
Ż(0) = 0 and ξ0(0) = 0. The intrinsic relaxation time of the
CSL, caused by the Gilbert damping, is introduced by

τCSL = h̄S(α + α−1)

2ε
(θ)
0

� h̄(α + α−1)

S

J

D2
, (17)

which is also written as

1/τCSL � αωgap, (18)

with ωgap = ε
(θ)
0 /h̄ being the characteristic frequency of the

gap. In the case of static H̃z, we have trivial relaxational dy-
namics where the sliding motion never persists. Furthermore,
the DM interaction D gives rise to a finite relaxation time.
Equation (16b) means that the longitudinal field first directly
couples to ξ0 and drives its growth via the Gilbert damping
process. Then, the sliding motion follows the growth of ξ0.
This process is consistent with intuitive ideas developed by
Döring.10

We here emphasize that the two coordinates ξ0 and Z

are coupled to each other via the Gilbert damping α [see
Eq. (15a)]. If there were no damping, we would have no
correlated dynamics. This fact means that the CSL never
realizes dissipationless collective motion. As we will see in
Sec. V and Appendix C, the presence of the damping is
essential to drive the SMF.

4. Comparison of material parameters to theoretical formulas

It may be worthwhile to summarize the relation between
experimental data and theoretical parameters by taking the
example of Cr1/3NbS2,5 and theoretical formulas. In this
sample, it is reported that a0 = 1.212 × 10−9 m and LCHM =
2π/Q0 = 4.8 × 10−8 m. The Cr atoms are in the trivalent
state and have localized electrons with spins of S = 3/2.
The observed critical field is Hc = 2300 Oe corresponding
to 0.31 K. We have an estimation for the ratio D/J =
tan(Q0a0) = 0.16. Another important quantity is the excitation
gap, which is estimated as ε

(θ)
0 � 0.38 K by using Eq. (14).

The intrinsic relaxation time of the CSL is also estimated
as τCSL � (α + α−1) × 3.0 × 10−11 s. A small damping such
as α � 10−2 leads to τCSL ∼ 3.0 × 10−9 s. Smaller damping
causes a longer relaxation time. To realize a longer period of
the relaxation processes, it is desirable to have a smaller value
of α and a smaller gap frequency ωgap.

B. Static deformation of the CSL

Now that we have set up all the necessary equations for the
dynamics, we proceed with the stability analysis of the CSL
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FIG. 2. Spatial modulation of θ (z̄) = π/2 + θ1(z̄) for H̃x/H̃c =
0,0.1,0.2,0.3 (from top to bottom), keeping H̃z/H̃x = 0.1. Here the
dimensionless coordinate z̄ = πQ0z/4E is used.

against crossed magnetic fields. Before going to dynamical
deformation, it is worthwhile to study the static deformation.
For the analysis, we here consider the weak-field limit |H̃x | �
JS and |H̃z/H̃x | � 1.

We introduce the static deformations as θ (z) = π/2 + sθ̃ (z)
and ϕ(z) = ϕ0(z) + sϕ̃(z), with the small fluctuations θ̃ ,ϕ̃
and s being a dummy expansion parameter. As derived in
Appendix A, we have

θ̃ (z̄) = H̃z

H̃x

κ2

W
[C1ϕ̃1(z̄) + C2ϕ̃2(z̄)], (19)

where the Wronskian W is given in Eq. (A7) and the
coefficients C1,2 are given by Eqs. (A11) and (A12). The
functions ϕ̃1,2 are a pair of fundamental solutions of the Lamé
equation [Eq. (A2)]. In Fig. 2 we show the obtained spatial
modulation of θ (z̄) = π/2 + θ1(z̄) for various H̃z/H̃c, keeping
H̃x/H̃z = 0.1. Since the coefficients c1,2 n fall exponentially
with growth of n, we retain only the terms with n = ±1,
which dominate the terms with |n| � 2. We see that finite
H̃z tends to orient the spins toward the z direction but causes
nonuniform spatial oscillation. This oscillation implies that the
static deformation considered here is unstable against dynamic
deformation. We will see that this dynamic deformation
corresponds to the sliding motion of the CSL.

III. COHERENT SLIDING DYNAMICS
IN CROSSED MAGNETIC FIELDS

A. Energy and momeutum associated with the sliding motion

In this section we will show that the static deformation
of the CSL is unstable against the dynamical instability, i.e.,
spontaneous coherent sliding motion of the whole CSL. As
the present authors previously pointed out,19 the Lagrangian
constructed from the Hamiltonian Eq. (3) has hidden Galilean
symmetry induced through Lie analysis.

