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Longitudinal and spin-valley Hall optical conductivity in single layer MoS2

Zhou Li1,* and J. P. Carbotte1,2,†
1Department of Physics, McMaster University, Hamilton, Ontario, Canada, L8S 4M1

2Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
(Received 28 August 2012; revised manuscript received 29 October 2012; published 21 November 2012)

A monolayer of MoS2 has a noncentrosymmetric crystal structure, with spin-polarized bands. It is a two-valley
semiconductor with the direct gap falling in the visible range of the electromagnetic spectrum. Its optical
properties are of particular interest in relation to valleytronics and possible device applications. We study the
longitudinal and the transverse Hall dynamical conductivity which is decomposed into charge, spin, and valley
contributions. The circular polarized light associated with each of the two valleys separately is considered and
results are filtered according to spin polarization. Temperature can greatly change the spin admixture seen in the
frequency window where they are not closely in balance.

DOI: 10.1103/PhysRevB.86.205425 PACS number(s): 72.20.−i, 75.70.Tj, 78.67.−n

I. INTRODUCTION

Since the isolation of graphene,1,2 the search for new
two-dimensional atomic membranes possibly with novel func-
tionalities has intensified. MoS2 (Ref. 3) in its single-layered
form is a two-valley direct band-gap semiconductor with the
gap in the visible regime and so it is of interest for device
applications. Through excitation by the right- and left-hand
polarized light, excess populations of a selected valley can be
generated which make this material ideal for valleytronics.4–7

Because the two inequivalent valleys are separated in the
Brillouin zone by a large momentum, intervalley scattering
should be small. Consequently, the valley index becomes a new
degree of freedom analogous to spin in semiconductors. Just
like manipulating spin has lead to spintronics,8,9 manipulating
the valley index can produce new effects including using it to
carry information. As an example, in the context of graphene
Xiao et al.10 showed that a contrasting intrinsic magnetic
moment and Berry curvature can be associated with the carrier
valley index. As a second example a valley filter device was
described by Rycerz et al..11

An important issue is the possible pathways to achieve
valley polarization (i.e., populating states preferentially in
one valley12). One way discussed theoretically4,10,13,14 was to
use circular polarized light, which was demonstrated recently
by three experimental groups.5–7,12 Selection rules on the
absorption of right-handed (or left-handed) polarized light
assures that this radiation excites almost exclusively the charge
carriers residing in a single valley with index τ = +1 (or −1).
The physical quantity that comes into the description of such
processes is the real part of the ac optical conductivity for
right ( + 1) or left (−1) polarization Reσ± as a function of
photon energy ω. In terms of the longitudinal σxx(ω) and
transverse σxy(ω) conductivity σ±(ω) ≡ σxx(ω) ± iσxy(ω).
The conductivity also plays an important role in determining
the optical properties of nanostructures as we can see from
Refs. 15–20. To solve the Maxwell equations for systems
with a graphene sheet between two media with different
dielectric constants, one has to know the conductivity of
two-dimensional graphene. The results for the conductivity
of single-layer MoS2 will be useful if similar devices were
built from MoS2 instead of graphene.

MoS2 is a layer of molybdenum atoms between two layers
of sulfur in a trigonal prismatic arrangement which does

not have inversion symmetry. In momentum space at the K

and −K points of the honeycomb lattice21,22 the valence and
conduction bands are separated by a large semiconductor direct
band-gap � (Ref. 23) and there is a large spin-orbit coupling
leading to a spin polarization of the valence band, spin up
↑ and down ↓ as the z component of the spin operator sz

commutes with the Hamiltonian and hence remains a good
quantum number. A minimal Hamiltonian which describes the
band structure of MoS2 (valid near the main absorption edge)
is found in Ref. 4 with parameters based on first-principles
calculations for the group-VI dichalcogenides.21,24 A more
complete theory is found in Ref. 14 where a calculation
of the dc Hall conductivity and Berry curvature over the
entire Brillouin zone is presented. Part of the Hamiltonian
describes the dynamics of massive Dirac fermions which are
known from the graphene literature to have an optical response
quite different from that of an ordinary two-dimensional (2D)
electron gas. For example, a universal constant background
conductivity of e2/(4h̄) (Refs. 25 and 26) [for a single spin
and single valley this constant becomes e2/(16h̄)] is predicted
and observed for photon energy ω greater than twice the
chemical potential μ for massless Dirac fermions. We use
this Hamiltonian to calculate the dynamic optical conductivity
as a function of photon energy to several electron volts.
The results are presented for longitudinal σxx(ω) as well as
transverse conductivity σxy(ω), which is separated in charge,
spin, and valley Hall conductivity. Appropriate contributions
from different spin channels are presented separately and
special attention is payed to the effects of right- and left-handed
light polarization. Temperature effects are also considered. In
Sec. II we present the Hamiltonian and the Green’s function on
which our calculations are based. In Sec. III the mathematical
expressions for the conductivity are evaluated and results
for spin and valley Hall conductivity are given for several
representative values of the chemical potential. The results for
circular polarized light are found in Secs. IV and V contains a
summary.

