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Damping and decoherence of Fock states in a nanomechanical resonator due to two-level systems
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We numerically investigate the decay of initial quantum Fock states and their superpositions for a mechanical
resonator mode coupled to an environment comprising interacting, damped tunneling two-level system (TLS)
defects. The cases of one, three, and six near-resonant, interacting TLS’s are considered in turn, and it is found
that, with even as few as three TLS’s, the resonator’s quantum decay behavior is indistinguishable from that due
to coupling to an Ohmic oscillator bath.
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I. INTRODUCTION

The quest to understand the quantum-to-classical transition
has led to the development of macroscopic mechanical systems
in which researchers hope to realize quantum states. In a
2010 landmark experiment,1 a state corresponding to a single
quantum of vibrational energy in a mechanical resonator
was created and its subsequent decay dynamics measured.
We anticipate that similar measurements involving a higher
number quantum Fock states and their superpositions in a
mechanical system will be achieved in the near future. In
light of these developments, there is a need to understand
the quantum state decay mechanisms that enforce classicality
in these systems.

In the early 1970s, an explanation was provided for the ob-
served anomalous thermal behavior of amorphous materials at
cryogenic temperatures by invoking the existence of tunneling
two-level system (TLS) defects that couple via their elastic
dipole moments to phonons.2,3 Subsequent acoustic phonon
pulse attenuation, acoustic hole burning, and acoustic phonon
pulse echo experiments provided strong confirming evidence
for the existence of interacting TLS’s in these materials.4–8

More recently, the relevance of TLS defects for micron-scale
superconducting qubit dynamics was established, where the
TLS’s are thought to reside in the tunnel barrier oxide layer and
in the substrate, and couple via their electric dipole moments
to the qubits.9–19

The same amorphous materials are often used in the
fabrication of nanoscale to micron-scale mechanical systems,
and thus it is likely that TLS’s will play a significant role in their
quantum-to-classical transition at cryogenic temperatures.20–24

In particular, we anticipate that TLS’s will provide one of
the main mechanisms for the decay of quantum states in
mechanical resonators (even though such an understanding
comes with a lack of a clear microscopic picture of what
actually constitutes a TLS defect). In Ref. 25, we presented
an estimate indicating that a given low-order flexural mode
of a micron-scale mechanical resonator vibrating at radio
frequencies may be near resonance with a few TLS’s, but
is unlikely to interact resonantly with large numbers of TLS’s.
These TLS’s couple to the motion of the resonator via its strain,
and thus will be part of the environment responsible for the
decay of quantum flexural modes. Reference 25 numerically
investigated the damping of initially coherent states and the
decoherence dynamics of initial superpositions of spatially
separated coherent states, where the environment consisted

of either one or three damped TLS’s. Clear signatures of
resonator amplitude dependence were observed in the damping
dynamics, a consequence of TLS saturation. This behavior
is qualitatively different from the amplitude-independent
damping of initial coherent states resulting from the standard,
Ohmic oscillator bath model of an environment.

However, it is of interest to explore the damping and
decoherence dynamics for other types of initial, quantum
resonator states, such as Fock states and their superpositions.
We have in mind experiments involving high-frequency
nanoscale to micron-scale mechanical resonators that are
cryogenically cooled to low temperatures, such as for Ref. 1.
In the aforementioned experiment, mechanical Fock states
were prepared and measured by using an electromechanically
coupled, superconducting phase qubit that was controllably
tuned into and out of resonance with the mechanical resonator
mode. We would like in particular to establish whether probing
Fock state decay can distinguish between the mechanical
resonator flexural mode coupling predominantly to a bath
comprising a few near-resonant TLS’s and to a phonon
bath describing elastic radiation loss through the resonator
supports.26

