
PHYSICAL REVIEW B 86, 214416 (2012)

Temperature dependence of the frequencies and effective damping parameters
of ferrimagnetic resonance

F. Schlickeiser,1,* U. Atxitia,2,3 S. Wienholdt,1 D. Hinzke,1 O. Chubykalo-Fesenko,3 and U. Nowak1

1Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
2Department of Physics, University of York, Heslington, York YO10 5DD United Kingdom
3Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain

(Received 3 September 2012; published 17 December 2012)

Recent experiments on all-optical switching in GdFeCo and CoGd have raised the question about the importance
of the angular momentum or the magnetization compensation point for ultrafast magnetization dynamics. We
investigate the dynamics of ferrimagnets by means of computer simulations as well as analytically. The results
from atomistic modeling are explained by a theory based on the two-sublattice Landau-Lifshitz-Bloch equation.
Similarly to the experimental results and unlike predictions based on the macroscopic Landau-Lifshitz equation,
we find an increase in the effective damping at temperatures approaching the Curie temperature. Further results for
the temperature dependence of the frequencies and effective damping parameters of the normal modes represent
an improvement of former approximated solutions, building a better basis for comparison to recent experiments.
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I. INTRODUCTION

The recent discovery of ultrafast, optomagnetic writing
schemes using circularly polarized laser pulses,1–3 pure
thermal excitation,4,5 or terahertz radiation6 focuses much
attention on the understanding of antiferromagnetic and
ferrimagnetic materials since all these effects have been found
only for materials with at least two sublattices. Switching with
circularly polarized light or just with the heat pulse has been
restricted to ferrimagnets with a rare-earth component, as, e.g.,
GdFeCo1 or TbCo.7 The reason for this restriction is not fully
understood, though it has been speculated that the peculiarities
of the dynamics of a ferrimagnet across the angular momentum
compensation temperature, where the effective damping and
the frequency of the normal modes are predicted to increase
rapidly,8 plays a crucial role.

In general, ferrimagnetic materials with two sublattices
show two characteristic damped precession motions of the
total magnetization around an external field H0. As they can
be excited experimentally by oscillating magnetic fields, they
are called resonance modes. For one mode both sublattices
stay antiparallel to each other. The dynamics related to this
mode can be described as an effective ferromagnetic system
and is called the ferromagnetic mode (FMM). The other
normal mode is caused by the antiferromagnetic coupling
between the two sublattices. In this so-called exchange
mode (EXM), the sublattices are tilted at a characteristic
angle.9 The characteristic motion of both modes is shown in
Fig. 1.

The parameters that basically define the possible switching
time are the frequency and the effective damping of the
resonance modes of the samples. Both need to be high in
order to enable fast magnetization reversal. The temperature
dependence of the dynamic behavior of ferrimagnets is of
special interest here since in earlier theories of ferrimagnetic
resonance8,10–12 based on the two-macrospin Landau-Lifshitz-
Gilbert (LLG) equation of motion, the FMM shows a diver-
gence of (or at least a rapid increase in) the frequency and
the effective damping parameter at the angular momentum
compensation temperature TA.

Recently, the temperature dependence of these resonance
modes was investigated experimentally for amorphous, fer-
rimagnetic GdFeCo by Stanciu et al.13 and for amorphous,
ferrimagnetic CoGd by Binder et al.14 In both experiments it
was shown that both the frequency and the effective damping
parameter of the FMM increase significantly, approaching
the angular momentum compensation point TA. Besides this
partial coincidence with the analytical prediction for the
frequency of the FMM, the experimental findings in Ref. 13
also feature some disagreement with earlier theories. The
common approximate solution by Wangsness8 predicts that the
frequency will go to 0 at the magnetization compensation point
TM, while in the experiment its value remains finite, not even
with a minimum. For the experimentally observed effective
damping parameter the disagreement with earlier theories is
even more pronounced. Unlike the theoretical predictions in
the experiment the effective damping is observed to increase
significantly, approaching the Curie temperature TC.

