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Spin convertance at magnetic interfaces
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Exchange interaction between conduction electrons and magnetic moments at magnetic interfaces leads to
mutual conversion between spin current and magnon current. We introduce a concept of spin convertance which
quantitatively measures magnon current induced by spin accumulation and spin current created by magnon
accumulation at a magnetic interface. We predict several phenomena on charge and spin drag across a magnetic
insulator spacer for a few layered structures.
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I. INTRODUCTION

In spintronics, spin current, which is conventionally defined
as the difference of electric currents of spin-up and spin-down
conduction electrons, plays a pivotal role in propagating spin
information from one place to another. Many spin-dependent
properties, such as giant magnetoresistance,1,2 spin transfer
torques,3,4 and spin Hall effect,5,6 are directly related to spin
current. Spin current has several unique properties compared
to charge current: (1) it is considered as a flow of angular
momentum, while the conventional current is a flow of charge,
(2) the total spin current is not a conserved quantity even in
the steady-state condition; it can be transferred and/or lost
due to spin-dependent scattering, and (3) spin current has
both transverse and longitudinal components whose decaying
length scales are quite different in a ferromagnetic medium.
Recently, the concept of spin current has been extended to
spin-wave current since spin waves carry angular momenta
as well.7 There are two types of spin-wave currents. One is
magnetostatic wave propagation7–11 for which the classical
magnetization is temporal and spatially dependent. An exam-
ple is a moving domain wall driven by a magnetic field or by an
electric current. Although such magnetostatic spin waves may
carry angular momentum, they are not quasiparticles in that
there are no particle numbers associated with these waves. The
other spin-wave current is a true quasiparticle current known
as magnon current. A magnon is a quantum object (particle)
that represents the low excitation state of ferromagnets. In
equilibrium, the number of magnons Nq can be cast into a
simple Boson distribution N0

q = [eEq/kBT − 1]−1, where Eq is
the magnon energy. Similar to the electron spin, each magnon
carries an angular momentum −h̄. In thermal equilibrium,
there is no magnon current since there are an equal number of
magnons moving in all directions.

In our earlier paper,12 we showed that the nonequilibrium
magnon accumulation and magnon current can be treated
semiclassically, similar to the spin transport properties of
conduction electrons. We found that the nonequilibrium elec-
tron spin current in metal can convert into a magnon current
of a magnetic insulator through the interfacial exchange
interaction. The magnon current then subsequently diffuses
inside the magnetic insulator. The magnon diffusion process
may be described by the diffusion equation. Among other
things, we predicted that an electric current applied in one
metallic layer can induce an electric current in another metallic
layer separated by a magnetic insulator via magnon-mediated

angular momentum transfer. We point out that this new electric
drag effect differs from the conventional Coulomb drag13

and spin Coulomb drag14 where the Coulomb interaction
is essential. In this paper, we extend our theory to include
a general boundary condition for the spin convertibility at
metal|magnetic-insulator interfaces and then, we calculate the
electric drag in a few realizations. The paper is organized as
follows. In Sec. II, we summarize the general boundary condi-
tions at the interfaces between metals and magnetic insulators.
In particular, we introduce a quantity, called spin convertance,
which quantitatively characterizes conversion effectiveness
among spin/magnon accumulation and magnon/spin current
at a magnetic interface. In Sec. III, we calculate the spin con-
vertance by using the microscopic s-d exchange interaction.
In Sec. IV, we present the general solutions for several layered
structures with a magnetic insulator layer (MIL) and discuss
some limiting cases. Finally, we summarize our results.

II. SUMMARY OF BOUNDARY CONDITIONS

We consider a simple bilayer consisting of a metallic layer
in contact with a MIL. The angular momentum in a metal is
carried by conduction electrons, while in a MIL it is carried by
magnons. In the semiclassical approximation, spin transport
properties can be described by the Boltzmann distributions of
electrons and magnons.12 The boundary conditions are to link
the nonequilibrium electron distribution function of the metal
to the magnon distribution function of the MIL. Within the
model of the s-d exchange interaction (see Sec. III), the total
angular momentum is conserved and thus for an ideal interface
the first boundary condition would be

jt (0
−) = jt (0

+), (1)

where jt is the total angular momentum current, and we assign
the interface at x = 0. If we consider the left layer as a
nonmagnetic metal (x < 0), the angular momentum is carried
by conduction electrons only and thus jt (0−) = js(0−), where
js denotes the conventional spin current density. For the MIL
on the right, the angular momentum is carried by magnons
only and thus jt (0+) = jm(0+), where jm corresponds to the
magnon current density. Therefore, we may rewrite Eq. (1) as

js(0
−) = jm(0+). (2)