In this work, we numerically model the low-temperature
(kBT � h̄ω) damping and decoherence dynamics of a me-
chanical resonator coupled to between one and six damped
TLS’s that are near-resonant with the resonator, where the
latter is initially prepared in either a single Fock state or a
superposition of Fock states. We find, perhaps surprisingly,
that the damping and decoherence dynamics is practically in-
distinguishable from that resulting from coupling to an Ohmic
oscillator bath, even with only three near-resonant damped
TLS’s furnishing the mechanical resonator environment. In
particular, the Fock state decay rate is observed to scale closely
as n, where n is the initial number of resonator quanta (Fock
state number), while the decoherence time of a superposition
of ground and excited Fock states is found to be close to twice
the decay time of the excited state, coinciding with the Ohmic
model trends. A partial understanding of these numerical
results can be obtained from a simpler, Born-Markov approx-
imated master equation model for the resonator subsystem
that treats perturbatively the coupling between the resonator
and damped TLS’s to second order (with the latter traced
over as the bath) and which facilitates analytical calculations
for the decay times. However, even more surprising is the
observation that completely removing the TLS’s damping does
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not alter the Ohmic damping/decoherence-like behavior for the
resonator subsystem, even though the Born-Markov master
equation model is no longer valid. The latter observation is
reminiscent of recent numerical investigations to establish
subsystem thermalization of closed, interacting many-body
quantum systems;27 in our case, the single oscillator mode
system itself induces interactions between the many TLS’s.

In the next section, we present our model system-
environment master equation, with a more detailed derivation
given in Ref. 25. Section III investigates the damping dynamics
of Fock states and decoherence dynamics of superpositions
of Fock states for a mechanical resonator coupled to first
a single TLS, then three near-resonant TLS’s, and finally
six near-resonant TLS’s, where direct interactions between
the TLS’s are neglected. An approximate master equation
model is presented, yielding analytical decay rate expressions
that partially explain the numerically observed trends. In
Sec. IV, we begin by deriving the oscillator-TLS Hamiltonian
with pairwise interactions between TLS’s mediated via the
resonator’s strain field. The effect of TLS-TLS interactions
on the damping of Fock states and decoherence of Fock state
superpositions in a resonator coupled to first three and then six
near-resonant, interacting TLS’s is investigated. Finally, we
offer some concluding remarks in Sec. V.

II. RESONATOR-TLS SYSTEM EQUATIONS

In this section, we present the model for the resonator-TLS.
For the TLS Hamiltonian, we have

ĤTLS =
N∑

α=1

[
1

2
�

(α)
0 σ (α)

z + 1

2
�

(α)
b σ (α)

x

]
, (1)

where α = 1,2, . . . ,N labels the TLS, �
(α)
0 is the asymmetry

of the αth TLS’s potential well, and �
(α)
b is its tunnel splitting

that depends on the well barrier height and width. Writing out
the resonator mode–TLS Hamiltonian, we have

ĤS = h̄ω(a†a + 1/2)

+
N∑

α=1

[
1

2
�

(α)
0 σ (α)

z + 1

2
�

(α)
b σ (α)

x + λ(α)(a + a†)σ (α)
z

]
,

(2)

where a† and a are raising and lowering operators for the
resonator mode of interest, satisfying the commutation relation
[a,a†] = 1. The resonator mode–TLS coupling λ(α) arises
from the mechanical elastic strain dependence of the TLS
asymmetry energy. The elastic strain for a given resonator
mode is spatially dependent and hence the coupling λ(α)

depends on the location of the given αth TLS defect within the
resonator. A detailed derivation of the coupling for the example
of the fundamental mode of a long, thin elastically isotropic
mechanical beam is given in Ref. 25. Note that the Hamiltonian
(2) neglects interactions between the TLS’s beyond those
induced via the system’s single oscillator mode; pairwise
interactions between the TLS’s induced by the mechanical
resonator’s elastic strain field will be considered below in
Sec. IV.

In Ref. 25, we derive the following master equation
describing the dissipative dynamics of the coupled resonator-

TLS system:

ρ̇S(t) = − i

h̄
[HS,ρS(t)] − iγ

2h̄
[Y,{PY ,ρS(t)}]

− mωγ

2h̄
coth

(
h̄ω

2kBT

)
[Y,[Y,ρS(t)]]

−
N∑

α=1

1

4T
(α)

1

(
E(α)

�
(α)
b

)2
[
σ (α)

z ,
[
σ (α)

z ,ρS(t)
]]

−
N∑

α=1

i

4T
(α)

1

(
E(α)

�
(α)
b

)
tanh

(
E(α)

2kBT

)

× [
σ (α)

z ,
{
σ (α)

y ,ρS(t)
}]

, (3)

where ρS(t) is the resonator-TLS system density matrix,
Y = Yzp(a + a†) gives the mechanical resonator mode dis-
placement (with Yzp the zero-point displacement uncer-
tainty), PY is the resonator mode momentum, and E(α) =√

