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Magnetization-based assessment of correlation energy in canted single-chain magnets
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We demonstrate numerically that for the strongly anisotropic homometallic S = 2 canted single-chain magnet
described by the quantum antiferromagnetic Heisenberg model, the correlation energy and exchange coupling
constant can be directly estimated from the in-field-magnetization profile found along the properly selected
crystallographic direction. In the parameter space defined by the spherical angles (φ, θ ) determining the
axes orientation, four regions are identified with different sequences of the characteristic field-dependent
magnetization profiles representing the antiferromagnetic, metamagnetic, and weak ferromagnetic type behavior.
These sequences provide a criterion for the applicability of the anisotropic quantum Heisenberg model to a given
experimental system. Our analysis shows that the correlation energy decreases linearly with field and vanishes
for a given value Hcr, which defines a special coordinates in the metamagnetic profile relevant for the zero-field
correlation energy and magnetic coupling. For the single-chain magnet formed by the strongly anisotropic
manganese(III) acetate meso-tetraphenylporphyrin complexes coupled to the phenylphosphinate ligands, the
experimental metamagnetic-type magnetization curve in the c direction yields an accurate estimate of the values
of correlation energy �ξ/kB = 7.93 K and exchange coupling J/kB = 1.20 K.
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I. INTRODUCTION

Molecular magnets make a wide emerging class of new
materials whose properties extend the range of those typi-
cally associated with magnets, i.e., they offer low density,
transparency, electrical insulation, and a possibility of low-
temperature synthesis.1 Single-chain magnets (SCM) belong-
ing to the class of molecular magnets have been of particular
interest since Gatteschi et al.2 discovered slow relaxation
of magnetization in a chain compound, comprising Co(II)
centers, and organic radicals, without any evidence of phase
transition to a three-dimensional magnetic ordering. Soon
after, Clerac et al. discovered similar magnetic properties
in an S = 3 Heisenberg ferromagnetic chain comprising
Mn(III)-Ni(II)-Mn(III) trimers with an easy axis parallel to the
chain.3 Next, other SCM systems often based on ferrimagnetic
chains containing alternating spins of unequal magnitude
were discovered.4 The slow magnetic relaxation arises from
large uniaxial magnetic anisotropy, negligible magnetic in-
teractions between the chains, and considerable intrachain
interactions.1,5 The last condition is desirable for raising the
blocking temperature. Moreover, for some one-dimensional
quantum spin systems with competing nearest-neighbor and
next-nearest-neighbor interactions,6 the single-chain magnetic
behavior can be affected with frustration.7

The simplest description of ferromagnetic SCMs is based
on the Glauber theory if the limit of an Ising chain can
be explored.8 The Ising ferromagnetic chains display slow
relaxation of magnetization and the relaxation time τ depends
on the spin-pair correlations. For these chains, the correlation
length ξ diverges exponentially at low temperatures as

ξ = C0 exp(�ξ/kBT ), (1)

where �ξ is the correlation energy and kB is the Boltzmann
constant.9 The exponent �ξ is proportional to the activation
energy, which enters the Arrhenius law9 and can be directly

estimated from the experimental static susceptibility of the
chain by the relation ξ ∼ χT , plotting ln(χT ) as a function of
1/T . The correlation energy is also referred to as the energy to
create a domain wall. Important fact is that �ξ is proportional
to the magnetic coupling constant9 and similar conclusions
remain valid for the antiferromagnetic Ising model5,10 but then
ξ ∼ 1/(χT ). In addition, the correlation energy �ξ is also
the main part of the additive term determining the relaxation
time in the Ising-like and anisotropic classical Heisenberg
chains.9,11

The relations between the correlation length and the zero-
field susceptibility as well as between the correlation energy
and the magnetic coupling can be used for the classical
ferromagnetic Heisenberg model in the strong anisotropy
limit.9,12,13 If the Hamiltonian is defined by

H = J
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the limit is reached when the exchange coupling J and the
single-ion anisotropy D satisfy the relation |D/J | > 2/3.
Then the correlation energy calculated from the product χT

yields the value of the coupling J because9

�ξ = 2|J |S2.