II. FORMALISM

The Hamiltonian for MoS2 at K and −K points is

H0 = at(τkxσ̂x + kyσ̂y) + �

2
σ̂z − λτ

σ̂z − 1

2
Ŝz, (1)
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with 2λ the spin-orbit splitting at the top of the valence band
and we take 2λ = 0.15 eV, a the lattice parameter 3.193 Å,
t the hopping t = 1.1 eV, σ̂ the Pauli matrices, and Ŝz the
spin matrix for the z component of spin sz, which is a good
quantum number here. The index τ = ±1 is the valley K(−K),
respectively, and � is the direct band gap equal to 1.66 eV
between the valence and conduction bands. The x and y

velocity components based on Eq. (1) are

vx = ∂H0

h̄∂kx

= at

h̄
τσx, vy = ∂H0

h̄∂ky

= at

h̄
σy. (2)

Here we will be interested in the charge, spin, and valley
current given, respectively, as j = ev,js = h̄

2 szv, and jv = τv.
The eigenenergies and vectors of Eq. (1) are

E±
k (τ,sz) = λτsz/2 ±

√
a2t2k2 +

(
�′

2

)2

(3)

and

un(k) =
atk

(
1,

−�′/2±
√

a2t2k2+(�′/2)2

at

τkx+iky

k2

)T

√
a2t2k2 + (−�′/2 ±

√
a2t2k2 + (�′/2)2)2

(4)

with �′ = � − λτsz (Ref. 27). For later reference, the Berry
curvature for the conduction band E+

k is

�c(k) = z · ∇k × 〈un(k)|i∇k|un(k)〉
= −τ

2a2t2�′

[�′2 + 4a2t2k2]3/2
(5)

with valence band �v(k) = −�c(k). With these solutions the
Green’s function Ĝ0(k,iωn) with Matsubara frequencies ωn is

Ĝ0(k,iωn)

= (ih̄ωn + μ − λτsz/2)Î + (
�′
2

)
σ̂z + at(τkxσx + kyσy)

(ih̄ωn + μ − λτsz/2)2 − a2t2k2 − (
�′
2

)2

≡ GI (k,iωn)Î + Gzσ̂z + Gxσ̂x + Gyσ̂y, (6)

which gives

GI (k,iωn) = 1

2

1

ih̄ωn + μ − λτsz/2 −
√

a2t2k2 + (
�′
2

)2

+ 1

2

1

ih̄ωn + μ − λτsz/2 +
√

a2t2k2 + (
�′
2

)2
,

Gz =
�′
2

(ih̄ωn + μ − λτsz/2)
GI (k,iωn),

Gx = atτkx

(ih̄ωn + μ − λτsz/2)
GI (k,iωn),

Gy = atky

(ih̄ωn + μ − λτsz/2)
GI (k,iωn). (7)

The density of state N (ε) is given by

N (ε) = − 1

π

∑
k

ImGI (k,iωn− > ε + iδ), (8)

where
∑

is a sum over momentum, Im means taking the
imaginary part. The longitudinal conductivity σxx(ω), charge

Hall conductivity σxy(ω), spin Hall conductivity σ s
xy(ω), and

valley Hall conductivity σv
xy(ω) are given by28–30

σxx(ω) = −e2a2t2

iωh̄2 T
∑
k,l

T r〈σxG0(k,iωl)σxG0(k,iωl + iωn)〉iωn−>ω+iδ

σxy(ω) = −e2a2t2

iωh̄2 T
∑
k,l

,

Tr〈τσxG0(k,iωl)σyG0(k,iωl + iωn)〉iωn−>ω+iδ,

σ s
xy(ω) = −ea2t2

iωh̄2 T
∑
k,l

, (9)

Tr

〈
h̄

2
szτσxG0(k,iωl)σyG0(k,iωl + iωn)

〉
iωn−>ω+iδ

,

σ v
xy(ω) = −ea2t2

iωh̄2 T
∑
k,l

,

Tr〈σxG0(k,iωl)σyG0(k,iωl + iωn)〉iωn−>ω+iδ.