This hidden symmetry justifies the assumption that the CSL
has a linear momentum

Pz = h̄S

a3
0

∫
dz (1 − cos θ ) ∂zϕ (20)

associated with the kinematic Berry phase. We connect the
momentum variation δPz to the energy variation,20

δE =
∫

dz

(
∂H
∂θ

δθ + ∂H
∂ϕ

δϕ

)
(21)

associated with the sliding motion. In the absence of dissi-
pation, plugging the EOMs (8a) and (8b) into Eq. (21),
we have

δE = h̄S

∫
dz sin θ

(
∂θ

∂t
δϕ − ∂ϕ

∂t
δθ

)
. (22)

The sliding motion means that θ and ϕare functions of u = z −
Z(t) and we can make the replacement ∂t → −Ż∂u, ∂z → ∂u.
Then we easily obtain the relation

δE = ŻδPz. (23)

Based on this relation, we see that coherent sliding occurs if
the condition ŻδPz < 0 is satisfied for a given momentum
transfer δPz from the environment. We will see that in the
present case the longitudinal magnetic field Hz causes the
momentum transfer and drives the sliding motion.

B. Coherent sliding caused by a transient longitudinal field

We first consider a transient longitudinal field

Hz(t) = Hz0(1 − e−t/T ) (24)

switched on in addition to the perpendicular static field Hx

which stabilizes the CSL. Equation (16a) gives the sliding
velocity

Ż(t) = −V0
τCSL

τCSL − T
(e−t/τCSL − e−t/T ), (25)

where the characteristic velocity is defined by

V0 = H̃z0

h̄Q0(1 + α2)
. (26)

Equation (25) indicates that Ż < 0 for T < τCSL and then the
condition ŻδPz < 0 is satisfied. It is to be noted that if the
chirality of the crystal were inverted, i.e., Q0 were inverted to
−Q0, the velocity would be inverted. So the sliding orientation
and the crystal chirality correlate with each other.

In the case of Cr1/3NbS2, the characteristic velocity is
estimated as V0 � 0.13 m s−1 Oe−1]. So, the sudden switching
of the longitudinal magnetic field Hz, satisfing the condition
T < τCSL, will easily cause the coherent sliding motion the
CSL.

In Fig. 3, we show the time evolution of the sliding velocity.
We see that the velocity grows linearly with time shortly after
the field Hz is switched on. Then, after the relaxation time of
the field, T , the velocity begins to relax. It finally relaxes to zero
over the time scale of the Gilbert damping, τCSL. Therefore,
to realize a longer-lasting sliding motion, a smaller value of α

and a smaller gap frequency ωgap may be desirable.

C. Coherent oscillating motion under an ac field

It is also possible that an oscillating longitudinal field

Hz(t) = Hz1 sin(t) (27)
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FIG. 3. Time dependence of (a) longitudinal field Hz(t) =
Hz0(1 − e−t/T ) and (b) velocity Ż/V0 for T = 0.5τCSL.

causes a coherent oscillating motion of the CSL in addition to
a perpendicular static field Hx . In this case, Eq. (16a) gives the
velocity

Ż(t) = V1[e−t/τCSL − τCSL sin(t) − cos(t)], (28)

where the characteristic velocity is defined by

V1 = H̃z1τCSL

h̄Q0(1 + α2)
(
1 + τ 2

CSL2
) . (29)

Unlike the case of the transient field, here the oscillational
sliding motion is sustained as a long-term stationary state.
This is because in the ac case the energy associated with the
CSL motion is perpetually supplied by the ac field. It is also
seen that the Gilbert damping causes out-of-phase oscillations
[cos(t)]. For experiment, it may be useful to note that

V1

V0
= τCSL(

1 + τ 2
CSL2

) H̃z1

H̃z0
. (30)

In Fig. 4, we show the oscillating response of the sliding
velocity to the longitudinal ac field. The transient state rapidly
relaxes over the time scale of T to the stationary forced
oscillation with a phase shift due to the damping.

Here we comment on the relation of the sliding dynamics to
the electron spin resonance (ESR).7 Provided the whole CSL
is in a state of rest, the longitudinal ac field is able to excite
a small-amplitude phononlike mode (a chiral soliton lattice
phonon or magnetic kink crystal phonon) propagating over
the CSL. However, because the ac field is uniform, resonant
phonon absorption occurs only when the momentum absorbed
by the phonon coincides with the reciprocal vector of the

(a)

(b)

1 2 3 4 5 6

1 2 3 4 5 6

2

1

-1

-2

t/τCSL

Hz(t)

Z/V
.

