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Effect of lattice vibrations on magnetic phase transition in bcc iron
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The most widely taught example of a magnetic transition is that of Fe at 1043 K. Despite the high temperature
most discussions of this transition focus on the magnetic states of a fixed spin lattice with lattice vibrations
analyzed separately and simply added. We propose a model of α iron that fully couples spin and displacement
degrees of freedom. Results demonstrate a significant departure from models that treat these coordinates
independently. The success of the model rests on a first principles calculation of changes in energy with respect
to spin configurations on a bcc-iron lattice with displacements. Complete details of environment-dependent
exchange interactions that augment the Finnis-Sinclair potential are given and comparisons to measurements are
made. We find that coupling has no effect on critical exponents, a small effect on the transition temperature, Tc,
and a large effect on the entropy of transformation.
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The magnetic moment associated iron atoms and the
interactions between them (Fig. 1) have a strong dependence
on atomic environment, e.g., the interatomic distances which
affect the overlap of atomic orbitals.1 Other local environmen-
tal parameters, such as the magnitude and shape of the atomic
volume, the number of atoms within the first peak distance
of the radial distribution function, etc, also come into play.2

Due to the magnon-phonon interactions3 the instantaneous
local magnetic moments become very inhomogeneous in
the presence of displacements. Figure 1 shows that at Tc

the displacements are large, e.g., fluctuations in first nearest
neighbor separations exceed the separation of second nearest
neighbors, resulting in exchange parameters that depend on
the local environment in a complicated manner that cannot be
captured by a simple separation dependent interaction. How
can this be reconciled with the fact that the classical Heisenberg
model already provides a surprisingly reasonable description
of the magnetic phase transition in bcc iron,4 including critical
exponents that are close to the measured values?5–8 In this
paper, we take a close look at the role of lattice vibrations in
magnetic interactions.

A few studies of the magnon-phonon interaction have been
reported.3,9 In Ref. 3, a model with a distance-dependent
exchange parameter J (r) is proposed, where the dependence
for both the first- and second-neighbors in bcc iron is
found to be linear; hence, there is no contribution from the
magnon-phonon coupling. On the other hand, recent studies10

indicate that J (r) has a rather complex functional form,
and an environment-independent pairwise representation is
inadequate. The J (r) models fail to capture the longitudinal
degrees of freedom in the local magnetic moments,11 which are
an important property of itinerant systems. We introduce local
environmental parameters, such as atomic volume, that reflect
the change in magnitude of local moments. The environmental
parameters go beyond pair interactions in the sense that change
in the position of an atom alters the J values for all nearby
pairs.

We propose a procedure for obtaining magnetic interactions
that differs from Liechtenstein et al.;12 in our procedure a

finite deviation at two sites within a paramagnetic config-
uration (generated by randomly assigning spin directions)
is used rather than a perturbation from the ferromagnetic
configuration. A configuration was chosen at random from
the canonical ensemble (T ≈ Tc) for a 128 atom system
interacting via the Finnis-Sinclair potential.13 The exchange
interaction parameters Jij plotted in Fig. 1 are evaluated
by considering four configurations (�ei , �ej ): (ẑ, ẑ), (−ẑ, ẑ),
(ẑ, −ẑ), (−ẑ, −ẑ) for a total of 14 848 = 4 × 128 × 58/2 spin
configurations, with corresponding energies Eij , Eı̄j , Eij̄ , Eı̄j̄

as follows:

Jij = 1
4 (Eij + Eı̄j̄ − Eı̄j − Eij̄ ). (1)

The energies Eij are calculated using the locally self-
consistent multiple scattering (LSMS) first principles
method.14 Note that one of the assumptions of our formula
is that the Hamiltonian can be written in terms of pair-spin
interactions. To eliminate the effect of the higher order terms,
it is important that the energy calculation is performed in a
background paramagnetic spin configuration so that the cavity
fields for the atoms considered are close to zero.

The Jij of pairs based on the LSMS energy calculations of
the heated sample are shown in Fig. 1. For comparison, we
also plot the data points of interaction parameters for the first
five shells estimated using the layer Korringa-Kohn-Rostoker
(KKR) method.15 The spread of points is partly due to the
difference in the local atomic environment resulting from
displacements, and partly due to the “background noise” that
comes from the residual local cavity field. It is interesting
that the first and second nearest neighbor interactions exhibit
quite distinctive behavior, and hence should be considered
separately.