After simplification we get

σxy(ω) = − e2

h̄2

∑
k,τ,sz

�c(k)[f (E+) − f (E−)]g, (10a)

with

g ≡ (4a2t2k2 + �′2)

(h̄ω + iδ)2 − (4a2t2k2 + �′2)
(10b)

for the spin and valley Hall conductivities, g in Eq. (10b) is to
be replaced by szg/e and τg/e, respectively. Here f (x) is the
Fermi Dirac function, which contains the chemical potential
μ. The longitudinal conductivity is

σxx(ω) = e2

h̄2

∑
k,τ,sz

2a2t2
(
4a2t2k2

y + �′2)
iω[�′2 + 4a2t2k2]1/2

× [f (E+) − f (E−)]

(h̄ω + iδ)2 − (4a2t2k2 + �′2)
. (10c)

To obtain Eq. (10c) we have included only the interband
transitions. There is an additional intraband contribution
which provides a delta function contribution at ω = 0. When
residual scattering is included in the calculations, the intraband
piece broadens into a Drude peak which can overlap with
the interband contribution. But in the pure limit, which is
the case we are considering here, we need not consider
this contribution. What replaces the Berry curvature in the
expression for the longitudinal conductivity σxx is a factor

h ≡ −2a2t2
(
4a2t2k2

y + �′2)
iω[�′2 + 4a2t2k2]3/2

(10d)

For k = 0 this factor in σxx and σxy agrees and as we will see
later this leads to a valley selection rule for circular polarized
light; at finite k, however, the cancellation is no longer exact.
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III. RESULTS FOR SPIN AND VALLEY HALL
CONDUCTIVITY

In Fig. 1 we show our results for the Hall conductivity
σxy(ω) vs. h̄ω in units of e/h̄ for the four values of the chemical
potential shown in the inset of the top frame where the band
energies E±

k (τ,sz) are sketched [Eq. (3)]. μ = −0.995 eV falls
below the top of the lowest energy spin-polarized valence
band; μ = −0.845 eV falls between the two valence bands.
μ = 0.09 eV is between the valence and conduction bands
(insulator) while μ = 0.92 eV falls in the conduction band
also spin split, but this splitting is small. In the main frame

FIG. 1. Real (solid) part of the Hall conductivity σxy vs. ω, and
its imaginary part (dashed) for τsz = 1. The dotted and dashed dotted
curves are for τsz = −1 instead. There are 4 frames from top to
bottom for four values of chemical potential μ namely −0.995,

−0.845,0.09 and 0.92 eV respectively. The inset provides a sketch
of the bands in MoS2 and how the four values of μ relate to these. In
all cases the bands are cut off at momentum ka = 3.0.

FIG. 2. The energy bands (solid) for MoS2 with chemical poten-
tial μ level indicated by a dashed horizontal line. The extremal optical
transitions are also indicated in each case. From top to bottom frame
μ = −0.995,−0.845,0.09 and 0.92 eV .

which has four frames each for a different value of μ we
show separately the contribution for τsz = ±1 with σxy(ω)
the sum over both the index sz(spin) and τ (valley). The solid
line is the real part for τsz = 1 while for τsz = −1 the dotted
line applies. The dashed and dash-dotted lines are for their
respective imaginary parts. We note a sharp onset in these two
last curves, the energy of which can be traced to the minimum
energy associated with the possible interband optical transition
as shown in Fig. 2. As an example, in the top frame we see that,
for μ = −0.995 eV, the onset of the interband transitions for
spin ↑ occurs at higher energies than for spin ↓ (here the valley
index has been taken to be 1). Corresponding to the onset
in Imσxy there is a peak in its real part at this same energy
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as they are related by the Kramers-Kronig relations. The
results presented were obtained through numerical evaluation
of Eq. (10a). The numerical values do have some dependence
on the cutoff used on the energy (atk)2. Here we have set
the cutoff ak to be 3 and restrict ourselves to photon energies
below 3 eV. In this energy range choosing a larger cutoff makes
no difference to the results which have converged. For photon
energies above 3 eV, a range not considered explicitly in our
figures, increasing the cutoff even to infinity has no qualitative
effect on the results for the imaginary part of σxy(ω). It affects
the real part more. With a cutoff, there is a zero in Reσxy(ω)
at some high energy. As the cutoff is increased, the energy of
the zero in Reσxy(ω) moves to higher energies and in the limit
of infinite cutoff no zero remains for finite ω as it has moved
to infinity. Taking the infinite band limit has the advantage
that simple analytic expressions can be obtained, which can
be useful. For example, it is straight forward to show that

