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Herein, we compare the thermal vibrations of atoms in select ternary carbides with the formula Mn+1AXn

(“MAX phases,” M = Ti, Cr; A = Al, Si, Ge; X = C, N) as determined from first-principles phonon calculations
to those obtained from high-temperature neutron powder diffraction studies. The transition metal carbides TiC,
TaC, and WC are also studied to test our methodology on simpler carbides. Good qualitative and quantitative
agreement is found between predicted and experimental values for the binary carbides. For all the MAX phases
studied—Ti3SiC2, Ti3GeC2, Ti2AlN, Cr2GeC and Ti4AlN3—density functional theory calculations predict that
the A element vibrates with the highest amplitude and does so anisotropically with a higher amplitude within
the basal plane, which is in line with earlier results from high-temperature neutron diffraction studies. In some
cases, there are quantitative differences in the absolute values between the theoretical and experimental atomic
displacement parameters (ADPs), such as reversal of anisotropy or a systematic offset of temperature-dependent
ADPs. The mode-dependent Grüneisen parameters are also computed to explore the anharmonicity in the system.
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I. INTRODUCTION

The layered ternary Mn+1AXn ceramics (where M is an
early transition metal, A is an A-group element mostly from
IIIA to VIA, X is C or N, and n = 1, 2, or 3, resulting in
211, 312, and 413 stoichiometries) have received considerable
attention recently.1,2 These materials, also known as MAX
phases, crystallize in the space group P 63/mmc and contain
nanolaminated layers that lead to an unusual combination
of properties, including high thermal and electrical conduc-
tivities, relatively low Vickers hardness values, exceptional
damage tolerance and thermal shock resistance, thermal
stability, high stiffness, and excellent damping capabilities.1,2

The focus of this study is the role of atomic thermal
vibrations, or the displacement of atoms from their equilibrium
positions, as a function of temperature. Atomic motion is
central to many properties and is especially important in con-
sidering high temperature damping and transport properties,
both electrical and thermal. This work is a continuation of our
work aiming to understand the thermal properties of the MAX
phases, primarily using high temperature neutron diffraction
(HTND). Using this technique, we reported on the thermal
properties of Ti3SiC2,3,4 Ti3GeC2,3 Ti2AlN,5 Cr2GeC,5 and
Ti4AlN3.6 These results showed that the A-group elements (Si,
Ge, and Al in these cases) vibrate with the highest amplitude,
acting as “rattlers” due to their weak bonds relative to the
stronger M-X bonds. It is this rattling effect that is believed to
be responsible for the low phonon conductivities of the MAX
phases composed of elements heavier than Al, despite their
high specific stiffness values and high Debye temperatures.1,7,8

In a first-principles study of the thermal properties of the
312 MAX phases Ti3SiC2, Ti3AlC2, and Ti3GeC2 by Togo
et al. in 2010, it was found that the unusual low-frequency
phonon states are likely due to the high-amplitude atomic

vibrations of the A elements, Si, Al, and Ge, respectively.9

It was also found that the corresponding atomic motions for
these low-frequency bands at the K point in the Brillouin zone
can be represented as the A-group atoms orbiting around their
average positions. At the M point, the phonon modes can be
represented as transverse oscillations of the A and Ti atoms
parallel to one another within the basal planes. Furthermore,
the atomic motion of the A and Ti atoms at these phonon modes
were shown to be synchronized. The shapes of the localized
bands were slightly different among the three compounds
studied by Togo et al., suggesting slightly different correlated
motion behavior.

Experimental evidence for this phenomenon came about
later that year in a HTND study of Ti3SiC2 and Ti3GeC2,3

in which anomalous mean bond lengths determined from
Rietveld analysis of the time-of-flight data were observed in
Ti3GeC2 during heating. This anomalous bond length behavior
was reminiscent of that observed in quartz by Tucker et al. in
2001,10,11 where the apparent decrease in bond lengths with
increasing temperatures was attributed to a difference between
the instantaneous and average atomic positions due to rigid unit
modes (RUMs).12 While it is not believed that these RUMs
exist in the MAX phases—since typically they occur when
tetrahedra are corner-sharing while in the MAX phases the
octahedra are edge-sharing—it was postulated that other high-
temperature phenomena may have caused a difference between
the instantaneous and average bond lengths. Using the experi-
mental anisotropic atomic displacement parameters (ADPs) to
estimate the atom positions during thermal motion—and from
those the instantaneous interatomic distances between atoms
during their presumed synchronized motion—it was shown
that the correlated atomic motion modeled by Togo et al.,9

discussed previously, could explain the results. While Ti3SiC2

did not show anomalous bond expansions, it was also shown
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that the correlated motion indicated by the anisotropic ADPs,
which were different from those in Ti3GeC2 in amplitude and
direction, would not lead to differences between instantaneous
and space-averaged interatomic distances.

