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Confined fluid and the fluid-solid transition: Evidence from absolute free energy calculations
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The debate on whether an organic fluid nanoconfined by mica sheets will undergo a fluid-to-solid transition
as the fluid film thickness is reduced below a critical value has lasted over two decades. Extensive experimental
and simulation investigations have thus far left this question only partially addressed. In this work, we adapt
and apply absolute free energy calculations to analyze the phase behavior of a simple model for nanoconfined
fluids, consisting of spherical Lennard-Jones (LJ) molecules confined between LJ solid walls, which we use in
combination with grand-canonical molecular dynamics simulations. Absolute Helmholtz free energy calculations
of the simulated nanoconfined systems directly support the existence of order-disorder phase transition as a
function of decreasing wall separation, providing results in close agreement with previous experiments and
detailed atomistic simulations.
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I. INTRODUCTION

Nanoconfined fluids are important in a wide range of
applications, including adsorption in industrial processes and
the lubrication of computer hard drives and artificial joints.1–3

Since the early 1990s, there has been a debate over whether
an organic fluid transitions from a disordered, liquid state
to an ordered solid phase as the separation between the
two confining surfaces, composed of molecularly smooth
mica, drops below a critical value, typically six or seven
molecular diameters. Following the initial observation of
nanoconfinement-induced solidification by Israelachvili and
co-workers using surface force apparatus (SFA),4 surface force
balance (SFB) experiments by Klein and co-workers5–7 on oc-
tamethylcyclotetrasiloxane (OMCTS) nanoconfined between
two atomically smooth mica surfaces suggest a first-order
phase change when the pore separation is reduced from seven
to six molecular layers. In their experiments, they observe
a nonzero yield stress characteristic of a solid, along with a
several-orders-of-magnitude increase in viscosity. However,
experiments by Granick and co-workers8 using SFA instead
suggest a second-order transition; for sufficiently slow rates of
confinement, they did not observe a dramatic viscosity increase
or evidence of a nonzero yield stress. Currently, no agreement
has been reached between these two results, in large part due
to the intrinsic difficulties faced in experiment.9 Specifically,
the confined phase is buried between two solid mica walls with
just a few layers of material contained in this region, which has
thus far made it impossible to directly observe the structure.
Moreover, the discovery of platinum nanoparticles on the mica
surfaces in some experiments10,11 led to a reexamination of
previously published results, with the conclusion that some
experimental findings were potentially compromised.12 More
recent experiments have provided additional insights into this
debate; several studies have found results consistent with the
work of Klein and Kumacheva,13–15 while others have shown
agreement with the conclusions of Granick.16,17 Atomic force
microscopy (AFM), with a much smaller contact area than
SFB and SFA, has also been applied to study the confinement
of organic fluids.18–20 These AFM studies found that the

viscosity of a confined organic fluid stays bulklike down to
three molecular layers before exhibiting enhancements in the
viscosity as the last two fluid layers are expelled;20 these results
are similar to the work of Granick and co-workers, although
it is important to note that pyrolytic graphite confining
surfaces were used rather than mica. However, Mugele and
co-workers21 have raised questions about the suitability of
AFM for the study of confinement-induced solidification.
Specifically, due to the nonmonotonic nature of nanoconfined
fluid properties, they found that the typically assumed relation
between molecular diffusivity and the damping measured by
the AFM tip does not hold for nanoconfined fluids. Over the
last two decades, despite significant advances in experimental
methods,22 there remains no general agreement among major
experimental groups with respect to the existence of a sharp
order-disorder transition as a function of surface separation.

The ability of molecular simulation to resolve the spatial
coordinates of confined particles and eliminate nonidealities
has made it a valuable tool in this debate. Pioneering work,
starting in the early 1990s, revealed confinement-induced
extra ordering in idealized systems.23 More comprehen-
sive investigations, focusing on nanoconfinement-induced
solidification, were initiated in the late 1990s,24,25 em-
ploying models and conditions much closer to experimen-
tal scenarios. These results further support the case of
nanoconfinement-induced solidification and reveal dynamics
and structural shifts due to confinement. Seminal work by
Radhakrishnan and Gubbins26,27 examined the behavior of
a model system composed of Lennard-Jones spheres under
smooth wall confinement, providing strong evidence of the
existence of a first-order phase transition. In particular, their
studies employed umbrella sampling to calculate the relative
free energy difference between a confined disordered phase
and a confined solid phase, demonstrating that the solid phase
was lower in free energy over a wide range of state points. They
additionally demonstrated that the order-disorder transition
temperature shifts to higher values as the wall-fluid interaction
exceeds the fluid-fluid interaction. However, Jabbarzadeh and
co-workers28,29 argued that a metastable high-friction fluid film
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forms rather than a thermodynamically stable solid, supporting
the argument that the transition is second order.