Imσxy(ω) = − e2

16h̄

2(� − λ)

h̄ω
θ [h̄ω − (� − λ)]

×
[
f

(
λ

2
+ h̄ω

2
− μ

)
− f

(
λ

2
− h̄ω

2
− μ

)]
,

(11)

where we have made explicit the value of the chemical
potential attached to the thermal function f (x) [the Fermi
Dirac distribution f (x) ≡ 1/(eβx + 1) with β = 1/T ]. Note
the onset at (� − λ) and the 1/ω drop in this function as a
function of ω. While there are some quantitative differences of
the form (11) with our numerical results there are no qualitative
changes. Another reason for restricting the range of photon
energies considered, as we have done here, is that the model
Hamiltonian (1) is itself valid only near the main absorption
edge. A first-principles calculation of the dc Hall conductivity
and Berry curvature over the entire Brillouin zone which goes
beyond what we have done is given by Feng et al..14 Here we
really cannot access accurately the high-energy region.

To get the spin and valley Hall conductivity from the results
presented in Fig. 1 components need to be added according
to the weighting of h̄sz/(2e) and τ/e, respectively, as noted
in relation to Eq. (10a). The results are presented in Fig. 3.
The real part of the valley Hall conductivity is the solid
curve with the dashed line the corresponding imaginary part,
while the dotted and dashed-dotted lines are for the spin Hall
conductivity. The differences in weighting sz and τ have a large
effect on the resulting Hall conductivity. For example, the real
part of the valley Hall conductivity is everywhere positive
in our model while the spin Hall conductivity starts negative
at ω = 0 and is very small in comparison to the valley Hall
conductivity. Both show peaks at the onset energies associated
with their imaginary part. Because of the spin splitting of our
bands there are two peaks seen clearly in the real part of the
valley Hall conductivity (solid curve), after which it drops off
gradually with increasing ω. Consequently, the real part of
the spin Hall conductivity (dotted curve) changes sign with
increasing ω because the two peaks found in Fig. 1 (solid
and dotted curves) are associated with opposite spin, this
sign-changing behavior has also been found in the Fig. 4(a)
of Ref. 14. While the results show quantitative variations with

FIG. 3. The real (solid) and imaginary (dashed) parts of the valley
Hall conductivity σxy vs. ω. The dotted and dashed-dotted curves
are similar results for the spin Hall conductivity case. From top to
bottom frame the chemical potentials μ = −0.995,−0.845,0.09, and
0.92 eV. The inset in Fig. 1 provides a sketch of the bands in MoS2

and how the four values of μ relate to these.

the value chemical potential (see inset in Fig. 1), there is no
qualitative change.

The zero energy limit (ω = 0) of the Hall conductivity is of
interest and can be worked out analytically in the infinite band
limit. At zero temperature (T = 0) the results are (σ s

xy in unit
of e

2 , σv
xy in unit of e

h̄
)

σ s
xy(ω = 0) = λ

π

� − 2μ

λ2 − 4μ2
, (12a)

σv
xy(ω = 0) = 1

π

2μ� − λ2

λ2 − 4μ2
(12b)
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for μ in the lowest valence band;

1

2π

� − 2λ + 2μ

λ − 2μ
and

1

2π

� − 2μ

λ − 2μ
(12c)

for μ between the ↑ , ↓ valence band;

0 and
1

π
(12d)

for μ between the valence and conduction bands and

λ

π

� − 2μ

4μ2 − λ2
and

1

π

2μ� − λ2

4μ2 − λ2
(12e)

for μ above the conduction band. Note in particular for μ

between the valence and conduction bands σ s
xy(ω = 0) = 0

and σv
xy(ω = 0) = e

πh̄
. Here we do not have a spin Hall

insulating state. Note that for the real part of the Hall
conductivity at zero temperature an analytical expression
exists, for example, for τ = 1,sz = 1,