Another clue may come from results from resonant ultra-
sound spectroscopy (RUS) experiments, which showed that
ultrasonic attenuation (damping) increases dramatically at a
characteristic temperature in some MAX phases when they
are heated.13 For Ti3SiC2 and most of the other MAX phases
studied, the temperature at which this occurred was close to
their brittle-to-plastic transition temperature (∼1273 K); for
Ti3GeC2, which was the only exception, this temperature was
significantly lower (∼700 K). No explanation for this effect
is currently available, but defects such as Ge vacancies or
a 2-D “melting” of the Ge layers were suggested and may
be related to the aforementioned differences indicated by the
HTND study.3

By now it is clear that there is a phenomenon—most
likely related to correlated thermal motion—occurring in
bulk Ti3GeC2 at high temperatures. The increased ultrasonic
attenuation at unusually low temperatures from the RUS
experiments,13 as well as the abnormal bond lengths observed
by Rietveld analysis of HTND data,3 have provided the
first indications, along with the theoretical studies through
first-principles phonon calculations.9 Any combination of
effects, including vacancies, microstructure, secondary phases,
preferred orientation, and/or other defects, may also play a
role. These comments notwithstanding, the reasons for the
differences between Ti3GeC2 and Ti3SiC2 are still unclear.
Further experimental and theoretical work is needed to fully
understand the nature and consequences of the proposed
correlated atomic motion in the MAX phases. As far as
theoretical work, this phenomenon is heavily dependent on
the phonon spectrum, and therefore first-principles phonon
calculations serve as a useful tool in investigating the nature
of these vibrations. While the phonon spectrum has been used
to investigate the thermal expansion and heat capacities of
Ti3GeC2, Ti3AlC2, and Ti3GeC2 in Ref. 9, no relationship
to the actual atomic displacements was shown. Previously,
first-principles phonon calculations have been used to predict
the thermal atomic displacements in other systems including
SiO2,14,15 MgB2,16 skutterdites,17,18 CoO,19 NaAlH4,20 and
gold nanoparticles.21 To our knowledge, the mean-squared
atomic displacements have not been calculated from first-
principles phonon calculations for any carbides or nitrides.

Herein, we show that the mean-squared ADPs can be
directly calculated and compared to the experimentally de-
termined ones. We report on the temperature dependence of
the ADPs of a number of MAX phases based on the phonon
spectrum determined from first-principles calculations based
on density functional theory (DFT).

Titanium carbide, TiC, and tungsten carbide, WC, are
also studied with first-principles calculations and HTND for
benchmarking and as validation for our experimental and
theoretical methodologies. TiC is chosen for its similarity
in chemistry to the MAX phases studied herein, and WC
is studied to test our methodology on a hexagonal system.
WC crystallizes in a hexagonal structure with space group
P 6̄m2. Both TiC and WC were measured on the same neutron
diffractometer as the MAX phases. The same data refinement

strategy is also used. Tantalum carbide, TaC, is also studied
with first-principles phonon calculations for comparison with
another recent HTND paper in which its ADPs were reported
in order to evaluate our results against neutron diffraction data
from another diffractometer.22

II. METHODS

A. Computational details

For phonon calculations, 2 × 2 × 1 supercells were used,
which consisted of 24, 32, and 48 atoms for the 211, 312,
and 413 phases, respectively. For TaC and TiC, 2 × 2 × 2
supercells consisting of 64 atoms were used; for WC, a 2 ×
2 × 2 supercell with 16 atoms was used. The DFT calculations
were performed using the projector-augmented wave (PAW)23

method, as implemented in the Vienna Ab initio Simula-
tion Package (VASP) code.24–26 The exchange-correlation
functional used was the Perdew–Burke–Ernzerhof (PBE)
generalized gradient approximation (GGA).27 The plane-wave
cutoff was set to 500 eV, and the total energy was converged
to 10−8 eV with a �-centered k-point grid of 6 × 6 × 4.

Real-space force constants in the supercells were calculated
using density functional perturbation theory (DFPT)28 imple-
mented in the VASP code. The frequencies were calculated
from the force constants using the phonopy code.29,30

The displacements of atoms from their equilibrium posi-
tions, �uτ,l(t) are written in terms of annihilation and creation
operators as

�uα
τ,l = 1√

MτN

∑
q,p

exp(i �qrτ,l)�eα
p(τ,q)

√
h̄

2ωp(q)

× (ap(q) exp(−iωp(q)t) + a†
p(−q) exp(iωp(q)t))

(1)

where τ and l indices refer to the summation over the atoms
and unit cells in the periodic crystal, respectively, and rτ,l is
the atomic position of atom τ in the lth unit cell. Mτ is the
mass of the atom and N is the number of atoms. α is the
Cartesian component, t is time, q is the wave vector, p is
the band index, ωp(q) is the frequency of mode (q,p) and
�eα
p(q) are the eigenvectors of the dynamical matrix. Using

the completeness and commutations relations for creation and
annihilation operators, for any given atom τ we obtain the
average displacement as an expectation value,〈∣∣�uα