Note that for a magnetic metal, both spin and magnon currents
contribute to the total angular momentum current.
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The second boundary condition is the relation among the
electron spin accumulation δms(0−), the magnon accumula-
tion δmm(0+), and the total angular momentum current jt (0),

Gemδms(0
−) − Gmeδmm(0+) = jt (0), (3)

where the two coefficients Gem and Gme will be calculated
within the s-d model in the next section. The physics of
this boundary condition is rather transparent: the first term
represents the generation of the magnon current in the presence
of electron spin accumulation and the second term describes
the spin current produced by magnon accumulation. The
combination of these two processes at the interface yields
the total interface spin current. We immediately note that
Eq. (3) is analogous to the case of spin current between
two metallic layers in which the boundary condition is
Gσμσ (0+) − Gσμσ (0−) = jσ (0), where μσ denotes the spin-
dependent chemical potential [σ = ±1 or ↑ (↓) corresponds
to spin-up (down)] which is proportional to spin accumulation,
and Gσ characterizes the interfacial spin conductance.15 With
this analogy, we may identify the coefficients Gem (Gme) as the
interface conductance for the conversion of the spin (magnon)
accumulation to the magnon (spin) current; we simply call
Gem and Gme spin convertance for convenience hereafter.

We point out that the boundary condition, Eq. (3), is
different from what we proposed in the earlier paper12

where we related the spin and magnon accumulation via
a local magnetic susceptibility. Clearly, such approximation
corresponds to an ideal case in which the interface spin
resistance is zero or the spin convertance is infinite. In the
next section, we shall calculate these spin convertances and
show that they are in fact finite and thus the magnon-mediated
electric drag effect predicted in Ref. 12 was overestimated by
one order of magnitude.

III. MICROSCOPIC CALCULATION OF SPIN
CONVERTANCE

We start with the s-d exchange coupling at a metal|MIL
interface,

Ĥsd = −Jsd

√
S

2Ns

∑
k,q,k′

(a†
qc

†
k↑ck′↓ + aqc

†
k′↓ck↑)δk′=q+k, (4)

where c
†
k↑ (ck↑) and c

†
k↓ (ck↓) are the creation (annihilation)

operators for spin-up and spin-down electrons, respectively, a†
q

(aq) is the creation (annihilation) operator for magnons, S is the
spin per atom of the MIL, and Ns is the number of atomic spins
of the MIL at the interface. The exchange-coupling strength
Jsd is given by the exchange integrals of the overlapping wave
functions of the conduction electrons and the magnetic ions.
Since we do not know the detailed orbitals for the interface
states, the magnitude of Jsd at interface is less known compared
to that in bulk materials and we will treat it as a parameter.

The above exchange interaction gives rise to angular
momentum transfer between the electron spins at the metallic
side and the magnons at the MIL side. In equilibrium, the net
spin current across the interface is zero. At nonequilibrium
when there is a spin accumulation at x = 0− or a magnon
accumulation at x = 0+, a net magnon/spin current may be

M
Metal MIL

Spin
accumulation

(a)

M
Magnon

accumulation
Metal MIL

(b)

FIG. 1. (Color online) Spin angular momentum transfer at a
metal|MIL interface. The upper (lower) panel describes magnon
current je→m (spin current jm→e) generated by spin accumulation
δms (magnon accumulation δmm) at the interface.

present across the interface. In Fig. 1, we illustrate two angular
momentum transfer processes. The total angular momentum
current across the interface should be caused by both processes.
We shall calculate them separately below.