1

t/τCSL

FIG. 4. Time dependence of (a) longitudinal field Hz(t) = Hz1

sin(t) and (b) velocity Ż/V0 for −1 = 0.5τCSL.

super-Brillouin zone of the CSL. Once the resonance condition
is satisfied, the microwave energy is consumed to excite the
CSL phonons. On the other hand, in the case of off-resonant
absorption, the sliding motion is driven. We also note that the
excitations associated with the fluctuations of ϕ are totally
irrelevant to the CSL phonon excitation. On the other hand,
the sliding motion is a consequence of the correlated dynamics
of the coupled θ and ϕ.

IV. NUMERICAL ANALYSIS OF THE DYNAMICS

A. Static deformation of the CSL

So far we have discussed the CSL dynamics in an analytical
manner. To justify the obtained results, it is desirable to
perform numerical simulations of the dynamics. For numerical
analysis, we start with the lattice version of Eqs. (9a) and (9b)
written as

dθi

dτ
=

√
1 + D2

J 2
sin θi−1 sin(ϕi − ϕi−1 + δ)

−
√

1 + D2

J 2
sin θi+1 sin(ϕi+1 − ϕi + δ)

−βx sin ϕi, (31a)
dϕi

dτ
= −(cos θi+1 + cos θi−1)

+
√

1 + D2

J 2
cot θi sin θi−1 cos(ϕi − ϕi−1 + δ)

+
√

1 + D2

J 2
cot θi sin θi+1 cos(ϕi+1 − ϕi + δ)

−βx cot θi cos ϕi + βz, (31b)

where δ = arctan(D/J ), βx = H̃x/JS, and βz = H̃z/JS.
Here, the time scale τ0 = h̄/JS, and the dimensionless time
τ = t/τ0 is introduced.
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First we consider static spin configurations. In order to
perform numerical computations, we adjust the problem to a
form convenient for an iterative routine, i.e.,

sin ϕi = (Ai+1 + Bi−1)[(Ai+1 + Bi−1)2

+ (Ci−1 + Di+1 + βx)2]−1/2, (32)

cos ϕi = (Ci−1 + Di+1 + βx)[(Ai+1 + Bi−1)2

+ (Ci−1 + Di+1 + βx)2]−1/2, (33)

cos θi = (cos θi+1 + cos θi−1 + βz)[(cos θi+1 + cos θi−1 + βz)
2

+ (Ai+1 + Bi−1)2 + (Ci−1 + Di+1 + βx)2]−1/2, (34)

where we defined⎛
⎜⎝
Ai

Bi

Ci

Di

⎞
⎟⎠ =

√
1 + D2/J 2 sin θi

⎛
⎜⎝

sin (ϕi + δ)
sin (ϕi − δ)
cos (ϕi − δ)
cos (ϕi + δ)

⎞
⎟⎠ . (35)

The spin configuration is found by using the original spin
variables and iteratively pointing each along the effective local
field due to its neighbors. Scanning linearly through the chain,
the spin variable at each site is updated in sequence, being reset
along the net field due partly to some unchanged neighbors
and to some that have already been reoriented. This gives
convergence more quickly than a synchronized global update.

The most difficult computational problem in carrying out
this program is to find the initial configuration that relaxes
to a target spin configuration. It is meaningful to impose
appropriate boundary conditions too. Obviously this is a rich
problem with a wide choice of options. In our simulations
we choose the starting configuration as the simple spiral ϕi =
q(i − z0) and θi = π/2, and take free boundary conditions.
The coordinate z0 corresponds to a position with ϕi = π in the
middle of a chain of length L. The value of q = 0.1 is taken
throughout the numerical calculations to make more apparent
the spatial modulation of solutions.

The convergence of the iteration process is very slow. The
iterations stop if the sum

σ =
√√√√ L∑

i=1

(
ϕ

(k)
i − ϕ

(k−1)
i

)2 +
L∑

i=1

(
θ

(k)
i − θ

(k−1)
i

)2
(36)

taken over the chain on the kth step is less than the tolerance
10−8. To reach this accuracy, around 205 × 106 iterations are
required.