Simulation is not without its own challenges. Most sim-
ulation studies, including the aforementioned work, have
made use of simplified models, which may neglect important
characteristics of the experimental systems. The rigor of these
studies has grown with increasing computational power, such
as the recent simulations by Cummings and co-workers3,30

where fully atomistic models of both the mica surfaces and
confined molecules were used. This recent work demonstrated
the formation of ordered structures at fewer than six layers of
fluid, in close agreement with prior work using simplified
models.31 The surprising conclusion of these atomistically
detailed simulations3,30 is that the order-disorder transition
in nonpolar linear and cyclic alkanes nanoconfined between
mica sheets is driven by electrostatic interactions between the
confined fluid and the mica surfaces. Similar atomistically
detailed simulations of water, a polar solvent, nanoconfined
between mica surfaces further emphasize this, showing that
water does not undergo an order-disorder phase transition until
a separation of one to two water layers,32,33 in agreement
with experimental results.34,35 However, despite advances
in model detail and computational resources, the accessible
length and time scales in simulation are still considerably
limited compared to experiment. This makes it possible that
the observed order-disorder transitions seen in simulations are
not thermodynamically stable over a sufficiently long time or
in sufficiently large systems.

In this work, we employ a combined approach to examine
the behavior of Lennard-Jones (LJ) spheres under nanocon-
finement, using both grand-canonical molecular dynamics
simulations36 and absolute free energy calculations.37,38 Cal-
culations of the free energy are carried out using the Einstein
crystal method,37,38 originally proposed for bulk solids, which
we adapt for nanoconfined systems. The absolute free energy
calculations provide a more conclusive determination of the
stability of the simulation results, providing additional insight
regarding the structure and transitions that occur as a result of
nanoconfinement. In particular, our work focuses on analysis
of the behavior of the “central layers,” i.e., those not in
contact with the pore walls, highlighting their importance in
determining phase transitions.

II. MODEL AND METHODS

We use a simple, generic model of a nanoconfined sys-
tem, composed of identically sized Lennard-Jones spherical
particles (i.e., σ = 1), where all parameters are given in
reduced LJ units based on the mobile fluid particle param-
eters (T � = kBT/εmm, ρ� = ρσ 3). Systems are composed of
two particle species: mobile fluid particles and static wall
particles. The interaction between mobile fluid particles is
fixed at εmm = 1.0 for all simulations, whereas the interaction
between the walls and mobile particles is varied, e.g., εwm =
(1.0, 2.0, 4.0). The upper end of these values provides a
reasonable approximation of the interaction between mica
and organic molecules; previous work has parametrized the
interaction strength of mica-CH2 at εwm ∼ 4.47εmm.25 Walls
are constructed of spheres in a minimum potential energy fcc
structure, corresponding to number density ρ� = 1.0. Walls

FIG. 1. (Color online) Snapshot of a typical GCMD simulation. In
this case, two pores constructed of stationary particles are embedded
within a large bulk fluid, with periodic boundary conditions in all
dimensions

are oriented such that the “ABC” stacking planes are parallel
to the pore interface (i.e., z, the [111] fcc direction, is normal
to the pore wall).

