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RKKY interactions in graphene: Dependence on disorder and Fermi energy
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We report, how the indirect exchange interaction JRKKY(R) between magnetic moments at a distance R in
graphene depends on nonmagmetic disorder strength W and gate voltage. First, a semiclassical method is used
to rederive JRKKY in clean graphene, yielding the asymptotic decay 1/R2+α , where α = 1 is the power of the
pseudogap at the Dirac point. Next, we perform numerical calculations with the Anderson tight-binding model
on a honeycomb lattice. We observe that along the armchair direction JRKKY is more robust to nonmagnetic
disorder than in other directions. This is explained semiclassically by the presence of more than one shortest path
between two lattice sites in armchair directions, which is shown to reduce the disorder sensitivity compared to
other directions. The distribution of JRKKY is calculated. We identify three different distribution shapes, repeated
periodically along the zigzag direction, while only one kind, more narrow distribution, is observed along the
armchair direction. We explain this by the different sensitivity to scattering phases. When increasing W , we find
that the distribution crosses over to a logarithm-normal distribution. Its width is found to increase linearly with W .
Moving away from the Dirac point, Friedel oscillations appear in addition to the one caused by the interference
between two Dirac points. This results in a beating pattern. We study how this is effected by nonmagnetic disorder.
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I. INTRODUCTION

Large.12pt efforts have been devoted to study the elec-
tronic transport properties of graphene due to the unusual
nature of quasiparticles in this material, which are massless
chiral Dirac fermions. A recent experiment, indicating that
vacancies in graphene may induce local magnetic moments
(MMs)1 renewed the interest in its magnetic properties. It is
believed that the carrier-mediated effective exchange coupling
between MMs, Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction, plays a crucial role in magnetic properties of
graphene. Local probing is possible, using spin-polarized
scanning tunneling spectroscopy. A direct measurement of
JRKKY in a conventional metal has been done by measuring the
magnetization curves of individual magnetic atoms adsorbed
on a platinum surface.2 Similar experiments may soon be
possible on graphene.

Analytical and numerical studies of JRKKY in clean
graphene at the neutrality point have been reported.3–6 A
dominant feature of graphene is the bipartite nature of its
honeycomb lattice. Due to particle-hole symmetry of bipartite
lattices, JRKKY always induces ferromagnetic correlation
between MMss on the same sublattice, but antiferromagnetic
correlation between MMs on different sublattices.3 At the
neutrality point, the dependence of the RKKY interaction on
the distance R between two MMs in graphene is found to
be 1/R3, in contrast to the standard behavior in conventional
two-dimensional metallic systems where 1/R2 is expected.7

In doped graphene, but not too far from the neutrality point,
the behavior changes to 1/R2 and two different length scales
control JRKKY: the wavelength corresponding to the inverse
of the distance between the two Dirac points in momentum
space, |K − K ′|−1, and the Fermi wavelength k−1

F .6 Here, we
only consider the static RKKY interaction; for the dynamic
case, the decay of the interaction can be slower.7

Since the RKKY interaction is mediated by itinerant elec-
trons in the host metal, nonmagnetic defects influence directly
these interactions. On-site potential fluctuations scatter the
phase of the electron’s wave function, altering any interference
phenomenon observed in the clean system. The effects of
weak nonmagnetic disorder on the exchange interactions in
conventional metals have been carefully studied.8–15 Numer-
ical work in the strongly localized regime has been done
in one-dimensional disordered chains.16 These studies found
that in the diffusive regime, JRKKY, when averaged over
disorder configurations, decays exponentially over distances
exceeding the mean free path scale le. However, its geometrical
average has the same amplitude as in the clean limit. Only in
the localized regime, on length scales R � ξ exceeding the
localization length ξ , its geometrical average is exponentially
suppressed, so that JRKKY is cutoff over distances exceeding
ξ . In our previous work, we have studied the effect of
nonmagnetic disorder on JRKKY in undoped graphene using
the kernel polynomial method (KPM).14,15 The unexpected
result was that at weak disorder, JRKKY along the armchair
direction is not influenced by nonmagnetic disorder as much
as in other directions. Motivated by this unexplained behavior,
in this paper, we start by employing the semiclassical method
to evaluate JRKKY in graphene. This calculation helps us to
understand the R dependence and the origin of the direction
dependence of the sensitivity to disorder seen in Ref. 14. We
then use the numerical KPM to calculate JRKKY in graphene
in order to study the effect of disorder and of doping in more
detail.