The numerical behavior of θ shown in Fig. 5 reproduces
the theoretical findings (see Fig. 2), i.e., an increase of the
longitudinal field enhances the modulation of the conical
structure along the z axis. The calculation confirms another
assumption of Sec. II A3, namely, the longitudinal field causes
no changes in the variable ϕ (Fig. 6). The numerical data are
imposed on the theoretical predictions [Eq. (19)] as shown in
Fig. 7. Evidently, they reveal a good agreement with each other
(Fig. 7).

B. Dynamics

A search for dynamical solutions is carried out by using the
eighth-order Dormand-Prince method implemented in Ref. 21.

46000 46050 46100 46150

1.545

1.550

1.555

1.560

1.565

1.570
π
2

zi

FIG. 5. Numerical dependence of θ on the coordinate z. The
length of the chain is L = 105 sites. The calculation is performed
with the same parameters as in Fig. 2. The perpendicular field
Hx/Hc = 0, 0.1, 0.2, 0.3 (from top to bottom) is normalized to the
critical field Hc.

The embedded Runge-Kutta integrator with an adaptive step-
size control ensures a relative tolerance 10−12. The integration
spans a period of time from zero to 2 × 104 τ0. The length
of chains used in the computations amounts to 105 + 1 sites.
The time evolution of the magnetization was monitored by
recording the time dependencies of the θ and ϕ variables for
the central site.

In Fig. 8, we show the numerical results for the velocity. It
is seen that the velocity decreases linearly with increasing βz

field. In the calculations βx was held constant.
Figures 9 and 10 show the time dependences of θ and

ϕ, respectively, under oscillating βz for different values of
the damping parameter α. These calculations make evident a
salient feature of the forced oscillations. In the initial stage
of time evolution, the longitudinal magnetic field excites
intrinsic eigenmodes that are superimposed on the field-driven
oscillations. The eigenmodes fade away in the steady-state
regime and they are damped more rapidly the greater is the
parameter α. The period of the forced oscillations 2π/

exactly corresponds to the period of the driving force. In

46 000 46 050 46 100 46 150

1

2

3

4

5

6

zi

FIG. 6. Coordinate dependence of ϕ (shown as mod2π ) obtained
numerically for the chain of length L = 105 sites at the same
parameters as in Fig. 2, and Hx/Hc = 0.1. From the almost strictly
linear behavior, one sees that ϕ acquires almost no change.
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16 17 18 19 20 21
1.56904

1.56905

1.56906

1.56907

zi

FIG. 7. A comparison between numerical data for the static case
(dotted line) and the analytical expression given by Eq. (19) (solid
line). The fields are βx = b cos δb and βz = b sin δb, b = 10−4, and
δb = π/18.

Appendix B, we present a detailed analysis of this forced
oscillation in line with the numerical analysis.

V. SPIN MOTIVE FORCE

Now that we have obtained the CSL dynamics under
crossed magnetic fields, we will go on to discuss possible
SMF generation. Because the sliding motion of the CSL
accompanies a dynamical deformation of the spin texture,
we naturally expect the SMF to occur in the configuration
presented in Fig. 1. Generally speaking, when the conduction
electrons adiabatically experience a spatially modulated spin
structure along the z axis, the spinor wave function locally
follows the background. Consequently, the spinor space turns
out to be curved. The corresponding curvature is represented
by the gauge (Berry) connections. In the adiabatic picture, the
Berry curvature in the spinor space acts as an effective electric
field,22,23

Eσ (z,t) = −h̄σ

2e
zt = h̄σ

2e
sin θ (∂zθ ∂tϕ − ∂zϕ ∂tθ ) . (37)

Then we obtain a general expression for the SMF given
by

εσ (t) =
∫ L

0
dz Eσ (z,t) = h̄σ

2e

d

dt

(∫
�

cos θdϕ

)
, (38)

where the contour � is taken on the sphere presenting a space
of the order parameter n. The voltage is related via the Stokes
theorem to a change of area (Berry cap) S on the sphere
enclosed by the contour,24

εσ (t) = −h̄σ

2e

dS
dt

. (39)

This involves an analog of Faraday’s law for the emergent
electromagnetic field, where the magnetic field of a Dirac
monopole with a charge h̄/2 plays the role of the flux enclosed
by the Berry cap S.