A. GCMD simulations

We perform grand-canonical molecular dynamics (GCMD)
simulations as pioneered by Gao and Landman.36 Our GCMD
simulations consist of a fcc slit nanopore embedded within a
large, rectilinear bulk system, allowing for the free exchange
of particles between the pore and the bulk environment
(see Fig. 1). In the system, most of the total particles exist in
the bulk state with ρ� = 0.85. As a result, particles in the bulk
are essentially unaffected by changes within the pore. Here, we
perform simulations at constant number of particles N , volume
V , and temperature T (i.e., NV T ); while GCMD simulations
are often performed at constant pressure P (i.e., NPT ), the
large size of the bulk fluid makes the use of NPT unnecessary,
as we see negligible changes in system pressure as a function of
time. Here, we perform two different sets of simulations. The
first set of simulations consists of GCMD simulations of 86 000
total particles and are used to investigate the order-disorder
transition and as input to the free energy calculations. These are
performed with both the HOOMD-BLUE (Refs. 39 and 40) and
LAMMPS (Ref. 41) simulation packages using the Nose-Hoover
thermostat with time step = 0.001 in LJ units; HOOMD-BLUE

is used for calculations performed on clusters equipped with
graphical processing units (GPU), whereas LAMMPS is used
for parallel simulations on traditional distributed CPU systems.
Both packages produced indistinguishable results. Simulations
use the XPLOR style shifting, leaving the well depth unchanged
as a result of potential truncation and shifting. The cutoff
of the interaction between mobile particles is set to 3σ ,
where XPLOR shifting starts at 2.75σ . The wall-mobile particle
interaction cutoff is set to 5.0σ , with XPLOR shifting starting at
4.75σ . Since the wall-mobile particle interaction energy will,
in general, exceed the interaction between mobile particles,
a larger cutoff is required to minimize artifacts associated
with truncation. This longer cutoff and XPLOR shifting is also
used to ensure better continuity with free energy calculations.
The second set of simulations consists of large-scale GCMD
simulations with 960 000 and 6 220 000 total particles used
to investigate the effects of surface contact area on ordering.
These simulations are carried out using a hybrid GPU-CPU
version of LAMMPS,41 capable of efficiently scaling to millions
of particles. These simulations also use the Nose-Hoover
thermostat with time step 0.005 and XPLOR shifting.
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FIG. 2. (Color online) Schematic representation of modified tail
correction.

B. Free energy calculations

Absolute Helmholtz free energy (A) calculations for con-
fined solid states are performed using the Einstein crystal
method originally introduced by Frenkel and Ladd37 and
revisited in detail by Vega and co-workers.42,43 This method
allows us to compute the free energy of a given solid structure
by creating an integration path linking it to an Einstein crystal
with the same structure. The Einstein crystal method was
originally proposed for the calculation of bulk solid crystals
and, therefore, modifications are required to properly adapt this
free energy method to nanoconfined systems. Even though our
model system is composed of identically sized LJ spheres,
the strongly differing interaction strengths make the system
heterogeneous. As such, using a standard tail correction in
the nanoconfined system would result in systematic errors,
making it difficult to explicitly compare with, e.g., bulk phases
or different pore heights. To account for this, a modified tail
correction is proposed (shown graphically in Fig. 2):
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where S is the surface area of spherical shell (including the
surface area of the partial sphere in nanoconfined phase and
that in solid wall), rc is the cutoff distance used in potential
calculation, h is the separation, and the subscripts m and
w represent mobile fluid particles and static wall particles,
respectively. A detailed step-by-step derivation and validation
is included in the Supplemental Material.44 The requirement
for this formula is that the cutoff distance should be equal
to or larger than the separation of the pore. For simplicity,
we assume that particles in the solid walls are static; this is
reasonable given the fact that strongly interacting crystalline

wall particles will be much more tightly bound to their lattice
positions than mobile fluid particles. This assumption has been
used in prior work by Dominguez and co-workers45 who also
used the Einstein crystal method to calculate the free energy
of nanoconfined phases, however, they focused on systems
with weak wall-mobile particle interactions (i.e., εwm < εmm)
and did not make use of our modified tail correction to avoid
systematic errors. Additionally, while we use Monte Carlo
(MC) simulations in the first stage to calculate the free energy
difference between a system of interacting particles and nonin-
teracting particles both attached to lattice points, we use Nose-
Hoover MD simulations within LAMMPS (Ref. 41) to sample
the various state points in the second stage (i.e., removing the
harmonic potential), rather than a more standard MC-based
approach. MD allows for the efficient use of multiple CPUs
reducing the computation time for this calculation. We find
that the use of MD has a negligible impact on the accuracy
of the method, e.g., A = 2.618NkBT versus 2.601NkBT ,42

as calculated via MD and MC, respectively, for a bulk fcc
LJ solid at ρ� = 1.28 and T � = 2.0 (note, N is number of
particles, kB is Boltzmann constant, and T is temperature).