For ferromagnetic systems, this scenario is well
confirmed9,14,15 and has been exploited for a number of
compounds,16,17 but for antiferromagnetic chains with non-
collinear anisotropy axes11,18 the situation is much less
clear. The problem was revealed11 for the compound of
formula [Mn(TPP)O2PHPh]·H2O considered a textbook ex-
ample of SCM (TPP = meso-tetraphenylporphyrin and
PHPh = phenylphosphinate) and referred to as Mn-CAF
(canted antiferromagnet). It was possible to rationalise
many experimental results performed on Mn-CAF, assuming
the generalized expression for the correlation energy in
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the form

�ξ = 2|J |S2 cos δ, (2)

where δ is the canting angle for two classical spins oriented
along the anisotropy axes. However, the proportionality
between the correlation length ξ and the product χT was ruled
out, implying that the correlation energy cannot be determined
by the magnetic measurement of the static susceptibility.

In this paper, we demonstrate that the correlation energy of
the quantum model of a canted antiferromagnetic chain can
be found from the in-field single-crystal magnetization profile
properly chosen and its δ dependence is given by the classical
expression (2). These results suggest that the correlation
energy �ξ can be estimated from the in-field magnetization
measurements. As soon as the spin value, the geometrical
structure and �ξ are known, the value J of the magnetic
coupling follows from Eq. (2). Considering the empirical
shape of the magnetization isotherm in the c direction for
Mn-CAF, we directly find the J value without any fitting
procedure.

The paper is organized as follows: Sec. II is devoted to a
model describing the anisotropic quantum spin systems and
the numerical method for accurate calculations of magnetic
properties in a wide temperature range. Section III is dedicated
to presentation of results and their discussion. Section IV
concludes our paper, summarizing the main outcomes.

II. MODEL AND DMRG METHOD FOR CANTED
SINGLE-CHAIN MAGNETS

We consider the quantum anisotropic Heisenberg model,
which is needed to get quantitative estimates of the ther-
modynamic properties19,20 of the chains with noncollinear
anisotropy axes:

H = J
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, (3)

where spin S = 2 and L stands for the length of the chain.
The exchange coupling J between nearest-neighbor spins is
isotropic, uniform, and positive. The tensors representing the
single-ion anisotropy D̂i and ĝi factors are nondiagonal and
depend on angles (φ, θ ) or (−φ, θ ) for odd and even sites,
respectively. The indices α, β ∈ {a,b,c} define the global
coordination system. The c direction is chosen along the chain
axis and plays also the role of the quantization axis.

The explicit form of the tensors in the model (3) depends
on the angles (φ, θ ) defining the anisotropy axes (see Fig. 1)
and is given in the previous publications.11,19 We note that for
all the pairs of angles (φ, θ ) the canting angle is determined
from the relation

cos δ = sin2(θ ) cos(2φ) + cos2(θ ).

Analysis of our model (3) is based on the numerical
quantum transfer matrix method,20–24 where the partition
function of the quantum chain is mapped onto the partition
function of the classical 2d system with multispin interactions

FIG. 1. Schematic views of the chain structure in the global
coordination system {a,b,c}, where the spherical angles (φ, θ )
are defined. The black arrows represent the canted Mn-CAF spin
arrangement, whereas the gray ones correspond to the collinear
antiferomagnetic spin arrangement (φ = 0, θ = 0).

and a finite width 2M .25,26 For different values of M , called
the Trotter number, the classical partition functions form a
series of approximants ZM , where the leading errors are of
the order of 1/M2. The higher the value of M , the better
the quantum nature of the problem is taken into account.
As the Hilbert space dimension increases exponentially with
increasing Trotter number, computations are feasible only for
relatively small M . To overcome this problem, we employ the
density-matrix renormalization group technique (DMRG)27–31

for determining an effective Hamiltonian representation in the
Hilbert subspace of a given size m that ensures covering the
entire experimental temperature range.