τ

∣∣〉2 = 〈�uα
τ · �uα

τ

〉
= 1

MτN

∑
q,p

�eα
p(q) · �eα

p(−q)
h̄

2ωp(q)
(1 + 2np(q)). (2)

Here ωp(q) is the phonon frequency, and np(q) is the phonon
population of mode (q, p):

np(q) = 1

exp
(

h̄ωp(q)
kBT

)
− 1

. (3)

〈|�uα|〉2 estimates the mean-squared displacement of an atom
from its equilibrium position in a given direction. Experi-
mentally the mean-squared displacements are represented as
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FIG. 1. (Color online) Temperature dependence of mean-squared displacement parameters in select binary carbides showing values
calculated from first-principles calculations (lines) and experimental values from HTND (markers): (a) Uiso for Ti and C atoms in TiC, (b) Uiso

for Ta and C in TaC, where the markers show the average Uiso for Ta and C from Ref. 22, and (c) Ueq for W and C atoms in WC. Insets show
the crystal structures for each phase. The full scale in these figures is plotted to coincide with those of all other figures in this paper.

Uij = 〈ui
τ 〉〈uj

τ 〉 (i,j = 1,2,3), and U11, U22, and U33 are the
ADPs in the a, b, and c directions, respectively. Note that given
hexagonal symmetry, U11 = U22.

To explore the effect of vacancies on thermal motion, the
ADPs are also calculated for a 2 × 2 × 1 Ti3GeC2 supercell
with one vacant Ge site, representing a material with 12.5%
ordered vacancies. The break in symmetry results in 35
single displacements, and the frozen phonon method was
used to compute the forces induced by finite displacement
through the Hellmann-Feynman theorem. The frequencies are
calculated from the force constants using the phonopy code,
and the temperature-dependent uij values are calculated from
Eqs. (1)–(3).

The mode-dependent Grüneisen parameters are also cal-
culated from first-principles phonon calculations at three
different volumes to explore anharmonic contributions. For
each phonon (wave vector q and band p), the Grüneisen
parameter, γ , which expresses the volume dependence of
the mode frequency, is calculated by computing the phonon
frequencies at three different volumes and then using the
following approximation:

γp(q) = − V

ωp(q)

dωp(q)

dV

� − V

2(ωp(q))2

〈
ep(q)

∣∣∣∣�D(q)

�V

∣∣∣∣ ep(q)

〉
, (4)

where V is the periodic cell volume and ωp(q) is the phonon
frequency of the mode.

B. Experimental details

The HTND experiments for TiC, WC, Ti2AlN, Cr2GeC,
Ti3GeC2, and Ti3SiC2 were conducted on the High-Pressure
Preferred Orientation (HIPPO) Neutron Diffractometer31,32 at
the Lujan Neutron Scattering Center, Los Alamos National
Laboratory. Information about the experiments and samples
can be found in Ref. 3 for Ti3SiC2 and Ti3GeC2 and in Ref. 5
for Ti2AlN and Cr2GeC.

In contrast to the bulk MAX phase samples used, commer-
cially obtained powders were used for TiC (Sigma Aldrich,

�4 μm powder, �95% purity) and WC (Alfa Aesar, 99% pu-
rity, − 100 + 270 mesh powder). Powder samples were placed
in a 9-mm-diameter, 0.15-mm wall thickness holder, mounted
in an ILL-type high-temperature vacuum furnace with a
vanadium setup, and heated at a rate of 20 ◦C/minute. Time-
of-flight data were collected at room temperature and then
every 100 ◦C starting at 100 ◦C upon heating up to 1000 ◦C,
and every 200 ◦C upon cooling to quantify the reproducibity
of our experimental data. At each temperature, neutrons were
detected with 42 detector panels of 3He detector tubes arranged
on five rings with nominal diffraction angles of 39, 60, 90, 120,
and 144 degrees. For TiC, the sample was measured at rotation
angles of 0, 45, and 90 degrees around the vertical axis to allow
for a full texture analysis at each temperature.