III. RESULTS AND DISCUSSION

A. Ideal systems

We begin by revisiting the impact of the wall-mobile fluid
interaction strength on the order-disorder transition (ODT) of
nanoconfined fluids. This allows us to establish boundaries for
the specific model and parameters we use here, as well as to
test the adapted free energy method. Previous simulation work
predicts that as the interaction strength between walls and
mobile fluid particles (εwm) is increased to values exceeding
the fluid-fluid interaction (εmm), the order-disorder transition
(ODT) will shift to higher temperatures than an equivalent bulk
system.27,31 To examine this, we perform GCMD simulations
starting from a high-temperature disordered state at T � = 4.0,
cooling by increments of �T � = 0.1 until a low-temperature
solid is achieved. The ODT is estimated via visual inspection
and examination of a layer-by-layer global two-dimensional
(2D) hexagonal order parameter (OP) of particles within
the pore, constructed by taking the Fourier transform with
frequency � = 6 of the superposition of the in-plane first-
neighbor shell surrounding atoms within a given layer;46,47

a perfectly ordered layer will result in an OP value of unity.
For reference, T bulk

ODT ∼ 0.9 for a bulk system at ρ� = 1 (note,
ρ� = 1 is the density of an ideal minimal potential energy fcc
crystal). Table I summarizes the ODT for ideal pore separations
[i.e., integer multiples of the fcc layer spacing 2(1/6)√(6/9)σ ],

TABLE I. TODT estimated using GCMD simulations with reso-
lution �T � = 0.1.

No. Separation T conf
ODT T conf

ODT T conf
ODT

layers (σ ) (εwm = 1) (εwm = 2) (εwm = 4)

3 2.75 1.7 2.3 3.0
4 3.67 1.4 1.8 2.3
5 4.58 1.1 1.4 1.7
6 5.50 0.9 1.1 1.2
7 6.42 0.8 0.9 1.0

214105-3



WAN, IACOVELLA, NGUYEN, DOCHERTY, AND CUMMINGS PHYSICAL REVIEW B 86, 214105 (2012)

3 4 5 6 7
ideal layers

−14

−12

−10

−8

−6

A
/N

k
B
T

bulk fcc
εwm = 1

εwm = 2

εwm = 4

FIG. 3. Absolute Helmholtz free energy (A/NkBT ) as a function
of pore size at T � = 0.75 of ideal confined fcc crystal at ρ� = 1.0.
A/NkBT of the bulk LJ fcc crystal is given by von der Hoefs equation
(Ref. 49).

for various εwm values. We observe that as εwm is increased, so
too does T conf

ODT, in agreement with previous work.27,48 The ODT
is also shifted to higher temperatures as the pore separation is
reduced. This is likely a consequence of the fact that larger
pores have a smaller fraction of the total number of confined
particles in contact with the walls. Also, we observe that
even when interactions are symmetric (εwm = εmm = 1), small
pores demonstrate a slight increase in T conf

ODT as compared to the
bulk phase. We note that as we exceed six ideal layers, T conf

ODT ∼
T bulk

ODT, within the accuracy of our ODT calculations and density
variations within the pore.

To unambiguously assess the trends predicted by the
GCMD simulations, we employ the modified Einstein crystal
method to calculate the absolute Helmholtz free energy for
idealized confined fcc systems. In Fig. 3, we plot A/NkBT of
ideal confined fcc structures as a function of separation, for
various εwm values. These calculations are performed at T � =
0.75 as it is below the bulk ODT, and thus all separations should
exhibit a stable solid structure. Not surprisingly, A/NkBT is
reduced as εwm is increased; reducing A/NkBT means the
phase is more stable relative to the bulk, which manifests itself
in T conf

ODT > T bulk
ODT. We also observe that A/NkBT is lower for

smaller pores than larger pores, and thus smaller pores should
likewise be expected to have a higher ODT value than the
bulk. These results are fully consistent with previous studies
by Gubbins and co-workers27 and Kaneko and co-workers.48