In the present case of CSL dynamics, by using the collective
representation [Eqs. (10a) and (10b)], the SMF for majority
spins (the case of minority spins has the opposite sign) is
computed as

ε(t) � − h̄

2e
Q0ξ̇0(t)

∫ L

0
u0(z)dz. (40)

This expression indicates that the SMF arises only for ξ̇0 �= 0,
i.e., the time dependence of the Berry cap is essential in causing
the SMF (see Fig. 11). This observation is consistent with the
discussion given in Ref. 24.

Using Eq. (11), we obtain∫ L

0
u0(z)dz = 4

Q0

√
KE

L
Q, (41)

where

Q = ϕ0(L) − ϕ0(0)

2π
, (42)

is the topological charge representing the number of solitons
over the whole length of a sample. Using the relation,
ξ̇0 = −αQ0

√
LŻ, obtained from Eqs. (15a) and (40) finally

reduces to

ε(t) � Qh̄

e
παQ0Ż(t), (43)

1

2

3 4
5

(a) 

1.0 1.2 1.4
-0.00028

-0.00026

-0.00024

-0.00022

-0.00020

-0.00018

m=1.0

m=1.4

(b)

FIG. 8. (a) Linear time dependence of ϕ(t) for the central site of a chain of length L = 1 000 001 obtained by numerical simulations. The
fields are βx = b cos δb and βz = mb sin δb, b = 10−3, and δb = π/18. With growth of βz (or m) the slopes of the curves increase linearly
according to the analytical result. The lines correspond to m = 1.0–1.4 with the step size 0.1, from top to bottom. (b) The dependence of Ż on
the factor m extracted from the ϕ(t) data.
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FIG. 9. (Color online) The time-dependent variation of θ for different damping parameters: (a) α = 0, (b) α = 0.01, (c) α = 0.02, and
(d) α = 0.05. The fields are βx = b cos δb and βz = −b sin δb, b = 10−3, δb = π/18, and the ratio βz/ equals 0.01.

where we used the relation
√

KE � π/2 in the case of a weak
transverse field. As expected, the SMF is directly proportional
to the macroscopic number of solitons, Q. It is worthwhile to
compare the obtained formula [Eq. (43)] with the one used for
the SMF induced by domain wall motion.24 In the present case
of the CSL, the SMF is strongly amplified by the prefactor Q.
Furthermore, it should be stressed that the dissipative dynamics
is essential to drive the SMF. Actually, the SMF is proportional

to the Gilbert damping parameter α. In Appendix C, we show
that the dissipationless rigid motion of the CSL never produces
a SMF.

In the case of the time-dependent longitudinal field Hz(t) =
Hz0(1 − e−t/T ), plugging Eq. (25) into Eq. (43), we immedi-
ately obtain

ε(t) � −ε0
τCSL

τCSL − T
(e−t/τCSL − e−t/T ), (44)

5000 10000 15000 t
4508.20

4508.19

4508.19

4508.19

4508.18

5000 10000 15000 20000

4508.20

4508.19
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4508.19

5000 10000 15000
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4508.19

4508.19

4508.18

5000 10000 15000

4508.20

4508.19

4508.19

4508.19

4508.18

(a) (b)

(c) (d)

20000

20000

20000

FIG. 10. (Color online) The time-dependent variation of the intrinsic mode of ϕ for different damping parameters: (a) α = 0, (b) α = 0.01,
(c) α = 0.02, and (d) α = 0.05. The fields and frequency are the same as in Fig. 9.
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0(t)

z

(a) (b)

z

FIG. 11. (Color online) Switching of the time-dependent longi-
tudinal field Hz(t) causes a change in the Berry cap S from (a) to (b)
in a time-dependent manner. This time dependence causes the SMF
along the chiral axis. Each arrow represents a local spin configuration
n(z). The Berry cap is associated with the area traced out by n(z).

where

ε0 = αQh̄

e
πQ0V0. (45)

In Cr1/3NbS2, using Q0 � 1.3 × 108 m−1 and V0 �
0.13 m−1 s−1 Oe−1 as estimated in Sec. III B and assuming
α � 10−2, we have the estimation ε0 � 0.36QHz0 nV when
Hz0 is measured in oersteds. In the case where the sample
size is L � 1 mm, the upper bound of Q along the helical
axis amounts to L/LCHM � 105. Therefore, we expect that
ε0 amounts to 1 mV for Hz0 � 102 Oe as an example. To
experimentally sustain the SMF, it may be desirable to apply
a sequence of pulsed fields.