Magnon current generated by spin accumulation at the
interface is defined as

je→m ≡
〈

μB

ih̄AI

[∑
k

(c†k↑ck↑ − c
†
k↓ck↓),Ĥsd

]〉
, (5)

where 〈 〉 refers to the thermal averaging over all states and
AI is the area of the interface. By explicitly working out the
above commutator and by using the Fermi’s golden rule, we
have

je→m = 2πμBS

AIh̄

(
Jsd

Ns

)2 ∑
k,q,k′

[(Nq + 1)(1 − fk↑)fk′↓

− Nq(1 − fk′↓)fk↑]δ(εk + Eq − εk′ ), (6)

where Nq and fkσ are the magnon and electron distribution
functions, respectively. We have considered a rough inter-
face such that there is no correlation between the electron
and magnon momenta for the magnon emission/absorption
processes (i.e., we do not impose k′ − k = q). We first
consider the process in the upper panel of Fig. 1, i.e., magnon
current due to spin accumulation. Accordingly, we take the
equilibrium distribution function for magnons, i.e., Nq =
N0

q = [exp(Eq/kBT ) − 1]−1, where the spin-wave energy is
Eq = Aq2 + �g , the exchange stiffness is associated with
the Curie temperature via A = 3kBTca

2
0I /π

2(S + 1),16 and
�g is the spin-wave gap due to magnetic anisotropy. The
electron distribution function can be conveniently separated
into equilibrium and nonequilibrium parts,

fkσ = f 0
k + ∂f 0

k

∂εk
[−δμσ (x) + gσ (k,x)], (7)

214424-2



SPIN CONVERTANCE AT MAGNETIC INTERFACES PHYSICAL REVIEW B 86, 214424 (2012)

where f 0
k is the Fermi distribution function, δμσ (x) is the

local variation of the chemical potential, and gσ (k,x) is
the anisotropic part of the nonequilibrium distribution func-
tion [

∫
d3k gσ (k,x) = 0]. By placing the above equilibrium

magnon distribution function and nonequilibrium electron
distribution function into Eq. (6), we arrive at

je→m = Gemδms(0
−), (8)

where we have defined δms = μBge(εF )(δμ↑ − δμ↓) as the
spin accumulation with ge(εF ) being the interface electron
density of states at Fermi level. The spin convertance can be
formulated by

Gem = πS

2h̄kBT
J 2

sdge(εF )a2
0Ma5

0I

∫ Emax

�g

dEq gm(Eq)

× Eqcsch2

(
Eq

2kBT

)
, (9)

where a0M and a0I are the lattice constants of the metal
layer and the MIL, respectively, gm(Eq) is the interface
magnon density of states, and Emax [	3kBTc/(S + 1)] is the
maximum magnon energy. If a parabolic magnon dispersion is
assumed, then the dominant temperature dependence of Gem

is (T/Tc)3/2. The above result has already been obtained in
Refs. 17 and 18.

The spin current induced by magnon accumulation at the
metal|MIL interface can be similarly calculated. We define
this interface spin current as

jm→e ≡
〈

2μB

ih̄AI

[∑
q

a†
qaq,Ĥsd

]〉
. (10)

After working out the ensured commutator, we find the spin
current has exactly the same expression as Eq. (6); this is
not surprising because the s-d interaction conserves the total
angular momenta. To evaluate the spin current induced by
magnon accumulation (see the process displayed in the lower
panel of Fig. 1), we replace the electron distribution by
the equilibrium value, fkσ = f 0

k , and separate the magnon
density into equilibrium and nonequilibrium ingredients
Nq = N0

q + δNq. We then find from Eq. (10),

jm→e = Gmeδmm(0+), (11)

where δmm ≡ (2μB)
∫

dEq gm(Eq)δNq is defined as the
magnon accumulation. The spin convertance can be expressed
as

Gme = πS

h̄
J 2

sdg
2
e (εF )a2

0Ma5
0I Ēm (12)

with

Ēm =
∫ Emax

�g
dEq gm(Eq)EqN

0
q∫ Emax

�g
dEq gm(Eq)N0

q

, (13)

where we have replaced the nonequilibrium magnon energy
by the average magnon energy Ēm by assuming a near
equilibrium magnon distribution. A rough estimation for
simple parabolic bands of both magnons and electrons gives
Gme ∼ (πSa5