Reσxy(ω) = − e2

8πh̄2ω
(� − λ)

× ln

∣∣∣∣h̄ω − 2
√

xmin

h̄ω + 2
√

xmin

h̄ω + 2
√

xmax

h̄ω − 2
√

xmax

∣∣∣∣ (13a)

with

xmin = max

[(
μ − λ

2

)2

,

(
� − λ

2

)2
]

(13b)

xmax = (ka)2
cutt

2 +
(

� − λ

2

)2

. (13c)

(ka)cut is the cutoff for ka in the infinite band approximation
(ka)cut → ∞ while in our numerical results (ka)cut = 3.0.
Similar results can be found, for example, in Ref. 31.

IV. CIRCULAR POLARIZED LIGHT
AND TEMPERATURE EFFECT

For circular polarized light the appropriate optical conduc-
tivity is

σ±(ω) ≡ σxx(ω) ± iσxy(ω), (14)

where the longitudinal and charge Hall conductivities given
by Eqs. (10a) and (10c). The results for the absorptive part of
the conductivity Reσ±(ω) are presented in Fig. 4 where we
show separately Reσxx (solid curve) for sz = +1 and (dotted
curve) for sz = −1, to be compared with the dashed curve for
Imσxy with sz = +1 and dash-dotted curve for sz = −1. For
a given spin the onset in each pair of curves for longitudinal
and Hall conductivities are the same. The two begin to deviate
from each other as ω is increased above the threshold where
the Hall conductivity falls below its longitudinal value.

For the infinite band case we have seen in Eq. (11) that
Imσxy drops like 1/ω. Similar algebra for the infinite band

FIG. 4. The absorptive part of the longitudinal [Reσxx(ω)] and
transverse Hall conductivity [Imσxy(ω)] as a function of photon
energy ω. The chemical potential is μ = −0.845 eV. The top frame
is for temperature T = 10 K and the bottom for T = 300 K. The
solid and dashed curves are for Reσxx(ω) and Imσxy(ω) with τ = +1
(valley index) and sz = +1 (spin index), while the dotted and
dashed-dotted curves are for sz = −1.

limit gives for the longitudinal conductivity

Reσxx(ω) = − e2

16h̄

[
1 + (� − λ)2

h̄2ω2

]
θ [h̄ω − (� − λ)]

×
[
f

(
λ

2
+ h̄ω

2
− μ

)
− f

(
λ

2
− h̄ω

2
− μ

)]
,

(15)

which drops less rapidly with increasing ω than does Imσxy(ω)
in Eq. (11) and provides a check in our numerical results shown
in Fig. 4 for a finite cutoff ka = 3.

The results in the top frame of Fig. 4 apply to temperature
T = 10 K, while those in the bottom are for T = 300 K. For the
specific value of μ chosen (i.e., μ = −0.845 eV) the chemical
potential falls between the two spin-polarized valence bands.
On comparison with the top frame we note considerable
temperature smearing of the spin-up band. But the spin-down
band by comparison is much less affected as it does not fall at
the Fermi energy, but is everywhere below μ and hence does
not respond to temperature as effectively.

In Fig. 5 we present our results for Reσ±(ω) vs. ω in units
of e2/h̄ for valley τ = −1 in the case μ = −0.845 eV. The
top frame applies to T = 10 K while the temperature is 300 K
in the bottom frame. The results are presented separately for
sz = ±1. We note that Reσ+(ω) is large and comparable in
size for either spin up or down while Reσ−(ω) is very small in
comparison. This is understood from the optical selection rule
which applies to σxx and σxy . In the infinite band limit we can
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FIG. 5. (Color online) Results for the absorptive part of the
conductivity for circularly polarized light σ±(ω) ≡ σxx ± iσxy . Here
the valley index τ = −1. The solid curve is for Reσ+ and the
dashed curve for Reσ−, both for spin index sz = +1. For sz = −1
the dotted curve is σ+ and the dashed-dotted curve for σ−. The
dominant response in this valley is from σ+ right-handed circular
polarization, also shown on the same figure is the up to up plus
down spin polarization for σ+ (solid red curve). The top frame is at
T = 10 K and the bottom at T = 300 K.