In order to study the disordered conduction electrons in
graphene numerically, we employ the single-band Anderson
tight-binding model on a honeycomb lattice:

Ĥ = −t
∑
〈i,j〉

c
†
i cj +

∑
i

(wi − μ) c
†
i ci , (1)
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where t is the hopping amplitude, ci is an annihilation operator
of an electron at site i, c

†
i is the creation operator, wi is the

uncorrelated on-site disorder potential, distributed uniformly
between [−W/2,W/2]. 〈i,j 〉 indicates nearest-neighbor sites.
Periodic boundary conditions are used. Lattice constant a and
h̄ are set to unity.

The RKKY exchange coupling is given by

JRKKY = −S(S + 1)

4πS2

∫
dωf (ω)�{Gr(r,r ′,ω)Gr(r ′,r,ω)},

(2)

which we evaluate numerically by KPM.14,15 We start with the
semiclassical derivation of JRKKY that helps us to understand
the numerical results.

II. SEMICLASSICAL DERIVATION

Bergmann interpreted the RKKY oscillation as an interfer-
ence of the conduction electron’s wave function scattered by
the magnetic impurity and calculated the interference using the
Huygens’ principle in a three-dimensional metal.17 According
to the Huygens’ principle in two dimensions,18 the amplitude
of a wave which propagates from a source at position R′ decays
with distance and gains a phase factor at a position R given by

�(R′) eik·(R−R′ )√|R−R′| , where �(R′) is the amplitude of the wave at the
source and the extra factor comes from the asymptotic form of
the Bessel function (eikr/

√
r). If an electron propagates from

R to the origin in graphene [see Fig. 1(a)], the amplitude gets
a phase factor

A(0,R) = 1√
R

[ei(K+q)·R + ei(K ′+q)·R]eiεq t/2, (3)

where the wave vector is expanded around the two neighboring
Dirac points K and K ′ with a relative wave vector q. During
its propagation, the electron gets another phase factor, eiεq t/2,
where εq = vF q is the kinetic energy of the electron near the
Dirac point, vF is the Fermi velocity and t/2 is the propagation
time from R to the origin. After the electron is scattered by a
magnetic impurity at the origin, it travels back to the position
R. The amplitude then gains an additional modulation given
by

A(R,0) = sin δ0√
R

[e−i(K+q)·R + e−i(K ′+q)·R]ei(εq t/2+δ0), (4)

(a) (b)

FIG. 1. (Color online) (a) Propagating paths of an electron
between positions 0 and R. (b) Graphene lattice, where the two
sublattices are denoted as A and B. Two representative directions
(zigzag and armchair) are indicated as dashed gray lines. θR is the
angle between R and the unit vector x̂.

where δ0 denotes the phase shift due to exchange interaction
J of the electron spin with the magnetic impurity spin.17,19

When the electron goes back to R its direction is opposite. It
yields the opposite sign in the phase of A(R,0) than A(0,R).
It propagates, however, still in the same time direction so that
the phase, related to time evolution, εqt/2, has the same sign.
This is consistent with the diagrammatic expression for JRKKY,
which has two retarded Green’s functions. For a closed path, a
loop of opposite direction makes a contribution with the same
weight, so that the modulation of the charge density of an
electron with energy εq is


ρε(R) = |ψ(R)|2A(0,R)A(R,0) + c.c.

= 2 sin(2δ0)

V

1 + cos[(K − K ′) · R]

R
eiεq t , (5)

such that the total charge modulation is given by

ρ(R) =
∫

dε f (ε) N (ε)
ρε(R)

= − sin(2δ0)v2
F

V

1 + cos[(K − K ′) · R]

Rd+α
. (6)