In this work, we present a more general analytical so-
lution based on the Landau-Lifshitz-Bloch15(LLB) equation
of motion for the temperature dependence of the frequency
and effective damping parameters of both modes and compare
them with our numerical findings from atomistic spin-model
simulations. We show that the assumption of a temperature-
independent sublattice damping parameter, confirmed experi-
mentally for a wide range of temperatures16 far below TC, does
not hold in the high-temperature regime close to TC, and we
present the derivation of new temperature-dependent damping
parameters. Additionally, we recall the invalidity of some
common approximate solutions at the compensation points
and show the influence of the strength of a magnetocrystalline
anisotropy on the properties of the resonance modes, enabling
an understanding of the experimental findings.

II. NUMERICAL METHODS

A. Model

Our numerical results are based on a spin model where
we consider classical spins Sν,κ = μν,κ/μν,κ on two different
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FIG. 1. (Color online) Schematic of the two resonance modes in
ferrimagnets. (a) For the ferromagnetic mode, the sublattices remain
antiparallel; (b) for the exchange mode, the sublattices are tilted at a
characteristic angle.

sublattices. Here, ν,κ = T,R with κ �= ν represents either the
rare-earth-metal (R) or the transition-metal (T) sublattice, and
μν is the atomic magnetic moment with μR/μT = 2. The
position of the spins, which are localized regularly on the
two intertwined sublattices of a simple cubic lattice, is chosen
such that nearest neighbors (nn’s) always belong to the other
sublattice respectively. The contribution to the Hamiltonian
from one single spin is

Hi
ν = −1

2

∑
j∈nnn

JνSi
νSj

ν − 1

2

∑
j∈nn

JνκSi
νSj

κ

− dz
ν

(
Sz,i

ν

)2 − μνH0Si
ν . (1)

Here, the first sum represents the ferromagnetic coupling
between spins in the same sublattice [next-nearest-neighbor
(nnn) interaction], while the second sum represents the
antiferromagnetic interaction between spins in different sub-
lattices (nn). Besides the exchange interaction with reduced
values JR/JT = 0.2 and JRT/JT = −0.1, we consider also
a magnetocrystalline anisotropy in the z direction with the
anisotropy constant dz

ν (which is varied) as well as the Zeeman
energy from an external magnetic field H0.

Our numerical results for N = 323 spins are generated by
solving the stochastic Landau-Lifshitz17 equation via Heun’s
method. The equation itself and the method used are described
in detail in Ref. 18. For the gyromagnetic ratios we use
γR/γT = 0.75, and as the microscopic damping constant,
describing the coupling of the spin system to the heat bath,
we use λ = 0.01 for the nonanisotropic case and λ = 0.001
for finite anisotropy. The heat bath is provided by the electronic
degrees of freedom as well as by the lattice and it defines the
temperature of our simulations in the canonical ensemble.

B. Equilibrium magnetizations and transverse relaxation

The sublattice equilibrium magnetizations are calculated as
the spatial and time average of the (easy axis) z component of
the magnetic moments,

Me
ν = μν

Nνa3
·
〈

Nν∑
i=1

Sz,i
ν

〉
, (2)

with ν = R, T, and Nν defining the number of unit cells
with volume a3 in the system. The temperature dependence
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FIG. 2. (Color online) Temperature dependence of the equi-
librium magnetization of the sublattices. At the magnetization
compensation point, TM, the sublattice magnetizations cancel each
other, while at the angular momentum compensation point, TA, the
angular momenta of both sublattices are equal. Above the critical
point TC the system is paramagnetic.

of the resulting sublattice and total magnetizations, basically
determined by the respective exchange constants, are shown
in Fig. 2. We note that, due to their coupling, the two
sublattices have the same critical temperature. In addition
to this Curie temperature, ferrimagnets may have two other
characteristic temperatures relevant to their magnetic behavior.
At the magnetization compensation point TM the sublattice
magnetizations cancel each other, so that the total magneti-
zation Me

total = Me
R + Me

T is 0. This point can exist in ferri-
magnets where the sublattice with the larger zero-temperature
magnetization has a weaker ferromagnetic coupling, so that
the magnetization decays more rapidly compared to the other
sublattice. Additionally, if both sublattices have different gyro-
magnetic ratios there is an angular momentum compensation
point TA where the angular momenta of both sublattices are
equal, Me

T/γT = Me
R/γR. The solid lines in Fig. 2 correspond to

fit functions, which are important when numerical simulations
are compared with analytical predictions in the following
analysis. They are obtained via a polynomial fitting procedure
which includes the mean-field critical behavior close to the
Curie temperature.