Here we comment on the physical reason why the SMF
is proportional to the Gilbert damping factor α in Eq. (45).
An essential point is that emergence of the SMF is a direct
consequence of the time-varying Berry cap,24 which needs a
finite ξ0. Now, as is clearly seen from the basic EOMs (15a)
and (15b) if the Gilbert damping were absent, ξ0 and Z would
be dynamically decoupled and consequently ξ0 = ξ0(0) = 0
for all times, i.e., the sliding motion could never be sustained.
This situation is totally different from the case of a 180◦ Bloch
wall. The CSL is regarded as an array of 360◦ walls and we
need some mechanism which enables the magnetic moments
to rotate around the chiral axis. The only possible mechanism
to realize this rotation is the Gilbert damping process. This is
the reason why the SMF is proportional to α. More intuitively
speaking, at the first stage the longitudinal field Hz directly
couples to ξ0 and causes the out-of-plane canting of the
magnetic moments [see the Lagrangian (12)]. At the second
stage, because of the Gilbert damping, the magnetic moments
start a damped precession to relax back into their original
directions. This motion triggers the rotation of the moments
around the chiral axis and eventually leads to collective sliding.

VI. CONCLUDING REMARKS

In this paper, we demonstrated that the chiral soliton lattice
exhibits coherent sliding motion by simple application of a
time-dependent magnetic longitudinal field, in addition to a
static transverse field. The driving force of the sliding is given
by the Zeeman coupling of the collective coordinate ξ0 with the

longitudinal field. This mechanism is intuitively understood
by Döring-Becker-Kittel (DBK) mechanism of the moving
domain wall (DW).10–12 In the DBK mechanism, once the
domain wall begins to move, a so-called demagnetization field
is dynamically generated inside the wall. The demagnetization
field supplies spin torque to sustain the inertial motion.
Actually, the DBK mechanism of a single DW has been
analyzed by exactly the same procedure presented in this
paper.25 In the CSL dynamics, the longitudinal magnetic field
kicks off the demagnetization and drives coherent sliding
motion. To demonstrate the coherent sliding motion, we first
used the collective coordinate method, and then confirmed the
result by computational analysis.

The time duration of the sliding motion is characterized by
the intrinsic relaxation time determined by Eq. (18). Providing
the gap energy ε

(θ)
0 varies between 0.1 and 10 K and the

Gilbert damping constant varies between 10−4 and 10−2, we
expect the time duration to vary between 10−9 and 10−6 s.
To realize longer-lasting sliding motion, a smaller value of
α and a smaller gap frequency ωgap may be desirable. This
estimation may give a guiding principle for materials synthesis.
Sequential pluses of the longitudinal magnetic fields may
remedy the quick decay of the sliding.

The sliding motion may be signaled by spin-density
accumulation inside each soliton (kink) and the emergence
of periodic arrays of induced magnetic dipoles carrying the
transport spin current.6 From the theoretical viewpoint, it
is always possible for coherent sliding to occur as a direct
consequence of the phase rigidity and Galilean symmetry in
any type of density wave, including spin or charge density
waves, and even inhomogeneous superconducting states.
However, in many of such systems, the sliding motion does
not transport an experimentally measured quantity.26 In this
respect, it is remarkable that the coherent sliding of the CSL
accompanies dynamically generated magnetization.

Another observable consequence of the sliding is the
appearance of the SMF along the helical axis. We showed that
the time-dependent sliding velocity Ż(t) causes a time-varying
Berry cap which results in the SMF. We stressed that the
dissipative dynamics plays an essential role in driving the
SMF. A salient feature of the CSL is the appearance of a
strongly amplified SMF which is directly proportional to the
macroscopic number of solitons. Consequently, the SMF is
expected to reach the order of millivolts. As reported in Ref. 5,
the CHM state and the CSL are quite robust against structural
dislocation and crystal defects. Their high stability and
robustness are direct manifestations of the macroscopic order
of the spin magnetic moments in the CHM and CSL states.
We hope that the present proposal may lead to spintronics
applications based on chiral magnetic crystals.
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APPENDIX A: STATIC DEFORMATION

Plugging the expressions, θ (z) = π/2 + sθ̃ (z) and ϕ(z) =
ϕ0(z) + sϕ̃(z) into the static counterparts of Eqs. (9a) and (9b),
and retaining the first-order corrections with respect to s, we
have

∂2
z̄ ϕ̃ = (2κ2sn2z̄ − κ2)ϕ̃, (A1a)

∂2
z̄ θ̃ = (2κ2sn2z̄ − κ2)θ̃ − κ2

βx

(
Q2

0θ1 − βz

)
, (A1b)

where the dimensionless variables z̄ = √
βxz/κ , βz = H̃z/JS,

and βx = H̃x/JS are introduced. Equation (A1a) is the homo-
geneous Lamé equation, while Eq. (A1b) is a nonhomogeneous
Lamé equation. The solution of the Lamé equation is well
known to be given in the form27

ϕ̃1,2(z̄) = H (z̄ ± a)

�(z̄)
e∓z̄Z(a), (A2)

where H and Z are Jacobi’s eta and zeta functions, respec-
tively, with the parameter a being determined by dn2a =
−16E2/π2.