The neutron data were analyzed with the Rietveld method
using the General Structure Analysis System (GSAS).33 The
script-controlled refinement strategy, implemented by the
gsaslanguage refinement script language,34 insured that iden-
tical refinement strategies were used on all samples measured
on the HIPPO. The instrument alignment (DIFC parameter
in GSAS) was fixed for the highest-resolution detector bank
(backscattering at 144◦) and refined for all other banks for
the lowest temperature runs, then fixed for all banks for the

FIG. 2. (Color online) Temperature evolution of anisotropic
ADPs U11 (blue triangles) and U33 (red plus signs) of (a) W
and (b) C in WC. Solid lines show DFT predictions; markers show
experimental values determined from HTND.
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(a) (b) (c)

FIG. 3. (Color online) Temperature evolution of anisotropic ADPs. U11 (blue triangles) and U33 (red plus signs) of (a) Ti, (b) Al, and (c) N
atoms in Ti2AlN. Solid lines show DFT predictions; markers show experimental values determined from HTND in Ref. 5.

subsequent runs. Refined parameters for the binary carbides
were 16 background parameters of GSAS background function
#1, lattice parameters of all phases, instrument calibration
(only for the first run), peak width, absorption, and thermal
motion parameters. For the MAX phases studied in Refs. 3
and 5, phase fractions and lattice parameters of secondary
phases and symmetry-constrained atomic positions were also
refined.

For Ti4AlN3, HTND experiments were conducted on the
High Flux Isotope Reactor (HFIR) at the HB-4, high-resolution
neutron powder diffractometer. Experimental details and sam-
ple synthesis information can be found elsewhere.6 Note that
the actual chemistry of the Ti4AlN3 sample was Ti4AlN2.9.

III. RESULTS AND DISCUSSION

We begin our study on the relatively simple systems, TiC
and TaC, which have cubic NaCl-type structures (space group
Fm3m). For TiC, we compare the temperature dependence
of the mean-squared displacements calculated from first-
principles phonon calculations with those obtained from
HTND. For cubic structures, the thermal motion is represented
as an isotropic ADP, Uiso, which is the mean square of the
displacement of an atom in all directions. Figure 1(a) shows

that the calculated temperature dependencies of Uiso (lines)
are close to the experimental values determined from the
HTND carried out herein (symbols), lending credibility to our
methodology for this cubic binary system. Both prediction and
experiment show nearly the same ADPs for both atoms.

For TaC, we compare the calculated mean-squared dis-
placements with a recent HTND study by Nakamura and
Yashima,22 where the isotropic ADPs were estimated from
Rietveld refinement of HTND data on single phase TaC. Since
the error bars for Uiso were large in that study, the final
refinement assumed UTa = UC. Herein the atomic isotropic
thermal displacement values are predicted individually for Ta
and C, shown in Fig. 1(b) by the blue solid line and black
dashed line, respectively. The predicted ADPs for Ta and C
are averaged to yield average isotropic ADPs, also shown in
Fig. 1(b) (gray dotted line), which are compared with the
average Uiso values determined from the study in Ref. 22
(gray circles). Note that the y axis limits are chosen to be
identical for Figs. 1–7, where all ADP plots are shown from 0 to
0.05 Å2 for comparison.

The predicted and experimental ADP values for TaC are in
good agreement, but on this instrument (in the experimental
study in Ref. 22) the temperature dependence shows a more
nonlinear behavior at lower temperatures. The extent by which

(a) (b) (c)

FIG. 4. (Color online) Temperature evolution of anisotropic ADPs U11 (blue triangles) and U33 (red plus signs) of (a) Cr, (b) Ge, and (c) C
atoms in Cr2GeC. Solid lines show DFT predictions; markers show experimental values determined from HTND in Ref. 5.
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the experimental parameters deviate from the predicted values
provide a reference point for the precision of the calculations
and the errors involved for simple, single-phase cubic systems
on the medium resolution neutron diffractometers used for
these studies.

To compare the overall amplitudes of vibration of the W
and C atoms, the anisotropic ADPs, Uij , were converted to
equivalent thermal displacement parameters, Ueq, assuming

Ueq = 1/3 (U11 + U22 + U33 − U12) . (5)

Figure 1(c) plots the temperature dependence of the Ueq

values calculated from first-principles phonon calculations for
W (solid blue line) and C (dashed black line). The experimental
values are represented by blue squares and open circles for
W and C, respectively. The agreement between theory and
experiment is excellent, with C showing higher amplitudes of
vibration in both the predicted and measured results.

To study the directional amplitudes of vibration, we also
calculated the anisotropic ADPs, Uij , plotted in Figs. 2(a)
and 2(b) for W and C, respectively. Generally, the predicted
values agree well with the experimentally determined ADPs.
For C [Fig. 2(b)], the anisotropy is reversed for theory and
experiment, i.e., U11 > U33 according to predictions, while the
opposite is observed from the HTND experiments. However,
in general, the calculated values show relatively isotropic
behavior (U11/U33 = 1.1), so this may be an indication of the
uncertainty in the degree of anisotropy for both experimental
and theoretical ADPs when the differences between U11 and
U33 are small.

From the results shown in Figs. 1 and 2, it is evident that for
the binary carbides, experimental and first-principles phonon

FIG. 5. (Color online) Temperature evolution of anisotropic
ADPs U11 (blue triangles) and U33 (red plus signs) of (a) TiI,
(b) TiII, (c) Si, and (d) C atoms in Ti3SiC2. Solid lines show DFT
predictions; markers show experimental values determined from
HTND in Ref. 3.