In our simulations the excitation of either the FMM or
the EXM is done separately, by first loading a multispin con-
figuration from equilibrium calculations for that temperature
(Fig. 2) and then tilting the spin system with respect to an
external magnetic field H0. While the FMM is excited by
tilting the total system by 30◦ with respect to the external
magnetic field, for the EXM the angles between each sublattice
and the external magnetic field are varied separately, since
the characteristic angle between the sublattices (Fig. 1) is
temperature dependent.11 In this work the external magnetic
field is always parallel to the z axis. Therefore the time
development of the x and y components of the magnetization
for both modes follows a damped precession motion with

Mx,y(t) ∝ exp(−bt) · cos(ωt + φ), (3)

where b represents the damping rate, ω is the frequency, and
φ corresponds to a phase shift. The different frequencies and
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damping rates for either the FMM or the EXM have been
obtained by fitting directly to the resulting time development
of the x and y components of the magnetization. Alternatively,
we tried to obtain the parameters above from a Fourier
transformation of the time-dependent magnetization data.
However, these results turned out to be less accurate, probably
due to the fact that our simulations are very time-consuming,
and consequently, the number of oscillations is not sufficient
for an analysis via Fourier transformation.

III. PROPERTIES OF THE NORMAL MODES

A. Transverse relaxation within the Landau-Lifshitz (LL)
equation

Earlier analytical calculations of the normal modes have
been based on two coupled nonthermal equations of motion
for the macroscopic magnetizations of sublattices using certain
approximations.8,10–12 Here we want to go beyond these
restrictions, first avoiding approximations and in the next
section including thermal effects via the LLB equation. We
will see that the use of the LLB equation will only affect the
temperature dependence of the damping.

Considering, in a two-sublattice micromagnetic LL equa-
tion, only intersublattice exchange, the Zeeman energy, and
the magnetorystalline anisotropy, the effective fields of both
sublattices are given by Heff

ν = H0 + Hex
ν + Han

ν . With the
magnetic field and the magnetocrystalline anisotropy parallel
to the z axis, the effective field contributions become H0 =
H 0ez, Hex

ν = −AMκ , and Han
ν = ±2Dz

νMe,z
ν ez. Here, A rep-

resents the interlattice micromagnetic exchange stiffness and
Dz

ν is the micromagnetic anisotropy constant. By comparing
these expressions with the corresponding effective fields Hi

ν =
−1/μν · ∂Hi

ν/∂Si
ν for the spin model [Eq. (1)], we obtain

the relations between atomistic and micromagnetic parameters
A = ηJRT/μTμR and Dz

ν = dz
ν/μ

2
ν , with ν,κ = T,R and κ �= ν

as well as η representing the number of nn’s. In what follows
we use unit vectors nν = Mν/M

e
ν .

The equations of motion for the two sublattices read

ṅν

γν

= −(nν × H′
ν) − αν[nν × (nν × H′

ν)]

+ AMe
κ{(nν × nκ ) + ανAMe

κ [nν × (nν × nκ )]}, (4)

where Me
κ represents the equilibrium magnetization of the re-

spective other sublattice, H′
ν = H0 + Han

ν , γν are the atomistic
gyromagnetic ratios, and αν are the damping constants.

Close to equilibrium, with nT = nT(nx
T,n

y

T,1) and nR =
nR(nx

R,n
y

R, − 1), we can consider ∂tn
z
T(R) = 0, Mz

ν ≈ Me,z
ν , and

neglect second-order terms, leading to

ṅx
ν

γν

= (−ny
ν ∓ ανn

x
ν

)(
H 0 ± 2Dz

νM
e
ν

)
− AMe

κ

(
αν

(
nx

ν + nx
κ

) ∓ (
ny

ν + ny
κ

))
(5)

and

ṅ
y
ν

γν

= (
nx

ν ∓ ανn
y
ν

)(
H 0 ± 2Dz

νM
e
ν

)
± AMe

κ

(
(nx

ν + nx
κ

) − αν

(
ny

ν + ny
κ

))
. (6)