Here, |ψ(R)|2 = 1/V for free electrons in a system with
volume V . f (ε) is the Fermi-Dirac distribution function,
N (ε) = |ε|α the density of states at Fermi energy. α is the
pseudogap exponent, d the spatial dimension, and t = 2r/vF

the total time it takes to return to R.
The total charge density in Eq. (6) can be easily related

to JRKKY.17 Since in graphene d = 2 and α = 1, the resulting
decay is 1/R3 consistent with previous works.3–5 We conclude
that the existence of the pseudogap at the Dirac point causes the
faster spatial decay of JRKKY in graphene than in conventional
two-dimensional system d = 2, α = 0. Even though Eq. (6)
does not yield an exact expression of JRKKY, and does
not yield the correct sublattice dependence of its sign, its
amplitude and oscillation period agrees in the asymptotic limit
with previous results as obtained by the Green’s function
method, Eqs. (19) and (26) in Ref. 5. We conclude that
the asymptotic limit of JRKKY in graphene, for distances R

such that (K − K ′) · R � 1, can be derived semiclassically.
We need to caution that there are further limitations to this
semiclassical approach:20 as Kane and Mele have shown,21

spin-orbit interaction may open a gap 
 at the Dirac point.
It can be easily shown with the diagrammatic expression that
JRKKY then decays exponentially for length scales exceeding
L
 = v/
. However, the semiclassical approach would rather
give an oscillatory factor with period ∼L
. The reason is that in
the simplified semiclassical approach outlined above, the time
t is simply substituted by R/v, while in the full diagrammatic
expression there is a time integral with which one recovers the
exponential decay. Thus the applicability of the semiclassical
method is limited to 1/(K − K ′) 	 R 	 L
.

III. DISORDERED GRAPHENE AT THE DIRAC POINT

A. Numerical results

We investigate the effect of on-site nonmagnetic disorder
at the Dirac point μ = 0,W 
= 0. For each value of W , 1600
different disorder configurations were generated and Eq. (2)
evaluated by the KPM with a Chebyshev polynomial cutoff
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(a) θR = 0, zigzag-AA
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(b) θR = π/12.5
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(c) θR = π/10
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(d) θR = π/3, armchair-AA
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FIG. 2. (Color online) JRKKY multiplied by R3, along (a) θR = 0
(zigzag-AA), (b) θR = π/12.5, (c) θR = π/10, and (d) θR = π/3
(armchair-AA) direction in the diffusive regime, averaged over 1600
disorder configurations. θR is defined in Fig. 1(b) (5 × 105 sites,
M = 5 × 103).

number M = 5 × 103 on a lattice with 5 × 105 sites. As
previously reported, in the diffusive regime le < R < ξ , with
mean free path le and localization length ξ , the armchair
direction is the only direction in which the disorder averaged
JRKKY does not alter its sign.14 To illustrate this, we calculated
JRKKY along the directions θR = π/12.5, π/10 which pass
through only one sublattice. The results are shown in Fig. 2
together with the ones for the zigzag-AA and armchair-AA
directions. Notice that JRKKY is multiplied by R3 in order to
make the effect of nonmagnetic disorder more transparent. As
expected,8–13 the average amplitude decays exponentially over
length scales exceeding the mean free path le, 〈JRKKY〉avg =
J clean

RKKY e−R/le , where 〈O〉avg indicates averaging over disorder
configurations and J clean

RKKY is the RKKY interaction in clean
graphene. The mean-free path and localization length in
graphene has been extracted from the exponential decay of
the average JRKKY and the typical JRKKY in our previous
study (see Fig. 4 in Ref. 14). On-site disorder breaks the
sublattice symmetry. Consequently, the sign of JRKKY between
the MMs which are localized on the same sublattice fluctuates,
allowing both ferromagnetic and antiferomagnetic correlation,
Figs. 2(a)–2(c). Interestingly, the averaged JRKKY along the
armchair direction with on-site disorder does not change sign,
see Fig. 2(d), while for a particular disorder configuration it
randomly changes both sign and amplitude. The importance
of the sublattice symmetry can be seen by considering the
hopping disorder:14 when randomness is added to the hopping
integral t = t0 + 
t without on-site disorder, it does not break
the sublattice symmetry and JRKKY never changes its sign.

B. Semiclassical derivation

In a dirty metal, the charge density is modified by disorder
due to the random scattering phases. When these random phase
factors are simply averaged over disorder configurations, they
give an exponentially decaying factor. Due to the geometrical
anisotropy in graphene, the influence of these random phase
factors depends on the path direction. According to Feynman’s
path integral representation, the coupling is dominated by

(a) zigzag (b) armchair

FIG. 3. (Color online) Schematic diagram of the shortest path in
(a) the zigzag-AA and (b) armchair-AA directions. δ1 (2) denote the
phase shifts due to nonmagnetic disorder.

the shortest path between two MMs. There always exists an
even number of shortest paths along the armchair direction,
Fig. 3(b), while there is only one along the zigzag direction
Fig. 3(a). Therefore, in the zigzag direction, the electron wave
is scattered by the same disorder twice with the same phase,
δ1 in Fig. 3(a), when it returns to its origin. If we average the
modulation of the charge density over the random phase shift
δ1, we find

〈
ρzg(R)〉 = 
ρ
zg
0 [AI(0,R)AI(R,0) + c.c.]