(�(α)
0 )2 + (�(α)

b )2 is the αth TLS energy level separation. The
parameter γ gives the energy damping rate of the oscillator
resulting from coupling to a bath of oscillators with Ohmic
spectral density (modeling, e.g., clamping loss). We will
restrict ourselves for the most part to the effect of the damped
TLS’s only on the mechanical resonator, considering nonzero
γ only when comparing with the effect on a mechanical
resonator of a pure Ohmic oscillator bath. The parameter T

(α)
1

gives the αth TLS relaxation time from its excited energy
eigenstate in the absence of the oscillator. We shall use
dimensionless time units, t → ωt , with T1 and γ expressed
as ωT1 and γ /ω, respectively, and λ, �i , and temperature T

expressed as λ/h̄ω, �i/h̄ω, and kBT /h̄ω, respectively.
In the following sections, we solve the master equation (3)

numerically using the QUANTUM OPTICS TOOLBOX28 for up
to N = 6 TLS’s and for resonator initial Fock states |n〉 and
their superpositions with n � 10. The resonator state space
dimension was truncated at ncutoff = 35, which was found
to provide more than adequate convergence for the quantum
dynamics. We shall use somewhat larger than typical material
values for the oscillator-TLS coupling strength λ in order to
have manageable numerical integration times.

III. DAMPING AND DECOHERENCE DUE
TO NONINTERACTING TLS’s

A. Single TLS

In this section, we investigate the damping of Fock
states and the decoherence of Fock state superpositions in
a mechanical resonator interacting with a single damped TLS.
As a partial check of our numerical methods, we begin by
evaluating the number state probability Pn = 〈n|ρ|n〉 as a
function of time for a resonator mode coupled to an Ohmic
oscillator bath only, where the analytical solution is known.
Figure 1 shows the log of the number state probability for
initial Fock states |n〉, with n = 0 to 11, when there is an
Ohmic oscillator bath only. (Note that all logarithms are to
base e.) The slope of each successive curve decreases by an
increment of 1/T11, where T11 is the lifetime of the first excited
state; as expected, the number state lifetime decays as 1/n.29
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FIG. 1. (Color online) Natural log of number state probability Pn

vs ωt for a range of initial Fock states for the resonator coupled to an
Ohmic oscillator bath only, where γ = 0.01 and T = 0.09.

Figure 2 shows the number state probability for the res-
onator coupled to a single, on-resonance damped TLS. In this
case, we see that the Pn curves oscillate, as energy is transferred
from the resonator to the TLS and back. As a partial check of
the numerics, the time of the first minimum of each curve
for n � 1 corresponds closely to the Jaynes-Cummings model
prediction for the transfer time of a quantum of vibrational
energy to a symmetric, on-resonance TLS: ωt = πE/(2λ

√
n),

where h̄ω = E = �b. The left-hand plot shows the number
state probability for four low-n states and the right-hand plot
for three high-n states. The high-n states appear to decay at
close to the same rate, as indicated by the black curve, which
follows the maxima of the oscillating probabilities; the same
black curve is shown for comparison in the left-hand plot, and
in this case the Pn plots clearly fall short of this “maximum”
curve, appearing to signify more rapid decay than the indicated
high-n states. These trends are clearly qualitatively different
from the Ohmic oscillator bath case discussed above, where
the decay rate increases linearly with n.

Next, we investigate the effect of a damped TLS on number
state superpositions. A useful “visual” representation of the
state is its Wigner function, defined in terms of the mechanical
resonator mode displacement Y and momentum PY as30

W (Y,PY ) = 1

h

∫
dξ e−iPY ξ/h̄〈Y + ξ/2|ρ|Y − ξ/2〉dξ. (4)