Our Hamiltonian is

H = −
∑

i<j

J eff(�ei · �ej − 〈�ei · �ej 〉) + V, (2)

where V is the Finnis-Sinclair (FS) interatomic potential for
iron, and J eff is the effective exchange interaction obtained
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FIG. 1. (Color online) Pair exchange parameters Jij calculated
for all pairs (up to fifth nearest neighbor) in a 128 atom cell using
the method described in the text (black circle) for a representative
configuration (positions and spins) of bcc iron near Tc. The values
for each pair are also shown as approximated by a fit to a function
of separation, Jdist(r) (green dots), and as approximated by the shell
dependent function described in the text, Jshell(r,v,d) (red squares).
The averages within a shell of the exchange interactions, 〈Jij 〉shell, are
shown as blue up triangles. Five data points of J bcc

ij for perfect bcc
from Ref. 15 are plotted as cyan down triangles.

from the first principle calculations. To obtain the same average
energy as in the FS potential, we correct the double counting
of the ferromagnetic energy by subtracting the spin-spin
correlation, which is determined self-consistently. Models of
J are compared to Eq. (1) in Fig. 1. We consider first a simple
separation-dependent model. The linear regression procedure
indicates that the first three orders of the separation (r =
|�ri − �rj |, in units of angstroms) are statistically significant.
Therefore, we obtain Jdist(r) (in units of eV):

Jdist(r) = 0.519 057 5 − 0.367 938 8r

+ 0.086 530 5r2 − 0.006 755 2r3. (3)

The independently obtained J values for the perfect crystal15

are also described by this fitted curve, but it obviously cannot
explain the rich behavior of each individual shell. After
investigating several parametrizations for characterizing the
local atomic environment, we propose Jshell(r,v,d):

J eff
1 = −6.907 147 5 + 8.194 083 2r

− 3.2248719r2 + 4.2085021 × 10−1r3

−4.6127027 × 10−4d2 + 2.1663578 × 10−3v,

J eff
2 = −1.2902636 + 7.1554984 × 10−1r

− 9.3939101 × 10−2r2 + 1.7280909 × 10−2v

− 5.7021238 × 10−3rv,

J eff
3 = −1.5229965 × 10−1 + 7.2330118 × 10−2r

− 8.5256004 × 10−3r2 − 2.4695955 × 10−5d2,

J eff
4 = −1.1312616 × 10−1 + 4.000450 × 10−2r

− 3.8278464 × 10−3r2 + 4.3302468 × 10−4v

− 2.1941118 × 10−5d2,

J eff
5 = 4.2015751 × 10−1 − 7.7863035 × 10−2r

− 1.9727826 × 10−2v + 3.6452839 × 10−3rv, (4)

where v = vi + vj is the volume of the Voronoi polyhedra
of atoms i and j , and d = di + dj measures the local
displacement that relates to the shape of the volume. We define
di = ∑

kεnn(i) | �pk − �p0
k | where �pk = �rk − �ri and �p0

k = �r0
k − �r0

i .
[�r0

k is the corresponding distance vector for the perfect crystal
with the lattice constant 2.86Å and nn(i) stands for a set of
the nearest-neighbor of atom i.] We exhaust the combination
of parameters and keep terms that are significant in statistical
tests. To obtain a harmonic energy, only quadratic terms of
d are used. Since the intermediate environment may become
important for the long distance shell, the fit for the third and
fourth shells are not quite as good.

Parallel tempering Monte Carlo simulations17 are applied
with a simulation temperature-set chosen as a geometric
series. Since the system has a nondiverging specific heat
(α〈0), the acceptance rate for swapping neighboring replicas
is almost constant. Typically, one Monte Carlo step consists
of a Metropolis single spin flip and a trial displacement move
for every atom. The spin correlation term is updated every
step, and the swapping of neighboring replica is attempted
every 10 steps. The trial displacement length and the range of
simulation temperatures are chosen such that the acceptance
rate is above 20%.

In Fig. 2, we plot the specific heats for two treatments:
(1) atoms displaced from perfect lattice positions, and
(2) atoms frozen at perfect lattice positions. For case 1, we
show results for our two exchange expressions [Jdist(r) and
Jshell(r,v,d)]. For case 2, we show results where we have
averaged the exchange parameters used for case 1 over each
shell [〈Jdist(r)〉shell and 〈Jij 〉shell]; we add 3kB to independently
include the phonon specific heats. Case 2 therefore includes,
on average, the change in the exchange interactions due to
fluctuations in position but neglects the correlation between

FIG. 2. (Color online) Specific heats for a 12 × 12 × 12 supercell
with [Jdist(r) and Jshell(r,v,d)] and without [〈Jdist(r)〉shell and 〈Jij 〉shell;
each added 3kB for comparisons] coupling between spins and
displacements.
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spins and displacements. The disorder associated with lattice
vibration pushes the specific heat peak calculated with Jdist(r)
down by 20 K relative to that of 〈Jdist(r)〉shell. The peak position
of Jdist(r) is close to that of model 〈Jij 〉shell which averages over
the J values of displaced atoms. The curve of Jdist(r) is similar
in shape and magnitude with those of model 〈Jij 〉shell and
〈Jdist(r)〉shell, which signals a weak magnon-phonon coupling.
Interestingly the Jshell(r,v,d) model where we take into account
the local atomic environment has a more pronounced specific
heat peak that falls at a temperature several degrees higher
than that of Jdist(r), indicating that strengthened interactions
result from magnon-phonon coupling.3