B. Nonideal configurations

Focusing our attention on the εwm = 4 system, as this
strength is roughly characteristic of mica-organic molecule
interactions, we perform GCMD simulations as a continuous
function of separation, not just ideal pore spacings. Each pore
separation is an independent simulation employing stationary
walls and thus we do not need to consider the effects of pore
compression rate.3,50 In Fig. 4(a), we plot the number density
ρ� of the confined region as a function of separation for systems
at T � = 1.0; simulations are generated by slowly cooling
from a high-temperature disordered state. At T � = 1.0, solid
structures form within the nanopores over the entire range
sampled in Fig. 4, while the bulk region of the GCMD
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FIG. 4. (a) Number density of particles in the pore as a function
of separation, calculated via GCMD simulation. (b) A/NkBT of
the nanoconfined solid structure as a function of separation, using
structures generated via GCMD simulation in part (a) as input. Also
plotted is A/NkBT of the bulk fluid at ρ� = 0.85, corresponding to
the density of the bulk phase in the GCMD simulation. A/NkBT

of a bulk liquid (calculated at the ρ∗ of the confined region) as a
function of the nanopore separation is also plotted. Both plots share
the same scale on the x axis, with the true separation at bottom, and
the separations that correspond to ideal layers at top and as solid
vertical lines.

simulation remains in a disordered fluid state. In Fig. 4(a), we
observe oscillations in the density of fluid in the pore, where
peaks occur just prior to the transition between integer number
of layers. Ideal separations occur roughly midway between the
peak on the left and valley on the right, with ρ� ∼ 1 (i.e., the
density of the energetic minimum fcc crystal). The height of
this transition peak increases as pore separation is reduced.

Using the configurations generated via simulation as input,
we use the modified Einstein crystal method to calculate
A/NkBT as a function of separation, as plotted in Fig. 4(b).
We observe clear peaks and valleys in the free energy curve,
where the valley minimums correspond to ideal separations
(i.e., perfect spacing for fcc) and peaks occur at the transitions
between integer number of layers. For ideal separations,
A/NkBT of the nanoconfined solid is significantly lowered
as separation is reduced, as was seen in Fig. 3. The difference
in the peak height versus valley depth of the free energy curve is
most significant for small separations, whereas the differences
are relatively minor for larger separations. That is, there
is a smaller penalty for transitioning between integer layer
numbers as the pore size is increased. Also plotted in Fig. 4(b)
is the free energy of the bulk region of the GCMD simulation
at ρ� = 0.85, as calculated using the Johnson equation.51 We
see that, over the entire range, A/NkBT of the nanoconfined
region is lower than the bulk phase it is in contact with. As
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such, there is a strong thermodynamic driving force associated
with forming a solid phase within the pore. For additional
comparison, we use the density within the pore as input to
the Johnson equation, i.e., we compare to the free energy of
a disordered liquid at the same density as the solid within the
pore. A/NkBT of a liquid state scales with density,51 whereas
the solid phase demonstrates a more complex density behavior
related to the ability to accommodate the crystal structure.

C. The role of the central atoms

Our results thus far have only considered comparisons
between bulk phases and nanoconfined solids. The free energy
of a nanoconfined disordered liquid may actually be lower
than the equivalent bulk phase, based on the contribution of
the wall-fluid potential energy (U ) to the total free energy
(A = U − T S). Thus, while we have clearly shown that
nanoconfined solids have lower free energy than equivalent
bulk phases, we have not shown via direct absolute free energy
calculations that nanoconfined solids have lower free energy
than nanoconfined disordered liquids. Calculating the absolute
free energy of a nanoconfined fluid directly is challenging, as
the simulated systems appear to be strongly driven towards
forming ordered solid structures, unless an external bias
is applied. Recall that previous work27 employed umbrella
sampling to investigate the relative free energy difference
between nanoconfined solids and nanoconfined disordered
fluids (note, umbrella sampling includes a biasing criteria
allowing sampling of regions of phase space that would
otherwise be unlikely to be visited during a typical simulation).