FIG. 6. (Color online) Temperature evolution of anisotropic
ADPs U11 (blue triangles) and U33 (red plus signs) of (a) TiI, (b) TiII,
(c) Ge, and (d) C atoms in Ti3GeC2. Solid lines show first-principles
predictions for a perfect crystal, dashed lines show DFT predictions
for a supercell with 12.5%-ordered Ge vacancies, and markers show
experimental values determined from HTND in Ref. 3.

calculations agree reasonably well. The main focus of this
work, however, is the MAX phases. Figures 3–7 show the
ADPs for the five select MAX phases studied herein, including

FIG. 7. (Color online) Temperature evolution of anisotropic
ADPs U11 (blue triangles) and U33 (red plus signs) of (a) TiI,
(b) TiII, (c) Al, (d) NI, and (e) NII atoms in Ti4AlN3. Solid lines show
DFT predictions; markers show experimental values determined from
HTND in Ref. 6.
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FIG. 8. (Color online) Partial phonon density of states of
(a) Ti3SiC2, (b) Ti3GeC2, (c) Ti2AlN, (d) Cr2GeC, and (e) Ti4AlN3.

two 211 phases (Figs. 3 and 4), two 312 phases (Figs. 5
and 6), and one 413 phase (Fig. 7). Values determined from
first-principles phonon calculations (solid lines) are shown
along with experimental values from Rietveld analysis of
neutron time-of-flight data.3,5,6 The statistical uncertainties of
the refined parameters result in error bars typically of the size
of the symbols due to the scale used. In most cases where there
is observed scatter the error bars are visibly larger, as in TiI
and TiI in Ti3GeC2 [Figs. 6(a) and 6(b), respectively] and TiI,
TiII, Al, and NI in Ti4AlN3 [Figs. 7(a)–7(d)]. We note that in
some cases the observed scatter is greater than the error bars,
indicating systematic errors such as parameter correlations,
which we could not avoid in our refinement model.

Based on the totality of these results it is reasonable to
conclude that for this relatively diverse set of MAX phases,
qualitative agreement between the calculated and measured
ADPs is achieved. In all cases, both the DFT predictions and
HTND measurements show that the A atom vibrates with the
highest amplitude, vibrating within the basal plane, i.e., U11 >

U33. This is in line with the notion of the A-group elements

FIG. 9. (Color online) Comparison of 99% probability thermal
ellipsoids of atoms in Ti3SiC2 at 1373 K representing, (a) experimen-
tal and (b) predicted ADPs; (c) and (d) represent the experimental and
predicted thermal atomic displacements, respectively, for Ti3GeC2 at
1273 K.

acting as “rattlers,” which is consistent with the low phonon
conductivity of many MAX phases.1,7,8

With a few exceptions (see below), when the experiments
show that U11 > U33, theory shows the same. This is especially
true of the cases where there is a large difference between the
Uij values, i.e., large anisotropy, mostly of the A atoms, such
as in Figs. 3(b) (Al in Ti2AlC), 4(b) (Ge in Cr2GeC), 4(c) (C
in Cr2GeC), 5(c) (Si in Ti3SiC2), 6(c) (Ge in Ti3GeC2), and
7(c) (Al in Ti4AlN3). Most of the discrepancies, on the other
hand, occur for atoms with nearly isotropic thermal motion,
i.e., for which the differences between the predicted Uij

values are small, such as in Figs. 4(a) (Cr in Cr2GeC), 5(a)
and 5(b) (Ti in Ti3SiC2), 6(a) and 6(b) (Ti in Ti3GeC2), and
7(a) (Ti in Ti4AlN3). It should be noted that Ti and Cr are both
relatively weak neutron scatterers (for Ti, σc = 1.485b; for Cr,
σc = 1.66b),35 and, therefore, other errors could influence the
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FIG. 10. (Color online) The band structure (bottom) and the mode-dependent Grüneisen parameters (top) for (a) Ti3SiC2 and (b) Ti3GeC2.
The colors in the plots of the Grüneisen parameters are color coded according to ωp(M → K), which refers the frequency of the band between
the M and K point. Red diamonds correspond to the localized phonon modes of Si and Ge below 5 THz; blue circles correspond to the
frequencies between 5 and 15 THz, and black squares represent the localized phonon modes of C above 15 THz.

refined Uij values in the data analysis. Relatively weak
scattering power of an element translates to fewer constraints
of the structural parameters of those atoms by the experimental
diffraction data, manifesting itself as deviations such as larger
error bars and more scatter of the values for thermal motion
as a function of temperature. For all cases where there
is qualitative agreement between predicted and calculated
values, the atoms are relatively good neutron scatterers
(σc > 2b for Si, Ge, and C).