The DMRG method is very powerful but it is computa-
tionally demanding as far as the resources and programming
are concerned. The transfer matrices are asymmetric and the
corresponding density matrices, constructed from the right and
left eigenvectors of the largest eigenvalue λmax of a transfer
matrix, are non Hermitian. We were able to overcome these
problems by applying complex algebra,32 which guaranties
the biorthogonality of complex eigenvectors but increases the
computational complexity.

In some DMRG applications,27 the Hilbert space is split
into subspaces of fixed values of Mstag = ∑

(−1)j Sj , where
Sj denotes a spin variable in a given column. Then the
highest eigenvalue λmax can be found in the block with
the staggered magnetization Mstag = 0. This simplification
follows from some symmetries which may occur in the
four-spin DMRG vertices. For the noncollinear model this is
not the case, therefore λmax has to be found in the entire Hilbert
space.

For each temperature, the free energy of the macroscopic
system (3) per site (L → ∞) is related to the maximum
eigenvalue λmax of the transfer matrix TM ,33 whereas the
magnetization and magnetic susceptibility can be obtained
by taking the first and second derivatives of the free energy
with respect to external magnetic field. These quantities are
calculated in the subspace 0 � φ � π/2 and 0 � θ � π/2,
which follows from the Hamiltonian symmetry.
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The correlation length of the α components of spin is given
by the following ratio34:

1/ξα = − lim
R→∞
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where Sα is the tensor product of the α component of the spin
operator and 2M − 1 identity matrices of 2S + 1 size. The
|ψmax〉 vector corresponds to the λmax eigenvalue, whereas the
eigenvalue λν is the highest among all whose eigenvector |ψν〉
that satisfy the condition |〈ψmax|Sα|ψν〉| �= 0.

The convergence of the approximants with respect to M

depends on temperature and the size of the optimal basis set m.
Our results are provided for m = 125 and the Trotter number
M up to 20 (the lower temperature the higher M is needed).
According to our estimation, the accuracy of results in the
whole parameter space considered is not lower than 0.5%.20

III. RESULTS AND DISCUSSIONS

Recently, several compounds of antiferromagnetic one-
dimensional systems containing Mn(III) ions have been
reported.11,18 Here, the most interesting example11 is Mn-
CAF, where the anisotropy axes are defined by Jahn-Teller
elongation of Mn(III) octahedra and make the angle θ =
21.01◦ with the chain direction parallel to the c axis (see Fig. 1).
Projections of the anisotropy axes onto the plane perpendicular
to the chain, alternate along the a crystallographic axis making
angles φ = 56.55◦.

The single-crystal magnetometry measurements11 revealed
three patterns of the in-field-magnetization profiles. For the
a direction, the pattern shows linear field dependence and is
referred to as antiferromagnetic (AF). The field dependencies
measured along the b and c are referred to as the weak ferro-
magnetic (WF) and the metamagnetic type (MM), respectively.

Taking into account the known values of φ and θ angles
and performing the Monte Carlo simulations, the values of
exchange coupling, uniaxial anisotropy, and g factor were
obtained (in short the Mn-CAF parameters) for the classical
counterpart of the model (3),

J/kB = 1.36(8) K, D/kB = −4.7(2) K, g = 1.97(1),

(5)

fitting the experimental susceptibility and magnetization
curves.11 So, the high value of the ratio |D/J | 
 3.5 cor-
responding to a strong anisotropy occurred.

Using the classical Mn-CAF parameters (5) and the
corresponding angles

φ = 56.55◦, θ = 21.01◦, δ = 34.6◦,

we have determined the in-field magnetization profiles for
three crystallographic directions. Their features agree qualita-
tively with those published previously in Fig. 5 for Mn-CAF,11

including the sequence of patterns AF, WF, and MM for the
a, b, c directions. The MM-type profile for the field along
the c axis was calculated earlier within DMRG19,35 and its

FIG. 2. The angle-dependent diagram showing sectors with dif-
ferent sequences of the in-field magnetization patterns. In sectors
A, B, and C, the MM-type patterns occur in the a, b, c directions,
respectively. All the patterns are outlined in the inset in the zero-
temperature limit.

behavior detected some quantitative deviations with respect to
the classical counterpart.