Figure 3 shows two initial oscillator states: an equal mixture
of the ground and n = 7 state [Fig. 3(a)], and a superposition
of the same two Fock states [Fig. 3(b)]. In both cases, the
Wigner function has positive and negative values, because
both the Fock state mixture and the superposition are non-
classical states. However, the spokelike interference fringes
in the superposition plot indicate the presence of nonzero
off-diagonal terms of the density matrix, as opposed to the
concentric undulations in the mixture plot. Figure 4 shows
four equally spaced interval snapshots of the Wigner function
for a resonator initially in the superposition state shown in
Fig. 3(b). The resonator is coupled to an Ohmic bath that causes
the state to decay and the amplitude of the Wigner function to
decrease. However, both the ring and spokelike structures of
the initial state are still visible in the final snapshot. Figure 5
shows a similar set of snapshots, this time for a resonator
coupled to an on-resonance, damped TLS only. In contrast to
the superposition state decay in the Ohmic bath case, we see
that the spokelike structure disappears first, leaving concentric
rings similar to those seen in Fig. 3(a). The dephasing time
Tφ is usually defined in terms of the decay times of the on-
and off-diagonal terms of the resonator’s density matrix as
follows:

1

T0n

= 1

2Tnn

+ 1

Tφ

, (5)

where T0n is the lifetime of the off-diagonal density matrix
element ρ0n, and Tnn is the lifetime of the diagonal matrix
element ρnn. The disappearance of the spokes prior to the
rings suggests a finite Tφ , in contrast to an oscillator bath,
where T0n = 2Tnn.
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FIG. 2. (Color online) Number state probability Pn vs ωt for various initial Fock states for the resonator coupled to a damped TLS only.
The black curve, indicating the peaks of the curves in the right-hand plot, is the same in both plots. For both plots, �0 = 0, �b = 1, λ = 0.1,
T = 0.09, and T1 = 10.
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FIG. 3. (Color online) Wigner function for a mixture of number states |0〉 and |7〉 (a) and for a superposition of the same states (b). The
horizontal and vertical axes are dimensionless mechanical resonator position Y/Yzp and momentum PY /(mωYzp), respectively.

B. Three TLS’s

We now increase the number of damped TLS’s to three.
The TLS energies �

(α)
0 and �

(α)
b , α = 1,2,3, are cho-

sen randomly according to the standard tunneling model
(STM) distribution.8,25 As our condition for near resonance,
the corresponding TLS energies E(α) are restricted to the
range 0.75h̄ω � E(α) � 1.25h̄ω, where recall that E(α) =√

(�(α)
0 )2 + (�(α)

b )2. We also choose random values for the

T
(α)

1 relaxation times of each individual TLS by first selecting
a reference T1 value and then assigning to each TLS a
randomly generated T

(α)
1 within ±50% of the reference value.

Furthermore, each TLS is assigned a random λ(α) coupling
that is within ±50% of a reference value λ = 0.1/6, scaled
down from the single TLS coupling considered in the previous
section (λ = 0.1) so as to avoid significant TLS-induced renor-
malizations of the resonator’s harmonic potential resulting
from having more coupled TLS’s. We choose a temperature
T = 0.09 for all plots.

To investigate Fock state decay, we choose an initial state
|ψ0〉 = |n〉 and then determine the corresponding number state
probability Pn as a function of time. Figure 6 shows the decay
of Pn for a range of initial Fock states. Note that there is a small
numerical integration error that manifests itself in the ground
state |0〉 probability rising slightly above 1 over the integration
time ωt = 100. However, this error is sufficiently small as to
have a negligible effect on the Fock state decay dynamics for

n � 1. In contrast to the single-TLS case, the number state
probabilities do not show large oscillations but instead decay
relatively smoothly. Furthermore, the nearly linear curves in
the log plot indicate that Pn decays exponentially and the
decay rates can be extracted from a linear fit. We noted in the
previous section that for a resonator damped by an Ohmic bath,
the decay time for the nth state goes as Tnn = T11/n, where
T11 is the decay time for the first excited state: the decay rate
scales as n. Figure 7 shows the normalized decay rate T11/Tnn

for Pn as a function of n. For a resonator coupled solely to an
Ohmic bath, the curve has a slope equal to 1. For a resonator
coupled to three TLS’s, the slope is very close to 1; Fock states
decay similarly to a resonator that is Ohmically coupled to a
bath of free oscillators.