0I /h̄a0M )J 2
sdge(εF )( T

TF
), where TF is the Fermi

temperature of the metal layer. By combining Eq. (8) and (11),

NM2

MIL

(2)je
MM2

MIL

NM

MIL
d

2d + L
(2)je je

A A A
x

NM1 (1)je

MM

MM1

M M

0

1-L
(a) (b) (c)

(1)je

x

Z
y

FIG. 2. (Color online) Schematics of three hypothetical devices:
(a) NM|MIL|NM trilayers, (b) MM|MIL|MM trilayers, and (c)
NM|MIL bilayers. In (a) and (b), a spin current is generated by an
injected electric current via spin Hall effect, while in (c), a magnon
current is induced by applying a thermal gradient. In all three cases,
the magnetization directions of the MIL and the magnetic metal (MM)
layers are oriented in +z.

we attain Eq. (3) with the spin convertances Gem and Gme

given by Eqs. (9) and (12).

IV. ROLE OF SPIN CONVERTANCE IN
ELECTRICAL DRAG

To experimentally realize the conversion between spin cur-
rent and magnon current and to quantify the spin convertance,
one needs to create a nonequilibrium condition such that a spin
current or a magnon current can be generated, manipulated,
and more critically, detected. The nonequilibrium states may
be created in several ways. In this section, we study both
electrical injection into a metal layer and thermal gradient
across a MIL. In Fig. 2, we show three hypothetical devices to
explicitly demonstrate the magnon-mediated electrical drag.

A. NM|MIL|NM trilayers

In Fig. 2(a), a MIL is sandwiched between two nonmagnetic
metal (NM) layers. By applying an in-plane electrical current
in the NM1 layer, a spin current flowing perpendicular to
the layers would be generated due to the spin Hall effect.
In this geometry, a partial spin current would flow into
the MIL via transfer of spin current to magnon current.
If the magnon diffusion length is larger than the thickness
of the MIL, the magnon current would reach the other side
of the MIL and subsequently, converts back to spin current
in the NM2 layer. Finally, an electric current parallel to the
layer is generated owing to the inverse spin Hall effect.19 Such
an electric drag phenomenon, namely, an electric current in
one NM layer induces an electric current in the other when
the two NM layers are separated by a MIL, would be a proof
of the magnon/spin current conversion at magnetic interfaces.
Although we have already calculated the drag coefficient in
Ref. 12, we find the improved boundary conditions presented
in this paper quantitatively modify the earlier result.

Referring to the coordinate system in Fig. 2, one can
establish the relation of the spin accumulation, spin current,
magnon accumulation, and magnon current in each layer. For
the NM1 layer with an applied in-plane current density j (1)

e ,
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we have

δms(x) = A1 exp(x/λsf ), (14)

where λsf is the spin diffusion length and A1 is a constant to
be determined via boundary conditions. We have taken the
thickness of the layer much larger than the spin diffusion
length such that the term proportional to exp(−x/λsf ) has
been dropped. The spin current flowing perpendicular to the
plane of the layers is given by

j (1)
s (x) = −θshj

(1)
e − Ds

∂δms

∂x
, (15)

where the first term represents the spin Hall effect: an electric
current j (1)

e in the y direction generates a transverse spin
current proportional to the spin Hall angle θsh, which is
defined as the ratio of the spin Hall conductivity to the
electric conductivity. Note that we have adopted e = μB = 1
for notation convenience so that the electrical current and
the spin current would have the same unit. The second term
corresponds to the spin diffusion where Ds is the spin diffusion
coefficient which may be related to the conductivities c↑ = c↓
by the Einstein relation: c↑(↓) = e2ge(εF )Ds . For the MIL
layer, we have

δmm(x) = A2 exp(x/lm) + A3 exp(−x/lm) (16)

and

jm(x) = −Dm

∂δmm

∂x
, (17)

where A2 and A3 are integral constants from the magnon
diffusion equation, lm is the magnon diffusion length, and
Dm is the magnon diffusion constant associated with the
magnon diffusion length by lm = √

Dmτth with τth being the
magnon-nonconserving relaxation time.12 For the NM2 layer,
we have