Here, the upper algebraic sign is for the transition metal, while
the lower one is for the rare-earth metal. By transforming

into the variables of the rotating system n+
ν = nx

ν + in
y
ν and

n−
ν − = nx

ν − in
y
ν and assuming an exponential solution n±

ν =
n0±

ν exp(iω̃t), we obtain( ± ω̃ − γT
(
H 0 + 2Dz

TMe
T + AMe

R

)(
1 ± iαT

))
n±

T

− γTAMe
R(1 ± iαT)n±

R = 0,
(7)( ± ω̃ − γR

(
H 0 − 2Dz

RMe
R − AMe

T

)
(1 ∓ iαR)

)
n±

R

+ γRAMe
T(1 ∓ iαR)n±

T = 0.

The solution for the frequencies corresponds to the real part
of the two independent solutions for the FMM and EXM,
respectively, and the damping rate is given by the imaginary
part. The effective damping parameter is then given by the ratio
of damping rate to frequency,11 αeff = bfm,ex/ωfm,ex. Due to
their length, we do not write down these equations, but we will
use the full solution later for comparison with numerical data
and an improved analytical approach. Note, however, that the
effective damping is the same for both modes if the sublattice
damping parameters αν are assumed to be equal.

Based on this approach several approximated solutions for
the frequencies and effective damping parameter have been
derived in the past. However, the most common solutions for
the frequencies, by Wangsness10 for the FMM,

ωFMM = γTγR
(
Me

T − Me
R

)(
γRMe

T − γTMe
R

)H 0, (8)

and by Kaplan and Kittel9 for the EXM,

ωEXM = A
(
γTMe

R − γRMe
T

)
, (9)

make use of two main approximations: first, they neglect
the influence of damping and anisotropy completely; and
second, they include the assumptions AMe

ν 	 H 0, which
fails close to the Curie temperature TC; A(Me

T − Me
R) 	

H 0, which fails close to the magnetization compensation
point TM; and A(γTMe

R − γRMe
T) 	 H 0, which fails close

to the angular momentum compensation point. Thus, these
approximations predict an erroneous behavior at and close
to these characteristic temperatures. Similar approximations
in calculations of the effective damping parameter11 and the
solution for the frequency of the finite-anisotropy case by
Walker19 fail here correspondingly. Note that also the solution
of the effective damping parameter,11

αeff = Me
RγTαR + γRαTMe

T

Me
RγT − Me

TγR
, (10)

predicts a divergence at TA and therefore zero switching time.
As we will show in the following, in the full analytical solution
neither the frequencies nor the effective damping parameters
diverge at TA. Instead, we find only characteristic maxima at
or close to the angular momentum compensation point.

B. Temperature-dependent transverse relaxation within the
LLB theory for ferrimagnets

The recently published derivation of the LLB equation
for two-component systems in Ref. 21 explicitly refers to
a disordered ferrimagnet. Since for this work we consider
an ordered ferrimagnet, we briefly repeat the derivation and
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present the formula for the ordered case in the explicit
form. In the following we derive the macroscopic equation
for the thermally averaged spin polarization mν = 〈Sν

i 〉 in
each sublattice ν = T,R, following the theory of the LLB
equation for ferromagnets.15 The derivation uses a mean-field
approximation (MFA). Since in the present article we are not
interested in longitudinal motion, observed on the time scale of
100 fs to 1 ps, we focus our attention on the LLB equation with
transverse motion only. Additionally, the longitudinal normal
modes are decoupled from the transverse ones, which allows
for their separate consideration. Such an approximation leads
to the following sets of coupled LLB equations:15

ṁν = γν

[
mν × HMFA

ν

] − �ν
⊥

[mν × [mν × mν,0]]

m2
ν

(11)

with

mν,0 = B(ξν,0)
ξ ν,0

ξν,0
, ξ ν,0 ≡ μνHMFA

ν

kBT
, (12)

where HMFA
ν is the average mean field acting on the spin, and

the relaxation rates are given by

�ν
⊥ = γνλνkBT

μν

(
ξν,0

B(ξν,0)
− 1

)
, (13)

where B (ξ ) = coth (ξ ) − 1/ξ is the Langevin function. In
Eq. (11) the first term describes the magnetization precession
and the second term the transverse relaxation. The next step is
to use the MFA in Eqs. (12). The MFA expression for fields
in a ferrimagnet are well known; see also recent results for
FeCoGd.20 Defining H′

eff,T(R) = H + HA,T(R) as the sum of the
external and anisotropy fields in each sublattice, we can write
the average molecular field acting at each sublattice spin as