We now investigate the decay of a superposition of the
ground state and the nth excited state, |ψ〉 = 1/

√
2(|0〉 + |n〉),

with each TLS initially in a thermal state. We consider the
ρnn and ρ0n elements of the density matrix as a function
of time (plots not shown). The curves decay approximately
exponentially; we apply a linear fit to the log of the curves
to find the diagonal and off-diagonal decay times, Tnn and
T0n, respectively. Figure 8 shows the log of the decay times as
a function of ln(n) for a range of T1 values. We plot 2Tnn to
allow for a comparison to the relation T0n = 2Tnn for an Ohmic
bath. The curves in Fig. 8 all decay uniformly and with a slope
≈ −1. The 2Tnn and T0n curves are very similar: dephasing is
negligible compared to decay.

FIG. 4. (Color online) Evolving Wigner function for the resonator initially in the superposition state shown in Fig. 3(b) coupled to an
Ohmic oscillator bath with γ = 0.01 and T = 0.09.
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FIG. 5. (Color online) Evolving Wigner function for the resonator initially in the superposition state shown in Fig. 3(b) coupled to a damped
TLS with λ = 0.1,�0 = 0,�b = 1,T = 0.09, and T1 = 10.

The curves in Fig. 8 show a surprising dependence on T1.
As a reminder, T

(α)
1 is the decay time of the αth TLS from its

excited to ground state. Because T1 determines the strength
of the coupling between a TLS and its bath, with smaller
T1 corresponding to stronger coupling, we would expect Tnn

and T0n to decrease as T1 decreases; stronger coupling would
result in shorter resonator Fock state decay times. However,
Fig. 8 shows that the opposite is true. The curve with T1 = 1
shows longer decay times than the curve with T1 = 100. The
lowest (solid green) curve is for a resonator coupled to three
undamped TLS’s, and thus a T1 for this curve is not given.
This curve shows the shortest decay times, and appears to be
the large-T1 limit of the curves for the damped TLS’s.

To further investigate the T1 dependence of the decay times,
in Fig. 9 we plot T0n and 2Tnn as a function of T1 for the n = 4
superposition state. The plot shows a strong dependence on
T1, particularly for T1 < 10, and suggests that reducing the
TLS-bath coupling causes superposition states to decay more
quickly. This surprising dependence on T1 will be discussed
in further detail below in Sec. III D. Finally, in Fig. 10 we
plot 2Tnn and T0n versus n for three different realizations of
the randomized TLS parameters. While the curves indicate
the same qualitative linear dependence Tnn = T11/n, there is
some scatter in the T11 values, as indicated by the different
intercepts. This is to be expected given that we have only

a small statistical sample of three randomly selected TLS’s
coupled to the resonator.

C. Six TLS’s

We now consider a resonator coupled to six noninteracting
TLS’s. We assign random values to the TLS energies �

(α)
0 and

�
(α)
b according to the STM distribution, as well as random

values to the resonator-TLS coupling term λ(α) and the TLS
T

(α)
1 times, selected as in the previous section. The temperature

T = 0.09 for all plots. We first consider the decay of a Fock
state as a function of time for a resonator coupled to six damped
spins. From the log plot in Fig. 11, we see that the log of
the number state probability Pn decays approximately linearly
with time. The oscillations at long times for the higher energy
states are numerical artifacts arising from the exponentially
small Pn values. We can apply a linear fit to the log plot
to determine the n dependence of the decay rate. As for the
resonator coupled to three TLS’s, we find that the resonator’s
normalized decay rate scales with the initial Fock state number
similarly to that of an Ohmic bath, i.e., with slope ≈ − 1 (see
Fig. 22).

Next, we study the decay of a superposition of the ground
state and the nth excited state. Figure 12 shows the log of
T0n and 2Tnn versus the log of the initial n characterizing the
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FIG. 6. (Color online) Left: Pn vs ωt for a resonator coupled to three noninteracting TLS’s. Right: ln(Pn) vs ωt . For all curves, T1 = 10.
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FIG. 7. Normalized decay rate vs n for single Fock states. The
resonator is coupled to three noninteracting TLS’s (solid) and to an
Ohmic bath without any TLS’s present (dot-dash). For both curves,
T1 = 10.

superposition state for seven different values of the average
TLS T1 time. We note that all of the curves have a slope
≈ − 1. Similar to Fig. 8 for three TLS’s, Fig. 12 shows little
difference between T0n and 2Tnn for the different values of T1;
dephasing is negligible.