show that

Reσxx(ω) ∓ Imσxy(ω) = − e2

16h̄
θ [h̄ω − (� − λ)]

×
[

1 ± (� − λ)

h̄ω

]2 [
f

(
λ

2
+ h̄ω

2
− μ

)

− f

(
λ

2
− h̄ω

2
− μ

)]
, (16)

which implies a perfect cancellation at the onset energy ω =
(� − λ). Here Eq. (16) is for the sz = +1 band with −λ → λ

for the sz = −1 case. Effectively, light polarization provides
valley selection to a very good approximation. It is exact at
the onset energy and remains quite good even at ω = 4 eV, for
which energy the light polarization will reduce the absorption
from this valley to about 20% its value for the opposite
polarization. The polarization selection rule found here for
the dynamical conductivity agrees fully with those previously
discussed by Yao et al.13 for the inversion symmetry-breaking
Hamiltonian in two valley systems, where they related the
optical selection rule to the orbital magnetic moment and
the Berry curvature of the particular valley considered. It is
interesting to look at the spin-up spin-down admixture of the
optical response Reσ+(ω) vs. ω. We define

P (ω) = σ
spin up
+ (ω)

σ
spin up
+ (ω) + σ

spin down
+ (ω)

. (17)

The results are shown as the red curve in Fig. 5. We note that
for most frequencies P (ω) is close to 1/2, but that around the
onset energy for σ+ there is a region where P (ω) falls below
this value and can be close to 0. This is easily understood as a
direct consequence of the displacement in the onset between
Reσ+(ω) for spin down (dotted curve) and for spin up (solid
curve), which implies a deficit of the spin-up electron in the
region between these two onsets. Temperature can have a large
effect on the position and shape of P (ω) in the region of
the onset as seen in the lower frame of Fig. 5. This can be
traced to the fact that the spin-up electrons are much more
susceptible to temperature smearing for the case considered
here, as we have already noticed. The solid curve (↑) for σ+
now extends to lower energies than does the short dashed curve
(↓). Temperature can in fact change the magnitude of P (ω) in
the region of interest from less than 1/2 to larger than 1/2 with
this entire region shifted toward lower energies. The peak in
P (ω) for T = 300 K is also broadened as compared with the
valley in this same quantity for T = 10 K. The spin admixture
in this region can be manipulated with temperature.

V. SUMMARY AND CONCLUSION

We present expressions for the dynamic conductivity of
MoS2 based on a simplified Hamiltonian which includes
spin-orbit coupling and band-structure parameters fit to first-
principles calculations. Using the Kubo formula, the final
expressions reduce to a sum over momentum k centered about
the two valley points K and −K defining the corners of
the honeycomb lattice in the Brillouin zone. The bands are
spin polarized and a sum over the spin and valley appears.
The transverse conductivity is split into charge, spin, and
valley Hall conductivity and, in all cases, depends on an
overlap of the Berry curvature multiplied with a common
sum of two energy denominators linear in frequency plus
the appropriate temperature factors and channel-dependent
indices. The expression for the longitudinal conductivity is
not quite as simple but reduces to the common form around
k = 0 (zero momentum). Simplified analytic expressions can
be obtained in the infinite band limit. We present numerical
results for all these quantities as a function of photon energy
separating out, in each case, the contribution from the separate
spin channels. In the numerical calculations we use a cutoff
on momentum of ka = 3.0. The results are not qualitatively
different from the infinite band case although there are
important quantitative differences. The effect of temperature
is considered. It provides a smearing that tends to obscure the
separate contributions to the conductivity. It also can change
very significantly the spin admixture in the frequency window
just above the main absorption threshold where there can
be an important imbalance between the up and down spins,
for a given valley when circular polarized light is employed.
The absorptive part of the conductivity for right- and left-
handed polarized light, which is the appropriate quantity for
valleytronics, is also computed, and it is found that the second
valley contributes very little to the absorption. For example, it
is less than 20% at ω = 4 eV, with the main absorption peak
at 1.7 eV. The dc limit of the Hall conductivities is obtained
analytically. For the parameters appropriate to MoS2, the real
part of the valley Hall conductivity is positive and large in value
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as compared to its spin Hall counterpart, which is negative
for some values of the chemical potential. We hope that our
calculations can help further our understanding of the optical
properties of MoS2.
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