In general, the anisotropy of the calculated average thermal
motion agrees with the HTND data, at least for the A

atoms. Beyond the agreement in the general trends, there
are some slight differences hinting at phenomena that are not
accounted for in the harmonic approximation of our Rietveld
model. Focusing on the ADPs of A-group elements, since
they are the highest, it is interesting that both Al-containing
phases (Ti2AlN, Fig. 3; Ti4AlN3, Fig. 7) generally show
good agreement between theory and experiment, where the
anisotropy is well represented by our calculations, with a
small offset in magnitude for Ti2AlN. On the other hand,
in both Ge-containing phases (Cr2GeC, Fig. 4; Ti3GeC2,
Fig. 6), U11 for Ge is experimentally observed to be higher
than calculated, while U33 shows excellent agreement with
first-principles calculations. The reverse is true for Si in
Ti3SiC2 (Fig. 5), where U33 determined experimentally is

higher than the calculated values, while U11 agrees well with
first-principles calculations.

From the phonon partial density of states (Fig. 8), it can
be seen that the phonon frequencies of the Ge states are
lower than those of the Al and Si states since Ge is heavier.
Furthermore, the spread of the Si and Al states [Figs. 8(a), 8(c),
and 8(e)] indicates more delocalization since the eigenvectors
of the dynamical matrix indicate that the lower-frequency
states consist of atomic vibrations within the basal plane,
while the higher-frequency states are vibrations perpendicular
to the basal plane. In Ti3SiC2, the Si atom vibrating within
the basal plane, represented by the localized peak between 3
and 6 THz, is highly localized. Note that in Ref. 9, where
a 4 × 4 × 1 supercell was used, this band is even narrower.
This localized peak manifests itself as a higher degree of
anisotropy for Si thermal vibrations than for Ge, as determined
by first-principles calculations [compare Figs. 5(c) and 6(c)].
Experimentally this is not observed,3 which suggests either
anharmonic effects that are not accounted for in our model,
discrepancies in our force calculations due to assumptions
within DFT, or defects in Ti3GeC2 (likely Ge vacancies or
stacking faults) that may cause the vibrations to shift in
amplitude and direction.

Looking more closely at the two 312 phases studied herein
(Ti3SiC2 in Fig. 5; Ti3GeC2 in Fig. 6), the phonon calculations
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predict that Si exhibits the highest amplitude of vibration,
while this was not observed from the HTND experiments.
This is apparent from the thermal ellipsoid representation of
the displacements (Fig. 9). While the calculated displacements
(right) clearly show that thermal vibrations of the Si atom (top)
should be larger than the Ge (bottom), the Uij s determined
from HTND (left) show that the Ge ellipsoids are more
“flattened” and have a higher amplitude within the basal plane.

The reason for this state of affairs is unclear at this time.
Sources for the discrepancies observed likely come from
experimental conditions that are not taken into account in
the first-principles phonon calculations herein such as defects
which are most likely in the A layer. Very recent experimental
studies on Ti3GeC2 thin films have suggested samples to be
Ge-deficient,36 which was also postulated to be responsible for
the high damping measured through RUS.13 To explore this,
the estimated ADPs for Ti3GeC2 with Ge vacancies are shown
in Fig. 6 as dashed lines. From these results, it is clear that
vacancies on the A site could lead to a shift in the temperature-
dependent ADPs, which is more in line with those observed
experimentally—most notably, an increase in the U11 to U33

ratio for Ge. From the HTND experiments, U11/U33 for Ge is
3.2, while the ratio predicted by DFT calculations is 2.7 for a
perfect crystal and 3.1 for one containing 12.5% vacancies.

The aforementioned discrepancies may also originate from
anharmonicity, which is not taken into account in our DFT
calculations. To explore this, we calculated the frequency
dispersion of the Grüneisen parameter [Eq. (4)], which is
shown in Figs. 10(a) and 10(b) for Ti3SiC2 and Ti3GeC2,
respectively, along with their phonon band structures. The
bands and corresponding Grüneisen parameter curves are
color coded to distinguish between the bands for the Grüneisen
parameter dispersions. The red points in Fig. 10 represent the
localized modes of Si and Ge below, which correspond to the
red PDOS curves below 5 THz shown in Figs. 8(a) and 8(b).
The localized phonon modes of C abve 15 THz (see PDOS for
C in Figs. 8(a) and 8(b)) are shown as black points in Fig. 10.

For most of the modes in the spectrum, the Grüneisen
parameter has a common value, below two. This gives an
average value over the Brillouin zone (1.45 in both cases)
that would lead to the conclusion that Ti3SiC2 and Ti3GeC2

are harmonic compounds to a good approximation. However
for the low-frequency modes involving the A and M atoms
in red (solid line) and green (dashed-dotted line) in Fig. 8,
the Grüneisen parameters are larger. This in turn suggests
that the interatomic potential V between M and A atoms
is anharmonic because the Grüneisen parameter is propor-
tional to V ′′′/V ′′. This anharmonicity could contribute to the

differences observed. In fact even if anharmonicity is usually
evidenced experimentally by a quadratic dependence in the
averaged squared displacement, it also modifies the coefficient
of the linear term through renormalization of the frequencies.
Therefore, we have shown that both anharmonicity and the
presence of vacancies could play a role, and have to be
considered, in the study of atomic motion.