In Fig. 13, we show the T1 dependence of the on- and
off-diagonal decay times for the n = 4 superposition state.
The plot shows the same strong dependence on T1 as for the
case of three TLS’s (Fig. 9). As a reminder, T1 is the time
it takes for a TLS in its excited state to decay to its ground
state. Thus, we would expect that as we decreased T1, the
resonator states would dampen more quickly, resulting in a
shorter decay time. For six TLS’s, however, we find that as we
decrease T1, the diagonal and off-diagonal terms of the density
matrix decay more slowly. This unexpected behavior suggests
that the coupling between the TLS’s and their individual baths
is somehow obstructing a more efficient means of dissipation.
This is supported by the lowest curve in Fig. 12, which is for
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FIG. 9. 2Tnn and T0n vs T1 for the n = 4 superposition state. The
resonator is coupled to three noninteracting TLS’s.

a resonator coupled to six TLS’s that are not coupled to their
individual baths, and yet indicates the shortest oscillator Fock
state decay time. In Sec. III D, we show through an analytical
approximation that this behavior can be partially explained by
considering the TLS bath Lorentzian linewidth dependencies
on T1.

Finally, as we did for three noninteracting TLS’s, we now
plot the decay of Tnn and T0n for three different realizations
of the TLS parameters. Figure 14 shows that the groups of six
TLS’s exhibit a higher degree of agreement than the three-TLS
groups did (Fig. 10), with uniform slopes ≈−1. This is a good
indication that we have moved to a regime more akin to a dense
TLS spectrum, with variations in the parameters of individual
TLS’s having less of an impact on the resonator.

D. Analytical approximation to Fock state damping

In this section, we present an analysis of Fock state damping
due to TLS’s. We assume that the coupling between the
mechanical resonator and the N TLS’s is sufficiently weak
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FIG. 8. (Color online) T0n and 2Tnn for the
initial superposition state |ψ0〉 = 1/

√
2(|0〉 + |n〉)

with a range of T1 values shown in the legend.
In particular, T1 ranges from 1 to 100, while
“no bath” denotes that the TLS’s are undamped.
The observed trend for a given n is decreasing
decay time with increasing T1. For all curves, the
resonator is coupled to three noninteracting TLS’s.
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FIG. 10. (Color online) 2Tnn and T0n vs n for three different
groups of the TLS parameters. For all curves, T1 = 10.

that we can make a self-consistent Born approximation, where
we expand perturbatively to second order in the resonator-TLS
couplings and trace over the TLS’s to obtain the following
resonator master equation:

ρ̇m(t) = − i

h̄
[Hm,ρm(t)]

− 1

h̄2

∫ t

0
dt ′

{
1

2
〈{B(t),B(t ′)}〉[Y,[Y (t ′ − t),ρm(t)]]

+ 1

2
〈[B(t),B(t ′)]〉[Y,{Y (t ′ − t),ρm(t)}]

}
, (6)

where ρm and Hm are the mechanical resonator density matrix
and Hamiltonian, respectively, and

B(t) =
N∑

α=1

λ(α)σ (α)
z (t), (7)

with λ(α) the coupling between the oscillator and the αth TLS.
Solving for the TLS-environment dynamics in the absence
of the resonator, one can find the symmetric 〈{B(t),B(t ′)}〉
and antisymmetric 〈[B(t),B(t ′)]〉 correlation functions of
the TLS bath. Thus, in the above Born approximation, we
neglect the influence of the resonator on the TLS dynamics.
More specifically, the approximation does not account for
possible nonlinear, resonator amplitude-dependent saturation
effects, or the possibility of coherent energy exchange be-
tween the resonator and the TLS’s. The importance of these
effects depends on the relative coupling strengths between
the mechanical resonator and the TLS’s, and between the
TLS’s and their respective baths. Following the analysis in
Ref. 11, we have the following for the TLS bath correlation
functions:

1

2
〈{B(t),B(t ′)}〉

=
N∑

α=1

(λ(α))2
[

cos2 θ (α)
(
1 − 〈

σ (α)
z

〉2)
e−�

(α)
1 (t−t ′)