= 
ρ
zg
0

2
〈ei2δ1 + e−i2δ1〉 = 
ρ

zg
0 e−2〈δ2

1 〉, (7)

where 〈· · ·〉 is the average over disorder configurations, the
identity 〈eiδ〉 = e− 1

2 〈δ〉 is used and 
ρ
zg
0 is the modulation of

charge density along the zigzag direction in the clean system,
Eq. (6). However, along the armchair direction, there are closed
paths that include different impurities and thereby different
scattering phases, δ1 and δ2 in Fig. 3(b). The average of the
modulation of charge density is

〈
ρarm(R)〉
= 
ρarm

0 [AI(0,R)AI(R,0) + AII(0,R)AII(R,0)

+AI(0,R)AII(R,0) + AII(0,R)AI(R,0)]

= 
ρarm
0

1
4 〈ei2δ1 + ei(δ1+δ2) + e−i(δ1+δ2) + ei2δ2〉

= 
ρarm
0

1
2

[
e−2〈δ2

1 〉 + e−〈δ2
1 〉], (8)

where we used 〈δ1〉 = 〈δ2〉 = 0 and 〈δ2
1〉 = 〈δ2

2〉.
The modulation along the armchair direction Eq. (8) is

dominated by the term 
ρ0 e−〈δ2
1 〉 coming from the closed loop

connected by two unrelated paths, so that the average value
is exponentially closer to the clean value, while the zigzag
direction is dominated by 
ρ0 e−2〈δ2

1 〉, Eq. (7). Thus one may
expect JRKKY in the armchair direction to be less sensitive to
the nonmagnetic weak disorder than in other directions. This
may explain our previous results14 and the results shown in
Fig. 2, where the averaged value in the armchair direction
remains substantially larger than in the other directions and
does not change its sign.

C. Distribution of RKKY interaction

In order to investigate in more detail how nonmagnetic
disorder affects JRKKY and depends on the direction in the
graphene lattice and on particular lattice points, we have
calculated the distribution of its amplitude for a disorder
strength W = t at sites on the zigzag and armchair direction.
The results are shown in Figs. 4(a)–4(e). When the distance
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FIG. 4. (Color online) The distribution of
√

J 2
RKKY multiplied by

R3, for (a) the first, (b) second, (c) third of the triplet of points along
zigzag-AA direction, see Fig. 4(f), and (d) for the armchair direction.
For comparison, these distributions are plotted together in (e) (W = t ,
2 × 104 sites M = 103).

R between the MMs is smaller than the mean-free path le,
JRKKY multiplied by R3 has a shape, which is independent on
R. Interestingly, the distribution has three different shapes
along the zigzag-AA direction, see Figs. 4(a)–4(c), which
are repeated periodically every third site in that direction.
However, there is only one type of distribution along the
armchair direction, as can be seen in Fig. 4(d). For direct
comparison, we plot all distributions together in Fig. 4(e).
This remarkable difference can be explained in the following
way: the argument of the oscillating factor in the semiclassical
expression for the charge density, (K − K ′) · R, Eq. (6), takes
only the values, (0, 2π

3 , 4π
3 ), modulo 2π , along sites in the

zigzag-AA direction. JRKKY at sites where the argument of the
oscillating factor takes the values ( 2π

3 , 4π
3 ) along the zigzag-AA

direction has the broadest (green) distribution, while at sites
where the argument takes the value (0), modulo 2π , it has the
narrowest (red) distribution. Indeed, the disorder is expected
to shift the oscillation for a given disordered sample by some
phase δ as cos[(K − K ′) · R + δ]. If we expand that oscillating
factor in δ for sites where (K − K ′) · R = 0, modulo 2π , the
leading order correction is proportional to δ2. If we expand
it however, for the sites where (K − K ′) · R = ( 2π