Relaxing the angles φ and θ , we have noticed that the
sequence of the magnetization patterns varies with the easy
axes orientation and we have established the domains (see
Fig. 2) in the (φ, θ ) parameter space. Within a given
domain, the fixed shape of the low-temperature magnetization
isotherms as a function of field for all the crystallographic
directions occurs. The expected zero-temperature patterns are
plotted in the inset. The sectors appearing in the diagram
are described in Table I. In sectors A, B, and C, the MM-
type patterns are unveiled for the field along the a, b, c

axes, respectively. The sequence of the AF and WF profiles
accompanying the MM-type shape in a given sector is specified
in Table I. In the B sectors, the AF pattern is missing and
two WF patterns are present in return. The crystallographic
direction, where the magnetization values are higher in the low
fields, has been distinguished by an additional index a (or b).

The B sectors in the diagram are separated from the other
sectors by the dashed line obtained from the solution of the
equation cot(2θ ) = sin(2φ) cos(2φ). This line corresponds to
the canted angle between the adjacent anisotropy axes which
amounts to δ = π/2. The solid line in the diagram follows
from the symmetry of the Hamiltonian and can be determined
from the solution of the equation cot θ = cos φ.

The diagram in Fig. 2 provides the criterion whether the
model (3) can describe a particular magnetic system. It predicts
the occurrence of the MM-type profile, which is accompanied
by a given combination of the AF-type and the WF-type
patterns. We immediately see that the criterion is fulfilled

TABLE I. Pattern sequences in the diagram sectors.

Sector
Crystallographic direction

symbol a b c

A MM WF AF
Ba WF MM WF
Bc WF MM WF
C AF WF MM
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BARASIŃSKI, KAMIENIARZ, AND DRZEWIŃSKI PHYSICAL REVIEW B 86, 214412 (2012)

FIG. 3. (Top) Temperature behavior of the correlation length for
various values of the magnetic field H parallel to the MM axis (the
Mn-CAF parameters). (Bottom) Our estimations of the �ξ (H ) vs
external magnetic field parallel to the c axis plotted by triangles. The
solid line represents the linear regression f (H ) = 9.10 − 2.33H . The
magnetization isotherms at T = 1 and 1.6 K are given by the dashed
and chain lines, respectively.

for Mn-CAF.11 Its geometric coordinates (φ, θ ) belong to the
sector C and the experimental single-crystal profiles agree with
the patterns predicted for this sector.

As the zero-field susceptibility and the correlation energy
are not related for the canted antiferromagnetic chains, we
have decided to analyze the field dependence of the correlation
energy �ξ (H ). First, we checked if the correlation length
diverges in the limit of low temperatures. For low temperatures,
the upper panel of Fig. 3 demonstrates a linear dependence of
ln(ξc) [where ξc is determined from Eq. (4)] on the inverse
of temperature, choosing the Mn-CAF parameters (5) and the
corresponding angles φ = 56.55◦ and θ = 21.01◦. This de-
pendence implies that the low-temperature correlation length
ξ exhibits the exponential divergence in the MM direction,

ξ = C0 exp[�ξ (H )/kBT ], (6)

but the slope �ξ (H ) is field dependent.
The field dependence of the correlation energy �ξ (H ) has

been studied numerically and plotted by triangles in the bottom
part of Fig. 3. We have revealed a striking linear behavior,
which can be very well reproduced by the function

�ξ (H )/kB = 9.10 − 2.33H, (7)

where the right-hand side is expressed in kelvin and the field is
given in tesla. So, the function �ξ (H ) vanishes, which implies
a finite value of correlation length ξ [see Eq. (6)], for the
critical field Hcr = 3.91 T, which is close to the value estimated
directly from the DMRG correlation length, Hcr = 3.86 T.