δms(x) = A4 exp(x/λsf ) + A5 exp(−x/λsf ) (18)

and

j (2)
s (x) = −Ds

∂δms

∂x
, (19)

where A4 and A5 are two integration constants. The four
boundary conditions of Eqs. (2) and (3) at the two interfaces
x = 0 and x = d, along with the outer-boundary condition at
x = d + L2, where j (2)

s (x = d + L2) = 0, determine the five
constants Ai (i = 1–5). After a straighforward algebra, we find
the spin current density j (2)

s (x) which in turn converts to an
in-plane charge current in the NM2 layer via the inverse spin
Hall effect, i.e., j (2)

e (x) = θshj
(2)
s (x). Explicitly,

j (2)
e (x) =

−ab sinh
[

d+L2−x
λsf

]
csch

(
L2
λsf

)
θ2
shj

(1)
e[

b1 + b2 coth
(

L2
λsf

)]
sinh

(
d
lm

) + [
b3 + ab coth

(
L2
λsf

)]
cosh

(
d
lm

) , (20)

where we have introduced the dimensionless constants a ≡ λsf Gem/Ds , b ≡ lmGme/Dm b1 = 1 + a + b2, b2 = a + a2, and
b3 = (2 + a)b. We may define an average electric current density by averaging over the thickness of the NM2 layer, j̄ (2)

e =
(1/L2)

∫
dx j (2)

e (x). Then the ratio of the averaged current density to the injected current density, i.e., η ≡ |j̄ (2)
e /j (1)

e |, can be
obtained as

η = λsf θ2
sh

L2

ab tanh
(

L2
2λsf

)
[
b1 + b2 coth

(
L2
λsf

)]
sinh

(
d
lm

) + [
b3 + ab coth

(
L2
λsf

)]
cosh

(
d
lm

) . (21)

The electrical drag coefficient η may be readily estimated.
In the case of d � lm, η becomes independent of Gme, but
increases with Gem; this is understandable since in this case
the magnon current does not decay and thus the magnon
accumulation is unimportant. η depends predominantly on
the efficiency of the magnon current generation by spin
accumulation which is measured by Gem. A quick numerical
check also indicates that Gem is usually larger than Gme. We
consider a trilayer of Ta|YIG|Ta whose material parameters at
room temperature (T = 300 K) are taken as follows: for the
Ta layers,20 the conductivity cTa = (190 μ
 cm)−1, the spin
diffusion length λsf = 5 nm, the spin Hall angle θsh = 0.15,
the lattice constant a0M = 3.3 Å, and the Fermi energy εF =
5 eV; for the yttrium iron garnet (YIG) layer,21 the Curie
temperature Tc = 550 K, the lattice constant a0I = 12.376 Å,
the spin wave gap �g = 10−6 eV, and the magnon relaxation
time τth = 10−6 s . In Fig. 3, we show η as a function
of the thicknesses of the NM2 layer for several different MIL
thicknesses. Figure 4 shows η as a function of the interface

exchange coupling Jsd with several different magnon diffusion
lengths.

Finally, we discuss the sign of the drag current. The induced
electric current always flows in the opposite direction of the
injected electric current for any magnetization direction of the
MIL. To see this, we first recall the spin Hall and inverse spin
Hall effects in a single layer: An electric current induces a
perpendicular spin current (spin Hall) which in turn produces
an electric current (inverse spin Hall). The physical principle is
that the combined actions of the spin Hall and the inverse spin
Hall are to reduce the original driving current. Now consider
the trilayer system. Since the spin current injected into the
NM2 layer remains parallel to the spin current in the NM1
layer, the electric drag current in the NM2 layer must be
antiparallel to the applied electric current in the NM1 layer.