More work is needed, however, to understand which one is
dominant and to lead to better agreement between theory and
experiment. Progress can also be made on the experimental
side because there are likely phenomena that cannot be
described by the average structure derived from Rietveld
analysis of the real-space diffraction patterns but might be
accessible by maximum-entropy methods, as described by
Izumi et al.37

IV. SUMMARY AND CONCLUSIONS

We have developed a method for calculating the anisotropic
mean-squared atomic thermal displacements through first-
principles phonon calculations and applied it to select MX and
MAX phases. Good qualitative agreement is found between our
predictions and HTND experimental results. The frequency
dispersions of the Grüneisen parameters for Ti3SiC2 and
Ti3GeC2 suggest anharmonic interactions between the M and
A atoms. The reasons for the quantitative discrepancies be-
tween predicted and measured parameters are not completely
clear at this time but are most likely related to point defects
and/or anharmonic effects.

ACKNOWLEDGMENTS

This work was partially funded by the Integrated Graduate
Education and Research Traineeship (IGERT) under NSF
Grant No. DGE-0654313. This work was also supported by the
Swedish Foundation for Strategic Research (SSF), Research
Council (VR), and Government Strategic Research Area Grant
in Materials Science. This work has benefited from the use
of the Lujan Neutron Scattering Center at LANSCE, which
is funded by the U.S. Department of Energy’s Office of Basic
Energy Sciences. Los Alamos National Laboratory is operated
by Los Alamos National Security LLC under DOE Contract
No. DE-AC52-06NA25396. High performance computing
resources that have contributed to the research results reported
within this paper were provided through the Extreme Science
and Engineering Discovery Environment (XSEDE), which
is supported by NSF Grant No. OCI-1053575. The authors
gratefully acknowledge the valuable comments of the referee
and helpful discussions with J. M. Rondinelli and E. Caspi.

*Corresponding author: lane@drexel.edu
1M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).
2M. W. Barsoum and M. Radovic, Annu. Rev. Mater. Res. 41, 195
(2011).

3N. J. Lane, S. C. Vogel, and M. W. Barsoum, Phys. Rev. B 82,
174109 (2010).

4M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H. Wang,
E. A. Payzant, and C. R. Hubbard, J. Phys. Chem. Solids 60, 429
(1999).

5N. J. Lane, S. C. Vogel, and M. W. Barsoum, J. Am. Ceram. Soc.
94, 3473 (2011).

6M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D.
Porter, H. Wang, and C. R. Hubbard, J. Appl. Phys. 87, 8407 (2000).

7P. Finkel, B. Seaman, K. Harrell, J. Palma, J. D. Hettinger, S. E.
Lofland, A. Ganguly, M. W. Barsoum, Z. Sun, S. Li, and R. Ahuja,
Phys. Rev. B 70, 085104 (2004).

8M. K. Drulis, A. Czopnik, H. Drulis, J. E. Spanier, A. Ganguly, and
M. W. Barsoum, Mater. Sci. Eng. B 119, 159 (2005).

214301-8

http://dx.doi.org/10.1016/S0079-6786(00)00006-6
http://dx.doi.org/10.1146/annurev-matsci-062910-100448
http://dx.doi.org/10.1146/annurev-matsci-062910-100448
http://dx.doi.org/10.1103/PhysRevB.82.174109
http://dx.doi.org/10.1103/PhysRevB.82.174109
http://dx.doi.org/10.1016/S0022-3697(98)00313-8
http://dx.doi.org/10.1016/S0022-3697(98)00313-8
http://dx.doi.org/10.1111/j.1551-2916.2011.04609.x
http://dx.doi.org/10.1111/j.1551-2916.2011.04609.x
http://dx.doi.org/10.1063/1.373555
http://dx.doi.org/10.1103/PhysRevB.70.085104
http://dx.doi.org/10.1016/j.mseb.2005.02.045


NEUTRON DIFFRACTION MEASUREMENTS AND FIRST- . . . PHYSICAL REVIEW B 86, 214301 (2012)

9A. Togo, L. Chaput, I. Tanaka, and G. Hug, Phys. Rev. B 81, 174301
(2010).

10M. G. Tucker, D. A. Keen, and M. T. Dove, Mineral Mag 65, 489
(2001).

11M. G. Tucker, M. T. Dove, and D. A. Keen, J. Phys.: Condens.
Matter 12, L425 (2000).

12K. D. Hammonds, M. T. Dove, A. P. Giddy, V. Heine, and
B. Winkler, Am. Mineral. 81, 1057 (1996).