3 , 4π
3 ), the

first correction is linear in δ. This explains why JRKKY is
indeed more sensitive to disorder at such sites, and should
have a wider distribution, in agreement with Fig. 4. The
unaveraged JRKKY in a particular disorder representation is
found to remain long ranged as in the clean system. However,
we find that the oscillations acquire a random phase that also
changes with the distance R between magnetic impurities.
Therefore the average value does not characterize JRKKY at
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FIG. 5. (Color online) (a) Averaged density of states in a double
logarithmic plot. Inset: linear plot (M = 7 × 103). (b) Geometrical
averaged JRKKY along zigzag-AA direction (M = 5 × 103). 3 × 107

sites are used. Black lines in (a) are fittings to ρ(E) = γ |E| with
γ = 0.95, 1.07, 1.3 for W = 0, 0.5t,t , respectively.

distances exceeding the mean free path. To find the typical
value, we evaluated the geometrical average of the interaction
amplitude, defined by J

geo
RKKY ≡ exp[ 1

2 〈 ln(JRKKY)2 〉avg]. This
typical value is found to have the same power-law decay with R

as in the clean limit.11–13,16,17 We have calculated the density
of states for two disorder strengths W = 0.5t,t to observe
how weak disorder affects the pseudogap at the neutrality
point (E = 0), since, as we have seen above, the power of the
pseudogap is directly related to the unconventional power-law
decay of JRKKY. We used the KPM22,23 method. As we see
in Fig. 5(a), the pseudogap is stable at weak disorder, and
has the same power law as in the clean limit. Only its slope
around the Dirac point is changed23 ρ(E) = γ |E|, where
ρ(E) is the density of states and E is the energy measured
from the Dirac point in units of the hopping amplitude t .
The slope γ depends on the disorder strength as obtained by
fitting the data in Fig. 6. An analytical study has reported
that there is a logarithmic correction to the density of states
around the neutrality point, yielding ρ(E) = |E| ln |E| in the
presence of disorder.24 This logarithmic correction does not
change the power of the distance dependence of the RKKY
interaction Eq. (6). Consequently, the geometrical average of
JRKKY is expected to have the same power-law exponent as the
clean system 1/R3. The direct numerical calculation shown in
Fig. 5(b) strongly supports this conclusion.

Figure 6(a) shows how JRKKY in a strongly disordered
sample gets suppressed by several orders of magnitude when
W is increased. In order to investigate the broadening of
the distribution, we employed 3 × 104 realizations of the
disorder potential and calculated JRKKY for a fixed distance
R = 50

√
3. The results are shown in Fig. 6(b). The inset

indicates that it has a distribution with very long asymmetric
tails. The squared amplitude J 2

RKKY has a distribution similar
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FIG. 6. (Color online) (a) Absolute value of JRKKY in a disordered
sample as a function of distance R. (b) The distribution of the
logarithm of |JRKKY| for R = 50

√
3a and different W . The inset of

(b) shows the distribution of the amplitude JRKKY itself for W = 4t .
1.8 × 105 sites and M = 3 × 103 are used. Black dashed lines are
logarithm-normal distribution functions with σ = 2.4, 3.2, 4.35 and
α = 32.5, 50, 72.5 for W = 4t, 6t, 8t , respectively (see text).

to log-normal with a width that increases with disorder
strength. Using a field-theoretical approach valid in the
metallic regime, Lerner found12 that the increase in the strength
of the nonmagnetic disorder leads to a crossover in the
shape of the distribution function from a broad non-Gaussian
with the very long tails in the weak disorder regime to a
completely logarithm-normal distribution in the region of
strong disorder regime. This may explain the crossover of
the distribution that we observe from weak disorder W = t

to strong disorder W = 4t, 6t, 8t . For direct comparison,
we fitted the results with a logarithm-normal function given
by P (x) = N√

2πσ 2
exp[− (x−α)2

2σ 2 ], where N = 3 × 104 is the

number of realizations and x = ln[J−2
RKKY]/2. The data are

shown together with the fitting curves in Fig. 6(b) (black
dashed lines). We analyzed the width σ of the distribution
Eq. (IIIC) as a function of the disorder strength W and is
shown in Fig. 7. The red line in Fig. 7, σ = W/2 + 0.34,
agrees qualitatively with the analytical prediction by Lerner,
who has used the renormalization group method to obtain12

σ ∼ 1/
√

le ∼ W, where le ∝ 1/W 2 is the mean free path of
electrons, which we studied in Ref. 14.