μRHMFA
R = μRH′

eff,R + J0,RmR + J0,TRmT, (14)

μTHMFA
T = μTH′

eff,T + J0,TmT + J0,TRmR, (15)

where J0,T = ηJT, η is the number of nn’s of transition-metal
type for the transition-metal spin, and J0,TR and J0,R have
similar definitions. The minimum condition for the free energy,
∂F/∂mR = 0 and ∂F/∂mT = 0, leads to the coupled Curie-
Weiss equations,

mR = B(ξR,0)
ξR,0

ξR,0
, mT,0 = B(ξT,0)

ξT,0

ξT,0
, (16)

the self-consistent solutions of which are the equilibrium
magnetization of each sublattice.

We treat the most general case where the continuous
approximation in each sublattice can be used. In order
to simplify the problem we decompose the magnetization
vector mν into two components, mν = �ν + τ ν , where �ν

is perpendicular to mκ , so that it can be expressed as �ν =
− [mκ × [mκ × mν]] /m2

κ , and τ ν is parallel to mκ , so that it
can be expressed as τ ν = mκ (mν · mκ ) /m2

κ , where κ �= ν.
Similarly, the MFA exchange field HMFA

EX,ν in Eqs. (15) and
(14) can be written as the sum of the exchange field parallel
and perpendicular to magnetization of the sublattice ν,

HMFA
EX,ν = H‖

EX,ν + H⊥
EX,ν = J̃0,ν

μν

mν + J0,νκ

μν

�κ ,

where we have defined a new function, J̃0,ν (mκ ,mν), as J̃0,ν =
J0,ν + J0,νκ (mν · mκ )/m2

κ . Note that J̃0,ν is not a constant but
a function of both sublattices’ magnetizations.

In the following, we consider the case where the transverse
contribution in the exchange field is small in comparison to
the longitudinal one, |H‖

EX,ν | 	 |H⊥
EX,ν |, i.e., where the non-

collinearities between sublattices are small. Finally, HMFA
ν �

H‖
EX,ν + H′′

eff,ν , where H′′
eff,ν = H + HA,eff,ν + H⊥

EX,ν . We now
expand mν,0 up to the first order in H′′

eff,ν , under the assumption

|H‖
EX,ν | 	 |H′′

eff,ν |. From Eqs. (16) the value of mν,0 in the
above conditions21 can be substituted into Eq. (11), leading to
the following equation of motion:

ṁν = γν[mν × H′′
eff,ν] − �ν

⊥
Bνμν

mνJ̃0,ν

[mν × [mν × H′′
eff,ν]]

m2
ν

.

(17)

In the same approximation we have Bν � mν , B(ξ0,ν)/ξ0,ν �
(kBT )/J̃0,ν , and, finally,

�ν
⊥ = γνα

ν
⊥kBT

μν

(
ξ0,ν

B(ξ0,ν)
− 1

)
� γνα

ν
⊥

(
J̃0,νmν

μνBν

)
, (18)

where αν
⊥ = λν(1 − kBT

J̃0,ν

). Hence the final form of the LLB

equation is

ṁν = γν[mν × H′′
eff,ν] − γνα

ν
⊥

[mν × [mν × H′′
eff,ν]]

m2
ν

. (19)

The temperature dependence of the damping parameters is
obtained in the first order in deviations of magnetization
from their equilibrium value. Note that in Eq. (17) all the
terms are of the first order in the parameter H ′′

eff,ν/H
||
EX,ν so

that the damping parameters should be evaluated in the zero
order in this parameter. As a result, the effective damping
parameter depends on the temperature T via the equilibrium
magnetization values as

J̃0,ν � J0,νm
e
ν − J0,νκm

e
κ

me
ν

. (20)

Note also that the field H′′
eff could be substituted in the pre-

cession and the transverse damping terms with Heff (including
the exchange field coming from the opposite sublattice), since
the action of the component of this field parallel to the
magnetization mν is 0. Note also that Eq. (19) does not have
exactly the LL form due to the presence of the m2

ν term in
the denominator. The difference between the LL and the LLB
damping is discussed for the ferromagnetic case in Refs. 22
and 23.