A solution for the nonhomogeneous equation (A1b) is
obtained by using the homogeneous solutions ϕ̃1,2. In the
inhomogeneous term, we ignore Q2

0θ1 as compared with
βz. This treatment is justified because βz and θ1 are of the
same order, and Q0 � 1. Using the method of variation of
parameters for a nonhomogeneous second-order differential
equation, we readily construct the solution as

θ̃ (z̄) = βz

βx

κ2W−1

(
ϕ̃2(z̄)

∫ z̄

dz̄ ϕ̃1(z̄) − ϕ̃1(z̄)
∫ z̄

dz̄ ϕ̃2(z̄)

)
,

(A3)

where W is the Wronskian,

W = ϕ̃1(z̄)ϕ̃
′
2(z̄) − ϕ̃2(z̄)ϕ̃

′
1(z̄). (A4)

The Lamé equation guarantees that dW/dz̄ = 0, i.e., the
Wronskian is independent of z̄ and therefore W = W (0). By
plugging the expressions

ϕ̃1(0) = −ϕ̃2(0) = H (a)

�(0)
= θ1

(
πa
2K

)
θ4(0)

(A5)

and

ϕ̃
′
1(0) = ϕ̃

′
2(0) = π

2K

H
′
(a)

�(0)
− H (a)

�(0)
Z(a) (A6)

into Eq. (A4), we finally obtain

W = 2

ϑ2
4

θ2
1

(
πa

2K

)[
π

2K

θ
′
1

(
πa
2K

)
θ1

(
πa
2K

) − Z(a)

]
, (A7)

where θi(x) (i = 1,2,3,4) denote the elliptic theta functions
and ϑ4 ≡ θ4(0) =

√
2κ

′
K/π . Here κ

′
is the complementary

modulus.
The final task is to perform the integrals in (A3) by using

the Fourier transformation of ϕ̃1,2(z̄) to give Eq. (19). The
derivation is similar to the calculation of Fourier coefficients
for the Jacobi sn function.27 We start with the Fourier

transformation

ϕ̃1,2(z̄) =
+∞∑

n=−∞
c1,2 ne

z̄[iπn/2K∓Z(a)]. (A8)

By definition, we have

2πc−n =
∫ π

−π

θ1(x + a)

θ4(x)
einx dx.

To evaluate the integral, we use the contour taken as a parallel-
ogram with the corner points −π , π , π + πτ , and −2π + πτ ,
where τ = iK

′
/K . The singular points inside the contour

are z1 = −π + πτ/2 and z2 = πτ/2. After straightforward
computations, we obtain

c1,2 n = 0 for even n, (A9)

c1,2 n = −i
θ4

(
πa
2K

)
θ

′
1 sinh[π (nK

′ ∓ ia)/2K]
for odd n. (A10)

Finally we have

C1 = −
+∞∑

n=−∞
c2n

ez̄[iπn/2K+Z(a)]

iπn
2K

+ Z(a)
, (A11)

C2 =
+∞∑

n=−∞
c1n

ez̄[iπn/2K−Z(a)]

iπn
2K

− Z(a)
, (A12)

where in the summation only terms with odd n are retained.

APPENDIX B: AC-FIELD-DRIVEN
OSCILLATIONS OF THE CSL

We derive a solution of the LLG equations (9a) and (9b) for
the periodic longitudinal magnetic field βz(τ ) = βz0 sin τ .
The solution is sought in the form θ = π/2 + θ1 and ϕ =
ϕ0 + ϕ1, where the additions θ1 and ϕ1 are of the same
order of magnitude as the magnetic field βz. To provide an
analytical treatment, we consider the limit of small βx when
the approximations ϕ0(z) ≈ Q0z and θ0 = π/2 are relevant.
Moreover, we assume a small size of the Gilbert damping,
when the problem becomes iterative. At the first stage, we find
solutions for θ1 and ϕ1 at α = 0 and plug them into Eqs. (9a)
and (9b) to obatin new values valid for nonzero α.