13M. Radovic, M. W. Barsoum, A. Ganguly, T. Zhen, P. Finkel,
S. R. Kalidindi, and E. Lara-Curzio, Acta Mater. 54, 2757
(2006).

14A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. B 57, 14133
(1998).

15A. Bosak, M. Krisch, D. Chernyshov, B. Winkler, V. Milman,
K. Refson, and C. Schulze-Briese, Z. Kristallogr. 227, 84 (2011).

16G. Campi, E. Cappelluti, T. Proffen, X. Qiu, E. S. Bozin, S. J. L.
Billinge, S. Agrestini, N. L. Saini, and A. Bianconi, Eur. Phys. J. B
52, 15 (2006).

17N. Bernstein, J. L. Feldman, and D. J. Singh, Phys. Rev. B 81,
134301 (2010).

18M. M. Koza, L. Capogna, A. Leithe-Jasper, H. Rosner, W. Schnelle,
H. Mutka, M. R. Johnson, C. Ritter, and Y. Grin, Phys. Rev. B 81,
174302 (2010).

19U. D. Wdowik and K. Parlinski, J. Phys.: Condens. Matter 21,
275402 (2009).

20A. Peles and M. Y. Chou, Phys. Rev. B 73, 184302 (2006).

21G. Shafai, M. A. Ortigoza, and T. S. Rahman, J. Phys.: Condens.
Matter 24, 104026 (2012).

22M. Yashima and K. Nakamura, Mater. Sci. Eng. B 148, 69 (2008).
23P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
24G. Kresse, J. Non-Cryst. Solids 192-193, 222 (1995).
25G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
26G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
27J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
28S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).
29A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
30A. Togo, Phonopy, http://phonopy.sourceforge.net/.
31H. R. Wenk, L. Lutterotti, and S. Vogel, Nucl. Instrum. Methods

Phys. Res. A 515, 575 (2003).
32S. C. Vogel, C. Hartig, L. Lutterotti, R. B. Von Dreele, H. R. Wenk,

and D. J. Williams, Powder Diffr. 19, 65 (2004).
33A. C. Larson and R. B. V. Dreele, General Structure Analysis

System GSAS, Los Alamos National Laboratory Report LAUR
86-748, 2004).

34S. C. Vogel, J. Appl. Crystallogr. 44, 873 (2011).
35V. F. Sears, Neutron News 3, 26 (1992).
36K. Buchholt, P. Eklund, J. Jensen, J. Lu, R. Ghandi, M. Domeij,

C. M. Zetterling, G. Behan, H. Zhang, A. Lloyd Spetz, and
L. Hultman, J. Cryst. Growth 343, 133 (2012).

37F. Izumi, Solid State Ionics 172, 1 (2004).

214301-9

http://dx.doi.org/10.1103/PhysRevB.81.174301
http://dx.doi.org/10.1103/PhysRevB.81.174301
http://dx.doi.org/10.1180/002646101750377524
http://dx.doi.org/10.1180/002646101750377524
http://dx.doi.org/10.1088/0953-8984/12/26/101
http://dx.doi.org/10.1088/0953-8984/12/26/101
http://dx.doi.org/10.1016/j.actamat.2006.02.019
http://dx.doi.org/10.1016/j.actamat.2006.02.019
http://dx.doi.org/10.1103/PhysRevB.57.14133
http://dx.doi.org/10.1103/PhysRevB.57.14133
http://dx.doi.org/10.1524/zkri.2012.1432
http://dx.doi.org/10.1140/epjb/e2006-00269-7
http://dx.doi.org/10.1140/epjb/e2006-00269-7
http://dx.doi.org/10.1103/PhysRevB.81.134301
http://dx.doi.org/10.1103/PhysRevB.81.134301
http://dx.doi.org/10.1103/PhysRevB.81.174302
http://dx.doi.org/10.1103/PhysRevB.81.174302
http://dx.doi.org/10.1088/0953-8984/21/27/275402
http://dx.doi.org/10.1088/0953-8984/21/27/275402
http://dx.doi.org/10.1103/PhysRevB.73.184302
http://dx.doi.org/10.1088/0953-8984/24/10/104026
http://dx.doi.org/10.1088/0953-8984/24/10/104026
http://dx.doi.org/10.1016/j.mseb.2007.09.040
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1016/0022-3093(95)00355-X
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.78.134106
http://phonopy.sourceforge.net/
http://dx.doi.org/10.1016/j.nima.2003.05.001
http://dx.doi.org/10.1016/j.nima.2003.05.001
http://dx.doi.org/10.1154/1.1649961
http://dx.doi.org/10.1107/S0021889811023181
http://dx.doi.org/10.1080/10448639208218770
http://dx.doi.org/10.1016/j.jcrysgro.2012.01.020
http://dx.doi.org/10.1016/j.ssi.2004.04.023