For a comparision with the results in Sec. III A, Eq. (19)
can be written in terms of the variable n = m/me. After renor-
malizing the equation and linearizing it close to equilibrium
at a given temperature, one gets a similar result as for the LL
equation [Eqs. (5) and (6)] but with temperature-dependent
parameters,

α̃T
⊥(T ) = αT

me
T(T )

(
1 − me

T(T )kBT

J0,Tme
T(T ) − J0,TRme

R(T )

)
, (21)
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and

α̃R
⊥(T ) = αR

me
R(T )

(
1 − me

R(T )kBT

J0,Rme
R(T ) − J0,RTme

T(T )

)
, (22)

where the parameters λR,λT were substituted by αR,αT to
comply with the standard notations of the micromagnetic
equation. Here, similarly to the procedure described in Ref. 20,
we have renormalized the exchange parameters within the
MFA. The replacement of Eqs. (21) and (22) in Eq. (7) leads
to an increase in the effective damping parameters for both
modes at high temperatures, which agrees with the numerical
findings. It is that combination of equations that we call the
analytical solution in the following.

IV. RESULTS AND DISCUSSION

Let us start with a discussion of the zero-anisotropy case.
Since in our simulations an external magnetic field H 0 =
0.02JT/μT is constantly switched on, for zero anisotropy this
magnetic field will have to change its sign at the magnetization
compensation point TM in order to avoid a switching of the
whole system. This change leads to the discontinuity of the
analytical solutions [Eq. (7)] shown in Fig. 3 at TM. For
the frequencies [Fig. 3(a)] as well as the effective damping
parameters [Fig. 3(b)] we obtain a very good agreement
between analytical and numerical solutions in both modes and
for the whole temperature range. We note that the value of the
frequency of the FMM first tends to 0 below the magnetization
compensation point TM, where it starts to increase to its

exchange (EXM)
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FIG. 3. (Color online) Frequencies and effective damping param-
eters in the zero-anisotropy case. Temperature dependence of (a)
frequencies and (b) effective damping parameters αeff . Numerically
obtained data points are compared with analytical solutions. The
switching of the external magnetic field H0 leads to a gap in the
solutions at the magnetization compensation point TM.

maximum above the angular momentum compensation point
TA. After decreasing with higher temperatures the value of
the frequency of the FMM converges to a constant level.
For the EXM the effect of changing the relative direction
of the external field is stronger, since, in comparison to
the approximated solution9 [Eq. (9)], the value of the EXM
frequency is constantly shifted proportionally to the strength
of H 0. Above the angular momentum compensation point TA

the frequencies of both modes reach the same value, where
the FMM has its maximum and the EXM reaches a local
minimum.

Note that there is an increase in the effective damping
parameter at high temperatures that is much stronger for
the EXM. Interestingly, without considering the temperature
dependence of the sublattice damping parameters [Eqs. (21)
and (22)] in the analytical solution [Eq. (7)] and assuming
simply the microscopic damping constant λ = 0.01 to describe
the relaxation dynamics of the sublattice magnetizations, the
effective damping parameters αeff for both modes are equal.
This solution, plotted as the dashed line in Fig. 3(b), does
not coincide with our numerical data. Only considering the
temperature dependence of the sublattice damping parameters,
the effective damping parameters αeff of both modes become
different and describe the increase for both modes at high
temperatures correctly [Fig. 3(b)]. Note also that the influence
of the temperature dependence for α̃T

⊥(T ) and α̃R
⊥(T ) is

negligible at low temperatures but becomes very important
with increasing temperatures.

For the finite-anisotropy case (Fig. 4) we have used the
following values as atomistic damping parameters, external
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FIG. 4. (Color online) Frequencies and effective damping param-
eters in the finite-anisotropy case. Temperature dependence of (a)
frequencies and (b) effective damping parameters αeff . Numerically
obtained data points are compared with analytical solutions.
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field, and anisotropy constant: λ = 0.001, H 0 = 0.01,JT/μT,
and dz = 0.01JT. Here, we have used smaller atomistic
damping compared to the previous simulations, since the
consideration of an anisotropy leads to an increase in the
discrepancy between simulated and ideal damped modes, so
that more cycles had to be fitted in order to obtain good
results. With anisotropy, consequently, the resulting anisotropy
field compensates the external field and avoids switching at
the magnetization compensation point TM in our simulations.
Therefore we have not switched the direction of H0 in
this case. For higher temperatures, however, due to thermal
excitation as well as the decaying anisotropy field, the system
starts switching anyway. Therefore the effective damping
parameters could not be obtained for the high-temperature
range.