IV. DOPED GRAPHENE(μ �= 0)

A. Clean system (W = 0)

By varying the Fermi level μ in the Hamiltonian of Eq. (1),
we investigate how JRKKY evolves with μ. Results are shown in

4 5 6 7 8 9
2.0
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3.0
3.5
4.0
4.5
5.0

W

Σ

FIG. 7. (Color online) Plot of the width of the distribution of
|JRKKY| as a function of W in units of t . Red line: linear fitting,
yielding σ = W/2 + 0.34.

Fig. 8, where JRKKY is multiplied by R2 in order to emphasize
its oscillatory behavior. In these calculations, we used a lattice
with 7.2 × 105 sites and M = 3 × 103. Near the Dirac point
a beating pattern appears as shown in Figs. 8(a) and 8(b).
It consists of a superposition of waves with the wave vectors
K − K ′ and qF , where qF is the Fermi wave vector originating
from the Friedel oscillations at finite Fermi energy. Recently,
the following analytical expressions for the beating pattern
were derived using lattice Green’s functions:5

JAB = J 0
AB

[
1 − 8qF R√

3π
G

2,1
2,4

(
1
2 , 3

2
1,2,0,− 1

2

; q2
F R2

) ]
, (9)

where J 0
AB is the RKKY coupling function at the neutrality

point and G is the Meijer-G function. Note that term within
brackets describes the isotropic dependence of the oscillations

(a)

(b) (c)

FIG. 8. (Color online) (a) JRKKY multiplied by R2 in doped
graphene at the chemical potential μ = 0.1t along the zigzag-AB
direction. Density plots of JRKKY for (b) μ = 0.2t and (c) μ = t for
all directions. In (a), the results of calculations with KPM and the
lattice Green’s function method are shown as solid blue and dashed
red lines, respectively. ( 7.2 × 105 sites, M = 5 × 103.)
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FIG. 9. (Color online) Average JRKKY multiplied by R2, along (a)
zigzag-AA, (b) armchair-AA directions at μ = 0.2t in the diffusive
regime. N = 1600. Lattice size and M as in Fig. 2.

on the Fermi momentum qF . The external prefactor J 0
AA(B)

on the contrary, is strongly anisotropic, depending on the
vector given by the momentum difference between the two
neighbored Dirac points K − K ′. To make a comparison with
our calculations, the function represented by Eq. (9) is also
plotted in Fig. 8, red dashed line. Excellent agreement is
found. One can estimate the wavelength of the long oscillation,
which appears at finite μ, using the dispersion relation near
the neutrality point given by E(q) = vF |q|, where q is the
momentum relative to the Dirac point and vF = 3ta/2 is the
Fermi velocity.25 The Fermi wavelength is found to be about
λF ≈ 50a for μ = 0.1t . This coincides with the period seen in
Fig. 8(a). As expected from Eq. (9), the oscillations with large
period seen in [see Fig. 8(b)] are isotropic.

We have also calculated JRKKY for highly doped graphene
(μ = t). The results are multiplied by the square of the
distance, R2, and are shown in the density plots of Fig. 8(c).
The behavior cannot be described by Eq. (9), which is valid
only close to the Dirac point. When μ is exactly at the
van Hove singularity μ = t , the ordering pattern of JRKKY

along the zigzag direction is reversed. In other words, the
correlation between MMs on zigzag-AA or BB is always
antiferromagnetic and ferromagnetic for zigzag-AB or BA
pairs. At the same time, JRKKY is strongly suppressed for other
directions. This is in accordance with a result of a previous
study.26

B. Disordered system

We have also calculated the JRKKY in disordered graphene
at finite μ. The results are shown in Fig. 9. A lattice with
5 × 105 sites and M = 5 × 103 were used. Even though the
unusual oscillation coming from the interference of two Dirac
points still exists Fig. 9(a), the amplitude of the envelope of
the averaged JRKKY decreases with disorder strength W and
the period 2π/kF of the oscillation coming from the finite μ

is modified by the disorder as in a conventional metal.

V. CONCLUSIONS

In conclusion, we have studied the RKKY interaction
JRKKY in graphene as a function of disorder strength W and
chemical potential μ in detail, by using the kernel polynomial
method. We also employed a semiclassical analysis of JRKKY,
deriving the modulation of the charge density in the presence
of MMs. This provides an intuitive interpretation of the origin
of the oscillating behavior of JRKKY as the interference of the

two degenerate Dirac points. With this semiclassical approach
we could also trace the origin of the unusual power-law decay
of JRKKY in pure graphene at the Dirac point directly to the
pseudogap in the density of states.