B. MM|MIL|MM trilayers

Next, we consider a trilayer structure where the two
metallic layers are magnetic, as shown in Fig. 2(b). Since
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FIG. 3. (Color online) Electrical drag coefficient as a function of
the NM2 (Ta) layer thickness for three different thicknesses of the
MIL (YIG). See the main text for the parameters used in the figure.

the direct contact between the MM layer and the MIL would
make it difficult to rotate the magnetization of each layer
independently, one may insert a thin nonmagnetic layer at the
interface to break direct magnetic coupling. When an in-plane
current is applied to the MM1 layer, an anomalous Hall current
perpendicular to the layers is generated if the magnetization
is oriented in the z axis. Although the physics of anomalous
Hall and spin Hall effects are the same, the anomalous Hall
current has both spin and charge currents. The charge current,
however, is unable to penetrate the MIL; this leads to a charge
accumulation at the interface so that the net charge current is
exactly zero in the steady state. The spin current, on the other
hand, is able to propagate into the MIL via the conversion to
the magnon current, as discussed in the previous section. To
gain a quantitative understanding, we carry out the following
calculation.

The x components of spin and charge currents of the MM1
layer can be expressed as

jx(1)
s = −pDs

∂δn
(1)
0

∂x
− Ds

∂δm(1)
s

∂x
− θahj

(1)
e (22)

10-4 10-3 10-2 10-1
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

η

Jsd / εF

lm= 2.0 mm
lm= 1.0 mm
lm= 0.5 mm

d = 1.0 mm, L2 = λsf

FIG. 4. (Color online) Electrical drag coefficient as a function
of Jsd/εF for three different magnon diffusion lengths of the MIL
(YIG). See the main text for the parameters used in the figure.

and

jx(1)
e = −Ds

∂δn
(1)
0

∂x
− pDs

∂δm(1)
s

∂x
− pθahj

(1)
e , (23)

where p = (c↑ − c↓)/(c↑ + c↓) is the spin polarization of the
conductivity, θah is the anomalous Hall angle defined as the
ratio of the Hall conductivity to the longitudinal conductivity,
δn0 is the charge accumulation, and j (1)

e is the current density
applied in the y direction as before. We have assumed a spin-
independent spin diffusion coefficient Ds . Since jx(1)

e = 0, we
may eliminate the charge accumulation term from Eq. (22) and
get

jx(1)
s = −(1 − p2)Ds

∂δm(1)
s

∂x
− (1 − p2)θahj

(1)
e . (24)

For the MIL, Eqs. (16) and (17) remain valid, while for the
MM2 layer, we similarly have

jx(2)
s = −(1 − p2)Ds

∂m(2)
s

∂x
. (25)

By comparing Eqs. (24) and (25) with Eqs. (15) and (19),
one should realize that the induced electric current j (2)

e in
the MM2 layer can be simply obtained by replacing Ds by
(1 − p2)Ds and θsh by (1 − p2)θah in Eq. (20). Consequently,
the electrical drag current is reduced by a fact of (1 − p2)2

for the MM|MIL|MM trilayer if one approximates θsh ≈ θah.
This might be counterintuitive at first glance, since one would
expect the magnetic metals to provide more spin signals.
However, if we realize the interplay between the charge and
spin currents, the above conclusion can be readily explained:
consider the extreme case of p = 1, i.e., spin current generated
by the anomalous Hall effect is fully polarized such that the
spin current is the same as the charge current. Since the charge
current is completely blocked by the MIL, it is inevitable that
the spin current is also being completely blocked.

C. NM|MIL bilayers

In this section, we consider a NM|MIL bilayer. In this case,
the magnon current in the MIL is induced by a temperature
gradient [see Fig. 2(c)]. From the magnon Boltzmann equation
within the relaxation-time approximation, the nonequilibrium
magnon distribution is

δNq = −vx
qτm

∂N0
q

∂T

dT

dx
− vx

qτm

∂δNq

∂x
, (26)

where vx
q denotes the x component of the magnon velocity

and τm is the magnon-conserving relaxation time. By defining
the magnon current as jm ≡ (2μB)

∫
dq vx

qδNq and following
the derivation in Appendix A of the Supplemental Material of
Ref. 12, we find

jm = −κ
dT

dx
− Dm

∂δmm

∂x
(27)

with

κ = 2
√

3(S + 1)μBτmk2
BTcξ

9πh̄2a0I

(
T

Tc

)3/2

(28)

and ξ = ∫ ∞
0 dx x3/2ex/(ex − 1)2 	 3.4. The magnon accumu-

lation satisfies the magnon diffusion equation whose solution
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can be taken as a simple form,