At α = 0 Eqs. (9a) and (9b) read as
∂θ1

∂τ
= −∂2ϕ1

∂z2
− βx cos Q0z ϕ1, (B1)

∂ϕ1

∂τ
= −Q2

0θ1 + ∂2θ1

∂z2
+ βx cos Q0z θ1 + βz (B2)

and can be easily resolved through the substitutions

ϕ
(0)
1 (z,τ ) = (A1 + A2βx cos Q0z) cos τ,

(B3)
θ

(0)
1 (z,τ ) = (B1 + B2βx cos Q0z) sin τ,

where A1,2 and B1,2 are the unknowns.
This results straightforwardly in

ϕ
(0)
1 (z,τ ) = −

(
βz0


+ βz0



2βxQ
2
0(

2Q4
0 − 2

) cos Q0z

)
cos τ,

(B4)

θ
(0)
1 (z,τ ) = − βxβz0

2Q4
0 − 2

cos Q0z sin τ. (B5)
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FIG. 12. The time-dependent variation of the polar angle for the
central site (N = 50 000): numerical data (dots) and analytical result
(line) given by Eq. (B6). The fields are taken as in Fig. 8 in the main
text; α = 0.1.

The requirement of smallness of the corrections amounts to
βz0 � , 2βxβz0Q

2
0 � (2Q4

0 − 2), and βxβz0 � 2Q4
0 −

2. Taking Q0 ∼ 10−2 and  ∼ 10−4 in dimensionless units
(or 1 GHz in physical units for τ0), we can suppose, for
example, βz0/ ∼ 0.1, βx ∼ 10−4 (100 Oe), and βz0 ∼ 10−5

(10 Oe).
By assuming smallness of the Gilbert parameter α, we

organize the iterative procedure to find solutions of the
system (9a), (9b) with the time derivatives in the right-hand
sides estimated from Eqs. (B4) and (B5). The calculation yields

θ1(z,τ ) = θ
(0)
1 (z,τ ) − α

βz0


cos τ

×
[
1 − βxQ

2
0

2 − 2Q4
0

(
2 + 32

2 − 2Q4
0

)
cos Q0z

]
,

(B6)

ϕ1(z,τ ) = ϕ
(0)
1 (z,τ ) + α

βz0


sin τ

[
Q2

0


− βx

2 − 2Q4
0

×
(

1 + 2
Q4

0

2
+ 2 + 4Q4

0

2 − 2Q4
0

)
cos Q0z

]
. (B7)

A direct comparison between the numerical results and the
analytical predictions is made in Figs. 12 and 13. Obviously,
there is a good agreement in the steady-state regime, when the
eigenmodes fade away.

FIG. 13. The time-dependent variation of the azimuthal angle for
the central site (N = 50 000): numerical data (dots) and analytical
result (line) given by Eq. (B7). The parameters are the same as in
Fig. 12.

APPENDIX C: ABSENCE OF SMF FOR RIGID MOTION

We here note that the dissipationless rigid motion of
the CSL never causes SMF. The results can be obtained
from general considerations. In Villain’s representation,28 the
spin component Sz = h̄S cos θ and the angle ϕ made by
the projection of the spin in the (x,y) plane are conjugated
canonical variables. Equations (9a) and (9b) written in the
new variables acquire the Hamiltonian form

∂ϕ

∂t
= ∂H

∂Sz
,

∂Sz

∂t
= −∂H

∂ϕ
, (C1)

whereas the fictitious electric field (37) is presented as

E(z,t) = 1

2S

(
∂Sz

∂t

∂ϕ

∂z
− ∂Sz

∂z

∂ϕ

∂t

)
. (C2)

The spin motive force generated along the path of length
L reduces to a contour integral in the phase space of the
conjugated variables (ϕ,Sz),

ε(t) =
∫ L

0
dz E(z,t) = 1

2S

∮
�

(
∂Sz

∂t
dϕ − ∂ϕ

∂t
dSz

)

= − 1

2S

∫
S

[
∂

∂ϕ

(
∂ϕ

∂t

)
+ ∂

∂Sz

(
∂Sz

∂t

)]
dϕdSz. (C3)

Plugging Eqs. (C1) into this formula we obtain ε(t) = 0.
This rigorous result shows that dissipationless Hamiltonian
dynamics of any spin texture never causes finite SMF.
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