In order to study the anisotropic influence of nonmagnetic
disorder, we evaluated JRKKY along two different directions
between the zigzag and armchair directions. As reported in our
previous study, in the diffusive regime, the armchair direction
is not affected by the nonmagnetic disorder as much as the
other directions. Using the semiclassical approach, we could
trace that anisotropic sensitivity of JRKKY to disorder to the
presence of multiple shortest paths between two MMs in
the armchair direction, showing that this direction is more
robust to disorder than other directions. We also found that in
the ballistic regime R < le, the distribution of JRKKY along
the zigzag direction is not universal but depends on the
lattice sites at which the pair of magnetic impurities sit. We
identified three different representative shapes, which repeat
themselves periodically. We found a semiclassical explanation
of this effect. By an accurate evaluation of the density of
states around the Dirac point in weakly disordered regime
W � t we confirmed that the pseudogap is not filled by weak,
uncorrelated disorder. This is in full agreement with the fact
that the geometrical average of JRKKY in the diffusive regime
decays as in the clean system at the Dirac point, namely as
1/R3, and confirms that this anomalous behavior is related to
the power of the pseudogap, r = 1. In the localized regime
R > ξ , the geometrical average is exponentially suppressed
at distances exceeding the localization length ξ and the
distribution of the absolute value of JRKKY shows a crossover
from a non-Gaussian shape with very long tails to the
logarithm-normal form when increasing W . We analyzed
its width and confirmed that it increases linearly with the
amplitude of the disorder potential W .

Finite gate voltage breaks particle-hole symmetry and the
resulting finite Fermi surface yields Friedel oscillations, so
that the sign of JRKKY between MMs localized on the same
sublattice now oscillates with distance. When the Fermi level
is exactly at the van Hove singularity μ = t , the ordering
pattern of JRKKY along the zigzag direction is reversed. At
the same time, the interactions are strongly suppressed for all
other directions. The disorder sensitivity of JRKKY becomes
at finite gate voltage isotropic as in a conventional disordered
metal.

In this work, we showed that the KPM method is efficient
and accurate for studying interactions in disordered systems.
In order to minimize the computation time while keeping the
highest accuracy, the convergence of the calculations with
respect to the Chebyshev polynomial cutoff degree M and the
system size L have been investigated in detail (see Appendix).
The proper cutoff M to reach convergence is found to increase
linearly with distance R between two MMs, as seen in
Fig. 10(b). A system size L about five times larger than R is
found to give convergent results. In comparison with the exact
numerical diagonalization, the KPM is found to be much faster.
It can be implemented for very large system sizes in disordered
systems, where thousands of realizations are needed in order
to yield meaningful statistics. KPM is thereby established as
an efficient tool to study magnetic properties of disordered
systems.
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FIG. 10. (Color online) (a) JRKKY as a function of M (5 × 105

sites). (b) The smallest M that yields a convergent result as a function
of R.
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APPENDIX: CONVERGENCE OF THE KERNEL
POLYNOMIAL METHOD CALCULATIONS

When using the KPM the calculation of the Chebyshev
polynomials using recurrence relations consumes most of the
computation time. Therefore we investigated first the relation
between the cutoff number M and the convergence of the
results in order to be able to minimize M and optimize the
calculations. For clean graphene, a lattice with 5 × 105 sites
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FIG. 11. (Color online) JRKKY as a function of system size L.
50

√
3a is used as the longest distance RF (M = 5 × 103).

was used in these calculations. When a cutoff number M is not
sufficient, the amplitude of JRKKY deviates from the expected
power-law behavior, as indicated by the blue and red lines in
Fig. 10(a). When we determined the smallest cutoff number
M such that the variance of the amplitude of JRKKY is less
than 5%, we found that it increases linearly with the distance
between two MMs R as seen in Fig. 10(b). This linear relation
between the distance and the cutoff number allows the rapid
calculation of JRKKY(R).

In order to minimize the KPM calculation time further,
we have also studied the smallest system size L which yields
convergent results, as shown in Fig. 11. RF denotes the longest
distance used in the calculation, RF = 50

√
3a, the cutoff

number is M = 5 × 103. One can observe a good convergent
behavior (see green and black lines in Fig. 11) when system
size L is larger than 5RF . The exact diagonalization method
also yields a proper result when L = 5RF .4 However, the KPM
does not require matrix diagonalization and therefore is much
faster.
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