For the frequencies [Fig. 4(a)] the consideration of a
uniaxial anisotropy leads to the fact that the minimum at the
magnetization compensation point vanishes. Again, above the
angular momentum compensation temperature TA we obtain
a maximum for the FMM frequency and a minimum for the
EXM frequency. We note that the shift of this characteristic
point from TA to higher values is proportional to the strength
of the external magnetic field as well as the anisotropy.

Regarding the effective damping parameters [Fig. 4(b)] a
finite anisotropy leads to a less pronounced maximum at TA.
Once again, the dashed line in Fig. 4(b) corresponds to the
analytical solution without consideration of the temperature
dependence of the sublattice damping, leading to the equality
of the effective damping parameters of both modes, not
showing the increase in αeff for higher temperatures. Besides
the good agreement between numerical and analytical results
when the temperature dependence of the sublattice damping
is taken into account, we now also obtain a good agreement
with the experimental findings of Stanciu et al.13 Thus we are
able to reproduce these experimental findings qualitatively by
considering a uniaxial, magnetocrystalline anisotropy as well
as temperature-dependent sublattice damping parameters as
derived within the framework of the LLB equation. These
coinciding findings clearly demonstrate the failure of the
analytical solutions based on the LL and LLG equations of
motion8,10–12 for high temperatures.

In Fig. 5 the analytical solutions [Eqs. (7), (21), and (22)] of
the frequencies of both modes as well as the effective damping
parameter for the FMM are shown for different strengths
of the uniaxial anisotropy. Here, with H 0 = 0.01JT/μT and
λ = 0.01, we have also not switched the external field at
TM. First, we note that due to the temperature dependence
of the anisotropy field in the high-temperature regime, the
influence of the strength of the anisotropy constant dz becomes
smaller with increasing temperatures. This effect leads to the
convergence of all sets of curves for different anisotropies
with increasing temperatures up to TC, where the anisotropy
fields vanish and the different curves join. Second, we see
that the frequencies of both modes increase with increasing
anisotropy. This effect is much stronger for the FMM.
Additionally, the maximum of the frequency of the FMM
as well as the minimum of the frequency of the EXM are
shifted from the the angular momentum compensation point TA

towards higher temperatures with increasing anisotropy. For
the effective damping parameter, with increasing anisotropy
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FIG. 5. (Color online) Frequencies and effective damping param-
eters in the finite-anisotropy case. Temperature dependence of (a) the
ferromagnetic mode frequency, (b) the exchange mode frequency,
and (c) the effective damping parameter αeff of the FMM for different
strengths of the magnetocrystalline anisotropy. Analytical results as
explained in the text.

we obtain a decrease and a washing-out of the maximum close
to TA.

V. CONCLUSIONS

A detailed investigation of the dynamics of ferrimagnets
was performed by means of computer simulations as well
as analytically. Formulas were derived for the frequencies
and effective damping parameters of bot, the FMM and the
EXM. We show that a correct calculation does not predict any
divergence either of the effective damping parameters or of
the frequencies close to the angular momentum compensation
point, but only a finite maximum. Nevertheless, both the
frequencies and the effective damping parameters strongly
depend on the temperature, with that explaining the large
variations of relaxation times in ferrimagnets, especially in
optomagnetic experiments with pronounced heating effects.

Similarly to the experimental results (see Fig. 3 in
Ref. 13) and unlike predictions based on the macroscopic,
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two-sublattice LLG8,10–12 equation, we find an increase in
the effective damping at a temperature approaching the
Curie temperature. This stresses the importance and validity
of the recently derived two-sublattice LLB equation for
finite-temperature micromagnetics. The latter builds a new
basis for finite-temperature micromagnetic calculations of
ferrimagnets.
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