The abrupt change of the correlation length from the infinite
to the finite value induced by the field should be accompanied
by some changes in the physical properties. We demonstrate
in the bottom panel of Fig. 3 that the MM-type profile displays
a rapid jump in the vicinity of Hcr from 0 to a nearly saturation
value. We interpret this behavior as a field-driven transition
from the antiferromagnetic to the ferromagnetic order along
the c direction. Such critical field can be determined from the
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FIG. 4. Comparison between the functions 2S2| cos(δ)| and
S2| cos(δ)| vs δ plotted by the full and the dashed line, respectively,
and the ratios �ξ/J and μBMcrHcr/J illustrated by the circles and
squares. The open symbols correspond to J/kB = 1.26 K and the full
symbols to J/kB = 1.36 K.

intersection of the low-temperature magnetization isotherms,
from their inflection point or from the maximum of the in-field
magnetic susceptibility.

Now we analyze the correlation energy �ξ for the Mn-CAF
parameters in the absence of a magnetic field. Equation (7)
implies �ξ (H = 0)/kB = 9.10 K, while the DMRG calcu-
lations based on Eqs. (1) and (4) yield �ξ/kB = 9.05 K.
These estimates are in remarkable agreement with the classical
prediction11 �ξ = 8.95 K following from Eq. (2). Moreover,
the coincidence of the correlation energy of the quantum
model (3) and the classical dependence (2) is confirmed and
demonstrated for a number of couplings J and the canting
angles δ in Fig. 4.

In Fig. 4, the upper continuous and lower dashed lines
represent the functions 2S2 cos δ and S2 cos δ, respectively.
The open and full circles illustrate the ratios �ξ/J calculated
numerically within DMRG for J/kB = 1.26 and 1.36 K,
respectively. As to the angles δ, their values follow from the
angles φ and θ chosen from different sectors of the diagram
in Fig. 2. The fields were applied in the proper direction for a
sector selected.

We conclude that the agreement between the classical
predictions 2S2 cos δ for the ratio �ξ/J and those calculated
for our quantum model (3) and plotted in Fig. 4 is very good.
There are some deviation for small and high values of δ, but
they can be attributed to uncertainties of the extrapolations
performed for ln(ξ ) yielding the values �ξ . These uncertainties
are of the order of a few percent and are much higher
than the accuracy of the DMRG results. They could be
diminished lowering temperature and increasing the cost of
our simulations. Concluding, our numerical results in Fig. 4
give a strong evidence that the correlation energy of the canted
antiferromagnetic quantum chains can be expressed by Eq. (2)
previously found for the classical systems.

In Fig. 4, we also plot by the full squares the ratios
μBMcrHcr/J as a function of δ, where Mcr is the value of
the MM-type magnetization profile corresponding to the field
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Hcr. We emphasise that the ratio is completely determined
by the coordinates of the inflection point of the MM-type
magnetization profile. The ratios μBMcrHcr/J calculated
coincide with the values of the function S2 cos δ drawn by
the dashed line and are lower by a factor of 2 than the ratios
�ξ/J , implying that

�ξ = 2μBMcrHcr. (8)

We can interpret the result (8) that the correlation energy is
equal to the average Zeeman energy per pair of spins calculated
for the critical field Hcr.

The relation (8) is an important result of our paper because
it provides a direct estimate of the correlation energy �ξ in
terms of the special coordinates of the MM-type magnetization
profile. Moreover, the exchange constant J/kB can be also
obtained from the MM-type single-crystal low-temperature
magnetization isotherm. Combining Eqs. (2) and (8), we find
the formula for the magnetic coupling:

J = μBMcrHcr/(S2 cos δ). (9)

To validate our conclusions, in Fig. 5 the MM-type behavior
is drawn for the ratios |D/J | 
 3.5 and 4.5 in both panels.
For the angles specified in the legends and coming from the
sectors A and B, the (a) and (b) panels display the profiles
found for the magnetic field parallel to the a and b axes,
respectively. The slope of all the MM-type curves in Fig. 5
increases with decreasing temperature and the shape does not
change.