Similar effects can be seen in magnetization, as shown in
Fig. 3. The curve shape for the Jshell(r,v,d) model is distinct
from the other three models. It signals a stronger transition at
a temperature between that of 〈Jij 〉shell and 〈Jdist(r)〉shell, and
provides a larger magnetization near the transition. Following
finite-size scaling analyses of the susceptibility and fourth
order cumulants of the magnetization, we determine the
transition temperatures for 〈Jdist(r)〉shell, 〈Jij 〉shell, Jdist(r), and
Jshell(r,v,d) to be 1050(4), 1027(2), 1034(2), and 1045(2) K.
The Tc of our full model agrees with the measured Curie
temperature.

To compare our specific heat with the experimental data,7,17

we apply a scaling scheme18 such that the corresponding
quantum specific heat can be calculated from the classical
one. In Fig. 4, the original and rescaled specific heats of the
Jshell(r,v,d) model are plotted, along with that of the 〈Jij 〉shell

model. The marked region between the two scaled curves is the
contribution from the spin-lattice coupling, which is significant
near the phase transition. Essentially, our model agrees
with the experiment from 400 K to Tc. Since FS is a classical
model, the zero temperature limit goes to 3 instead of 0. We
attribute the discrepancy at high temperatures to the fact that
the FS potential does not reproduce the structural transition
of α to γ . Due to the lack of constant volume experimental
data around Tc (1010–1080 K), constant pressure data are

FIG. 3. (Color online) Magnetization for a 12 × 12 × 12 super-
cell with [Jdist(r) and Jshell(r,v,d)] and without [〈Jdist(r)〉shell and
〈Jij 〉shell] coupling between spins and displacements.

FIG. 4. (Color online) Comparison of specific heat data for a 12 ×
12 × 12 supercell for the Jshell(r,v,d) model (original and rescaled)
and the 〈Jij 〉shell model (rescaled) with experimental results.7,17 The
solid curve shows the extrapolated infinite size behavior.

shown. We mention that the Jshell(r,v,d) model in the NPT
ensemble provides a Tc about 50 K higher than the Curie
temperature although the specific heat curve is similar to the
constant volume result in shape and magnitude.

In Fig. 5, the magnetization data of Jshell(r,v,d) and
〈Jij 〉shell are compared with the experimental results.19 The
agreement is not as good for temperatures slightly away from
the Tc, although it still outperforms the other three models.
We suspect that the paramagnetic background in LSMS
calculations of J values contributes to the underestimation of
the magnetization in the ferromagnetic states, where effective
many site interactions are becoming more important.

According to the universality class theory, the underlying
microscopic properties, such as the background phonon-
phonon interaction, should not affect the critical behavior of

FIG. 5. (Color online) Comparison of magnetization data for a
12 × 12 × 12 supercell for the Jshell(r,v,d) model and the 〈Jij 〉shell

model with experimental results.19 The solid curve shows the
extrapolated infinite size behavior.
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FIG. 6. (Color online) Finite-size scaling plots of magnetization
and its susceptibility for the Jshell(r,v,d) model. t = |1 − T

T c
| and

t ′ = |1 − Tc

T
|.

the system. As it is not obvious whether critical exponents
are changed by magnon-phonon interactions, we perform
data collapsing for the magnetization and its susceptibility
following the finite-size scaling forms M = L− β

ν X(tL
1
ν ) and

χT = L
γ

ν Y (tL
1
ν ), respectively (t = |1 − T

Tc
|, and X and Y are

unknown universal functions). As shown in Fig. 6, our calcu-
lated ν = 0.696(4), β = 0.360(5), and γ = 1.37(2) are consis-
tent with both Heisenberg universality [α = −0.118(11), β =
0.3669(32), γ = 1.385(10) (Ref. 6)] and experimental values
[α = −0.12(1) (Ref. 7), β = 0.363(4) (Ref. 8), γ = 1.33(2)
(Ref. 8)].

In conclusion, we proposed a procedure to extract exchange
interactions from first principle calculations, and built models
that include the effect of lattice vibrations. It is shown that
in addition to the interatomic distance, local atomic envi-
ronmental parameters, such as shell number, atomic volume,
etc, play a crucial role in describing the correct magnon-
phonon interaction. For bcc iron, our Jshell(r,v,d) model works
surprisingly well, when compared to experimental results.
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(2003); H. Wang, P. W. Ma, and C. H. Woo, ibid. 82, 144304
(2010).

11F. Dietermann, L. M. Sandratskii, and M. Fähnle, J. Magn. Magn.
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