+ sin2 θ (α) cos[E(α)(t − t ′)/h̄]e−�
(α)
2 (t−t ′)] (8)

and

1

2
〈[B(t),B(t ′)]〉 = −i

N∑
α=1

(λ(α))2 sin2 θ (α)〈σ (α)
z

〉
× sin[E(α)(t − t ′)/h̄]e−�

(α)
2 (t−t ′), (9)

where 〈σ (α)
z 〉 = tanh[E(α)/(kBT )], sin θ (α) = �

(α)
b /E(α), and

cos θ (α) = �
(α)
0 /E(α). The TLS dephasing rate is given in terms

of the relaxation rate as

�
(α)
2 =

⎡
⎣1

2
+

(
�

(α)
0

�
(α)
b

)2
⎤
⎦ �

(α)
1 , (10)

where �
(α)
1 = T

(α)−1
1 . We now substitute Eqs. (8) and (9) into

the mechanical resonator master equation (6), and we insert
the free resonator (oscillator) dynamics solution

Y (t ′ − t) = Yzp(ae−iωm(t ′−t) + a†eiωm(t ′−t)). (11)
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FIG. 11. (Color online) Left: Pn vs ωt for a resonator coupled to six noninteracting TLS’s. Right: ln(P )n vs ωt . For all curves, T1 = 10.
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FIG. 12. (Color online) T0n and 2Tnn for the
initial superposition state |ψ0〉 = 1/

√
2(|0〉 + |n〉)

with a range of T1 values shown in the legend.
In particular, T1 ranges from 1 to 1000, while
“no bath” denotes that the TLS’s are undamped.
The observed trend for a given n is decreasing
decay time with increasing T1. For all curves, the
resonator is coupled to six noninteracting TLS’s.

We then make a rotating wave and a Markov approximation,
and we assume temperatures kBT � E(α) such that 〈σ (α)

z 〉 ≈ 1
and the longitudinal contribution depending on cos θ (α) is sup-
pressed, leaving only the transverse contributions depending
on sin θ (α). We thus obtain the probability that the mechanical
resonator is in the nth Fock state, Pn = 〈n|ρm|n〉:

dPn(t)

dt
= −γFock [nPn(t) − (n + 1)Pn+1(t)] , (12)

where γFock(≡T −1
11 ) gives the decay rate for an initial n = 1

Fock state:

γFock = − 1

h̄2

N∑
α=1

(λ(α))2 sin2 θ (α) 2�
(α)
2(

�
(α)
2

)2 + (E(α)/h̄ − ωm)2
.

(13)

Equation (12) shows that the decay rate for an initial n Fock
state scales with n, as we saw in the numerical simulations. The
dependence of the probability decay rate on T1 comes from the
TLS dephasing rate �

(α)
2 dependence of the Lorentzian term.
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FIG. 13. 2Tnn and T0n vs T1 for the n = 4 superposition state.

From Eq. (10), we see that �(α)
2 scales as �

(α)
1 . We now consider

the form of the given Lorentzian, subject to the rescaling εT1:

2�2/ε

(�2/ε)2 + (E/h̄ − ωm)2 . (14)

Figure 15 shows the Lorentzian factor as a function of ωm

for three different ε values. As we increase ε (i.e., increase the
TLS damping time, T1), the Lorentzian factor correspondingly
increases, as long as |E/h̄ − ωm| < �2/ε, i.e., within the
Lorentzian linewidth. Physically, Eq. (13) indicates that for
a mechanical resonator that is approximately resonant with
a TLS, the longer the TLS decay time, the more rapidly it
absorbs energy from the mechanical resonator, and hence the
shorter the Fock state probability decay time. However, as ε

continues to increase, we eventually have that |E/h̄ − ωm| >

�2/ε. The TLS is no longer approximately resonant with
the oscillator, and so the Lorentzian factor and thus the
decay rate decreases. Figure 16 shows the dependence of the
decay time on ε that follows from one of the distributions

0.8 1 1.2 1.4 1.6 1.8 2
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

ln(n)

ln
(D

ec
ay

 ti
m

e)

 

 
T

0n
 group 1

2*T
nn

 group 1

T
0n

 group 2

2*T
nn

 group 2

T
0n

 group 3

2*T
nn

 group 3

FIG. 14. (Color online) 2Tnn and T0n vs n for three different
realizations of the TLS parameters. For all curves, T1 = 10.
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FIG. 15. (Color online) Lorentzian function vs ωm for three
different ε values. TLS parameters are �0 = 0.6281, �b = 0.7592,
and T1 = 0.6396.

of TLS-oscillator coupling and parameter values used in the
numerical simulations. The intermediate dip is due to some
of the TLS’s going out of resonance. While the plot does not
show quite the same monotonically decreasing decay time with
increasing ε as found in the numerical simulation, it does give
approximately the same overall decreasing trend. Differences
are due to the breakdown of the Born-Markov approximation
for treating the TLS subsystem as a bath.