δmm(x) = B1 exp(x/lm), (29)

where we have assumed the thickness of the MIL to be much
larger than the magnon diffusion length lm and hence dropped
the term exp(−x/lm) in the solution. The spin accumulation
in the NM layer can be written as

δms(x) = B2 exp(x/λsf ) + B3 exp(−x/λsf ) (30)

and the spin current perpendicular to the plane is given by js =
−Ds∂δms/∂x. These three integral constants Bi (i = 1,2,3)
can be determined by the two interface boundary conditions,
Eqs. (2) and (3), along with the outer boundary condition
js(x = d + L2) = 0. After a straightforward algebra, we get

js(x) =
bκ sinh

(
d+L2−x

λsf

)
(1 + b) sinh

(
L2
λsf

) + a cosh
(

L2
λsf

) dT

dx
. (31)

Again, the above perpendicular-to-plane spin current can
generate an in-plane electric current whose average density
over the thickness of the NM layer can be obtained by
j̄e = (θsh/L2)

∫
js(x)dx. By taking the temperature gradient

as a constant, we have

j̄e = λsf

L2

θshbκ
[

cosh
(

L2
λsf

) − 1
]

(1 + b) sinh
(

L2
λsf

) + a cosh
(

L2
λsf

) dT

dx
. (32)

The direction of the electric current is in the plane of the layer
and perpendicular to the directions of the magnetization as
well as the temperature gradient of the MIL. It is interesting
to compare the current driven electric drag, Eq. (21), with the
thermally driven electrical drag, Eq. (32). First, in the former
case, the electric drag is proportional to the square of the
Hall angle because the first metallic layer converts the electric
current to the spin current via spin Hall effect and the second
metal layer converts the spin current into the electric current
via inverse spin Hall effect, while in the latter case, the spin

current is directly injected from the thermally driven magnon
current and thus the drag current is linearly proportional to
the spin Hall angle. Secondly, in the NM|MIL|NM case,
both spin convertances Gem and Gme are important, while for
NM|MIL, the convertance relating the magnon accumulation
to the spin current Gme plays a dominant role. A rough
estimation yields the induced current density in a Pt|YIG
bilayer is about 10 A/cm2 for a moderately small temperature
gradient of dT /dx = 10 K/cm if one chooses the following
parameters: θsh = 0.05,22 Jsd = 1 meV, L2 = λsf = 7 nm,
cPt = 0.1 (μ
 cm)−1, a0M = 3.9 Å, a0I = 12.376 Å, τm =
10−8 s,21 τth = 10−6 s, lm = 1 mm, S = 5

2 , and Tc = 550 K.

V. DISCUSSIONS AND SUMMARY

We have investigated the spin transport across the interface
between a metal layer and a MIL. The salient feature of our
approach is that we have treated spin and magnon transport
properties on an equal footing. Namely, the spin and magnon
accumulations as well as the spin and magnon currents
are described by semiclassical nonequilibrium distribution
functions. In other approaches, for example, Xiao et al.23,24

described the magnon density through a quasiequilibrium
effective magnon temperature which differs from the lattice
temperature. Adachi et al.25,26 considered the linear response
theories and their numerical solutions27 on the spin Seeback
effect23,28 in ferromagnetic insulators. These approaches also
provide alternative physical insights on the roles of magnons
in nonequilibrium transport.29

ACKNOWLEDGMENTS

We thank S. Bender for pointing out an inconsistency in the
approximations used in the derivation of the spin convertance
Gem in a previous version of the paper. This work is supported
by NSF-ECCS.

1M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff,
P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev.
Lett. 61, 2472 (1988).

2G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B
39, 4828 (1989).

3J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
4L. Berger, Phys. Rev. B 54, 9353 (1996).
5J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
6S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
7Y. Kajiwara et al., Nature (London) 464, 262 (2010).
8J. Xiao and G. E. W. Bauer, Phys. Rev. Lett. 108, 217204 (2012).
9Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, and A. Slavin, Phys. Rev.
Lett. 107, 146602 (2011).