Rather than employing a biasing scheme, we can take ad-
vantage of the heterogeneous nature of nanoconfined systems
to provide further insight into the phase transition. Specifically,
it has been previously observed that particles that occupy
the central most region of the nanopore strongly dictate the
ODT.27 A recent study of confined hard-sphere fluids reveals
that the position of particles perpendicular to the solid wall
determines their diffusive dynamics, where particles near the
wall move much more slowly even in the absence of a strong
wall-fluid interaction.52 Particles in the central region, those
not in contact with the wall, experience the weakest levels of
wall-mobile fluid interaction and highest mobility, tending to
lag behind regions closer to the walls in terms of structural
ordering. The entire system can not be considered a solid until
this central region transitions from disordered to ordered. In
Fig. 5, we plot the 2D global hexagonal OP as a function of T �

for different spatial regions in the pore, for a system that can
accommodate six ideal layers. Particles along the pore walls
demonstrate a high value of the OP, even at high T �, slowly
increasing as T � is reduced. Structural ordering of the particles
in the central most layer lag significantly behind the wall region
and demonstrate a more rapid transition to an ordered state as
T � is reduced. The spatially intermediate second layer from
the wall has characteristics more closely matching the central
most layer as opposed to the layer in contact with the wall.

Following this, we make the assumption that, due to the
significantly increased ordering at high T �, particles along the
walls effectively act as the confining surface for the central
region as it orders, allowing us to treat the layers in contact
with the walls as stationary within the free energy calculation.
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FIG. 5. Global version of the 2D hexagonal order parameter as
a function of location within a six-layer pore for εwm = 4.00. l = 1
corresponds to the layer in contact with the wall, l = 3 corresponds
to the third layer, farthest from either wall.

Again, since these central layers dominate in determining
when and if the system undergoes an ODT, comparing the free
energy of this region to the bulk state is more appropriate as
it mostly eliminates the contribution of the strong wall-mobile
fluid potential energy to the total free energy.

In Fig. 6(a), we plot A/NkBT of the central region of
the nanoconfined system with εwm = 4.0, simulated at T � =
1.0; we also plot A/NkBT of the full nanoconfined system
[identical to Fig. 4(b)] and A/NkBT of the bulk disordered
fluid at the same density as the pore, calculated using the
Johnson equation. The free energy of the central region still
demonstrates fluctuations in A/NkBT , where peaks occur
for nonideal separations and valleys for ideal separations.
Interestingly, A/NkBT of the central most confined region
and the equivalent density bulk fluid appear to oscillate with
respect to each other; the fluid state is lower in free energy for
nonideal separations, whereas the confined solid is lower for
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FIG. 6. (a) A/NkBT of the central region of the pore (i.e.,
excluding particles along the walls) as compared to the entire confined
region and the bulk value at matching density. (b) A/NkBT as
function of the central region for εwm = [2,4,6].
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ideal separations. This agrees with calculations by Kaneko and
co-workers that suggest the freezing/melting points oscillate
with separation.48 This trend persists up to approximately six
ideal layers, at which point the values of A/NkBT converge.
This strongly suggests that for larger separations there is
no longer a sufficient driving force for crystallization in the
central region of the pore, consistent with the previous ODT
calculations in Table I, where we saw that T conf

ODT ∼ T bulk
ODT for

greater than six layers when εwm = 4.0. The fact that the solid
state is not universally lower in free energy may help to explain
why evidence of a fluid-solid transition is not observed in all
experiments, e.g., if the system is compressed to a nonideal
spacing for the fluid.

It is important to note that while this comparison largely
factors out the strong wall-fluid interaction, the free energy
of the equivalent bulk state does not take into account the
effects confinement on the entropy. Confinement will reduce
entropy,53 resulting in an increase in total free energy, as
compared to a bulk state, and the free energy should increase
as pore size is reduced.

In Fig. 6(b), we compare A/NkBT of the central region
for various values of εwm. As εwm is reduced to 2, A/NkBT is
shifted upwards, resulting in convergence with the free energy
of an equivalent density bulk phase at a smaller separation
(∼5 layers). Similarly, increasing εwm to 6, A/NkBT of
the central region is lowered, shifting convergence with the
equivalent density bulk system to a separation exceeding six
layers. This is consistent with the trends in ODT in Table I,
where systems with low values of εwm transitioned to bulklike
ODT values at smaller separations than systems with larger
values of εwm. This trend may also help explain differences in
experiments, as variations in the effective value of εwm (e.g.,
related to the surface ion concentration in the cleaved mica)
may shift the confinement-induced transition.