The coordinates of the intersections of the corresponding
magnetization isotherms in Fig. 5 (T = 1.0 and 1.6 K) inserted
into Eq. (9) yield the consistent estimates of J/kB with the
uncertainty equal to ±0.04 K for the input values J/kB = 1.26
and 1.36 K. When we used lower temperatures (T = 0.5 and
1.0 K), the uncertainty declined to ±0.005 K for the same
J/kB , which is the expected trend.

0 1 2 3 4
H [T]

0

1

2

3

4

M
 [

M
.B

.]

0 1 2 3 4

5 6

5 6
H [T]

0

1

2

3

4

M
 [

M
.B

.]

J/k
B
 = 1.36 K, D/k

B
 = -4.7 K

J/k
B
 = 1.26 K, D/k

B
 = -5.7 K

(a)

(b)

FIG. 5. Metamagnetic profiles as a function of magnetic field
for two sets of parameters presented in the legends. The thick lines
correspond to T = 1.6 K and the thin lines to T = 1.0 K. The solid
and the dashed lines belong to the A sector (φ = 10◦, θ = 80◦) and
to the BC sector (φ = 75◦, θ = 65◦), respectively.

Now, taking the values δ = 34.6◦, Hcr = 3.45 T, and
Mcr = 1.71 (in μB) directly from the experiment for Mn-CAF
compound,11 we can evaluate from Eqs. (8) and (9) the value of
correlation energy �ξ/kB = 7.93 K and the coupling constant
J/kB = 1.20 K, respectively. Both the values are slightly
lower than the �ξ/kB = 8.95 K and J/kB = 1.36(8) K
reported earlier.11 However, this fact can be understood as
the experimental value J/kB = 1.36(8) K was settled on the
basis of the classical model and the fitting procedure which
usually overestimate the coupling constant.20 If the coupling
J is overestimated then the relation (2) may proliferate the
inaccuracy and imply somewhat higher �ξ .

IV. CONCLUSIONS

Our investigation has confirmed that the relative positions
of the anisotropy axes affect the shape of magnetization curves
along different crystallographic directions. The resulting
angle-dependent diagram predicts four areas, each charac-
terized by a specific sequence of the in-field magnetization
patterns. If for a compound studied the shapes of magnetization
curves in the low-temperature range are consistent with those
established in the diagram for a given geometry, then the
compound can be analyzed in terms of the quantum Heisenberg
model with a strong anisotropy.

For the canted antiferromagnet SCM, the values of correla-
tion energy �ξ (H ) decrease linearly with the applied field and
vanish at Hcr, which coincides with the intersection point of
the MM-type magnetization profiles. The coordinates Hcr and
Mcr of this special point determine the zero-field correlation
energy �ξ , which in turn reveals the classical dependence on
the canting angle δ and the coupling J . These findings relate
the J value to the coordinates Hcr and Mcr and yield a simple
recipe to the evaluation of J . Following these ideas, we have
estimated for the Mn-CAF compound the relevant quantities at
�ξ/kB = 7.93 K and J/kB = 1.20 K, which agree very well
with the values reported earlier.

Our calculations provide some insight into the common
claim that in the strong anisotropy limit the Heisenberg model
can be substituted by the Ising model. We confirm that the
projections of spins onto the axis displaying the MM-type
pattern can be treated as classical Ising-type variables. Then
the rapid jump in the magnetization profile can be related
to formation of an Ising domain wall. Anyway, it is striking
that the quantity �ξ defined in the absence of field can be so
easily settled from the experiment performed in the presence of
field.
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20P. Sobczak, A. Barasiński, G. Kamieniarz, and A. Drzewiński, Phys.
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