10D. Hinzke and U. Nowak, Phys. Rev. Lett. 107, 027205 (2011).
11P. Yan, X. S. Wang, and X. R. Wang, Phys. Rev. Lett. 107, 177207

(2011).
12Steven S.-L. Zhang and S. Zhang, Phys. Rev. Lett. 109, 096603

(2012).

13M. B. Pogrebinskii, Fiz. Tekh. Poluprovodn. 11, 637 (1977) [Sov.
Phys. Semicond. 11, 372 (1977)]; P. J. Price, Physica (Amsterdam)
117B+C-118B+C, 750 (1983); T. J. Gramila, J. P. Eisenstein, A.
H. MacDonald, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 66,
1216 (1991).

14I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853
(2000).

15T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
16S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin, Phys. Rev.

Lett. 79, 3744 (1997).
17S. Takahashi, E. Saitoh, and S. Maekawa, J. Phys.: Conf. Ser. 200,

062030 (2010).
18S. A. Bender, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. Lett.

108, 246601 (2012).
19E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett.

88, 182509 (2006).
20L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A.

Buhrman, Science 336, 555 (2012).

214424-6

http://dx.doi.org/10.1103/PhysRevLett.61.2472
http://dx.doi.org/10.1103/PhysRevLett.61.2472
http://dx.doi.org/10.1103/PhysRevB.39.4828
http://dx.doi.org/10.1103/PhysRevB.39.4828
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1103/PhysRevLett.83.1834
http://dx.doi.org/10.1103/PhysRevLett.85.393
http://dx.doi.org/10.1038/nature08876
http://dx.doi.org/10.1103/PhysRevLett.108.217204
http://dx.doi.org/10.1103/PhysRevLett.107.146602
http://dx.doi.org/10.1103/PhysRevLett.107.146602
http://dx.doi.org/10.1103/PhysRevLett.107.027205
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.109.096603
http://dx.doi.org/10.1103/PhysRevLett.109.096603
http://dx.doi.org/10.1103/PhysRevLett.66.1216
http://dx.doi.org/10.1103/PhysRevLett.66.1216
http://dx.doi.org/10.1103/PhysRevB.62.4853
http://dx.doi.org/10.1103/PhysRevB.62.4853
http://dx.doi.org/10.1103/PhysRevB.48.7099
http://dx.doi.org/10.1103/PhysRevLett.79.3744
http://dx.doi.org/10.1103/PhysRevLett.79.3744
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1103/PhysRevLett.108.246601
http://dx.doi.org/10.1103/PhysRevLett.108.246601
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1126/science.1218197


SPIN CONVERTANCE AT MAGNETIC INTERFACES PHYSICAL REVIEW B 86, 214424 (2012)

21C. W. Haas and H. B. Callen, in Magnetism, edited by G. T. Rado
and H. Suhl (Academic Press, New York, 1965), Vol. I.

22L. Q. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys.
Rev. Lett. 106, 036601 (2011); a lower spin Hall angle for Pt was
reported in Z. Feng et al., Phys. Rev. B 85, 214423 (2012).

23K. Uchida et al., Nature Mater. 9, 894 (2010).
24J. Xiao, G. E. W. Bauer, K. C. Uchida, E. Saitoh, and S. Maekawa,

Phys. Rev. B 81, 214418 (2010).

25H. Adachi, J. I. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev. B
83, 094410 (2011).

26H. Adachi and S. Maekawa, arXiv:1209.0228v1 [J. Korean Phys.
Soc. (to be published)].

27J. I. Ohe, H. Adachi, S. Takahashi, and S. Maekawa, Phys. Rev. B
83, 115118 (2011).

28K. Uchida et al., Appl. Phys. Lett. 97, 172505 (2010).
29J. C. Slonczewski, Phys. Rev. B 82, 054403 (2010).

214424-7

http://dx.doi.org/10.1103/PhysRevLett.106.036601
http://dx.doi.org/10.1103/PhysRevLett.106.036601
http://dx.doi.org/10.1103/PhysRevB.85.214423
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1103/PhysRevB.81.214418
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://arXiv.org/abs/1209.0228
http://dx.doi.org/10.1103/PhysRevB.83.115118
http://dx.doi.org/10.1103/PhysRevB.83.115118
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1103/PhysRevB.82.054403