Furthermore, it is important to note that typical simulations
are performed with surface contact areas ∼10−5 to 10−4 μm2,
whereas experiments with the surface force balance (where
solid phases are observed) have contact areas of ∼102 μm26

and experiments with the surface force apparatus (where
solid phases are not observed) have ∼104 μm2.54 The many-
orders-of-magnitude difference in contact area may also play
a significant role, influencing the dynamics and the ability
to form the lowest free energy state. To investigate this, we
perform GCMD simulations for increasing surface contact
area, focusing on ordering with the central most layer; our
interest is in whether the final structures are the same as those
seen in the smaller simulations and how the time to order in
these large simulations varies with pore contact area. Specif-
ically, we simulate two systems with 960 000 and 6 220 000
particles, each that can accommodate six ideal layers. If we
assume that σw = 3.5 Å, roughly the diameter of the potassium
atoms in mica,31 we find that these systems have surface
contact areas of 0.0021 μm2 (960 000 particles) and 0.014 μm2

(6 220 000 particles). Simulations are performed by first
disordering the system at T ∗ = 4.0 and then instantaneously
quenching to T � = 1.1; we monitor the in-plane 2D hexagonal
OP within the central most layer (i.e., l = 3 in Fig. 5) as a
function of time. T � = 1.1 places us just within the ordered
regime predicted from the smaller system sizes (see Table I). In
Fig. 7, we plot the OP as a function of time for the two system
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time (τ ) ×105

0.0
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FIG. 7. (Color online) In-plane 2D hexagonal order parameter
within the central most layers (l = 3) of a system that can accommo-
date six ideal layers as a function of time for small (960 000) particles
and large (6 220 000) particles.

sizes. The larger system requires a significantly longer time, by
a factor of ∼5, to reach the same level of ordering as the smaller
system. The ratio of surface areas is ∼6.6; extrapolating this
trend, we would expect that a two-order-of-magnitude increase
in surface contact area would result in the system requiring a
factor of ∼75 more time to reach an equivalently ordered state.
Previous work50 has focused on the connection between rate of
compression of the surfaces (i.e., the time at each separation the
system has to relax) and the structure, conjecturing that higher
rates form nonequilibrium, jammed states. Clearly, this may
be further exacerbated by surface-size effects, where systems
with larger contact areas simply take much longer to reach
equilibrium, and the significant effects that wall interaction
strength and pore separation can have on the absolute free
energy of the confined phase.

IV. CONCLUSION

In this work, we have combined GCMD simulations with
absolute free energy measurements in studies of nanocon-
fined fluid phase behavior. We demonstrated that the free
energy of nanoconfined system in the solid state decreases
and the melting point for the nanoconfined fluid shifts to
higher temperature as the wall-fluid interaction increases.
We also showed that particles in contact with the pore
walls demonstrate markedly different behavior than those in
the central most region, where atoms in the central most
region ultimately dictate the solidification. Using this, we
calculated the Helmholtz free energy of the central region
alone, factoring out the effects of the strong wall interactions.
We found that the free energy of this central most region
eventually converges to that of an equivalent density bulk
liquid as the wall separation is increased; this convergence is a
function of interaction strength, shifting to larger separations
as wall-fluid strength increases. For systems with interaction
strengths closely matching micaorganic molecule parameters,
we find this transition occurs at roughly six layers, in good
agreement with previous simulations and experiments. We
also demonstrated the significant role that surface contact
area plays in the ordering process; the additional time needed
to order scales roughly with the ratio of surface contact
area. These results provide additional evidence in support
of the fluid-to-solid transition at ∼6 molecule layers for
nanoconfined nonpolar organic fluids.
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It is important to note that our simulations and free energy
calculations only explore the behavior of fluid/wall systems
with commensurate fluid and wall molecular sizes. This is by
design to simplify the analysis and enable comparison with
bulk crystalline structures. Incommensurability of sizes may
play an important role, shifting the free energy due to a compe-
tition between ordering dictated by the wall roughness and the
preferred crystallinity and spacing of the fluid. Specifically, it
has been observed that the relative orientation of herringbone
structures observed for nanoconfined alkanes depends strongly
on the structure of the walls;3,30,55 however, the accumulation
of simulation results to date suggests that incommensurability
does not lead to the elimination of the ODT. Nevertheless,
comprehensively exploring the free energy landscape as a
function of the ratio of wall-to-fluid particle size is of
considerable interest and will be considered in future work.
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