IV. TLS-TLS INTERACTIONS

A. Derivation of the Hamiltonian

Experiments have shown that interactions between TLS’s
play an important role in dissipation and decoherence.4,6,7 In
this section, we derive the TLS-TLS interaction Hamiltonian.
We begin with the Hamiltonian for an elastic wave system
interacting with TLS defects. The Lagrangian for an elastic
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FIG. 16. Fock state decay time vs TLS T1 scaling factor ε for the
n = 1 Fock state.

wave system is31

Lwave = 1

2

∫
V

d3r[ρu̇i(
r,t)u̇i(
r,t) − cijkl∂iuj (
r,t)∂kul(
r,t)],
(15)

where V is the system volume, ρ is the mass density,
ui(
r,t), i = 1,2,3 is the ith component of the displacement
vector field, and cijkl is the elastic modulus tensor. We use
the Einstein summation convention. The Hamiltonian is by
definition

Hwave = u̇i

∂Lwave

∂u̇i

− Lwave, (16)

which, with Eq. (15), gives

Hwave =
∫

V

d3r

[
ρ

2
u̇i u̇i + 1

2
cijkl∂iuj ∂kul

]
. (17)

In addition to the noninteracting TLS Hamiltonian (1), we have
the TLS-wave system interaction Hamiltonian

Hint = −
N∑

α=1

[
ν

(α)
ij ε

(α)
ij σ (α)

z

]
, (18)

where ν
(α)
ij is the deformation potential tensor at the α TLS

location 
r (α) and

ε
(α)
ij = 1

2 [∂iuj (
r (α),t) + ∂jui(
r (α),t)] (19)

is the strain tensor at 
r (α). Since ν
(α)
ij = ν

(α)
ji , we can rewrite the

interaction Hamiltonian as

Hint = −
N∑

α=1

[
ν

(α)
ij ∂iuj (
r (α),t)σ (α)

z

]
. (20)

The full Hamiltonian is now

H =
∫

V

d3r

[
ρ

2
u̇i u̇i + 1

2
cijkl∂iuj ∂kul

]

+
N∑

α=1

[
1

2
�

(α)
0 σ (α)

z + 1

2
�

(α)
b σ (α)

x

]

−
N∑

α=1

[
ν

(α)
ij ∂iuj (
r (α),t)σ (α)

z

]
. (21)

For weak TLS-wave system interactions, we can in principle
start with this Hamiltonian and derive a master equation for the
observed flexural wave mode of interest that interacts with the
N TLS’s. The rest of the elastic wave normal modes then form
the TLS bath, as well as mediate the interactions between the
TLS’s. Instead, we will adopt a less rigorous approach to derive
the approximate form of the elastic wave-induced interaction
between any pair of TLS’s. We assume that the time scale
for the phonon mediated interaction between two TLS’s is
much shorter than their internal dynamics time scale; the two
TLS’s are therefore approximated as “frozen,” with each in a
given spin state. We take as our starting point the following
Hamiltonian for the interaction between two TLS’s without

205419-9
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FIG. 17. (Color online) Left: Pn vs ωt for a resonator coupled to three interacting TLS’s. Right: ln(Pn) vs ωt . For all curves, T1 = 10.

the noninteracting TLS part:

Happrox2TLS =
∫

V

d3r

[
ρ

2
u̇i u̇i + 1

2
cijkl∂iuj ∂kul

−
2∑

α=1

ν
(α)
ij ∂iuj (
r (α),t)σ (α)

z δ(
r − 
r (α))

]
. (22)

Next, we express this approximate Hamiltonian operator at
t = 0 in terms of the normal mode, phonon creation, and
annihilation operators. We define

ui(
r,0) =
∑

β

√
h̄

2ρωβ

[aβuβ,i(
r) + a
†
βu∗

β,i(
r)] (23)
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FIG. 18. (Color online) Normalized decay rate vs n for single
Fock states. The resonator is coupled to three noninteracting TLS’s
(solid), three interacting TLS’s (dash), and to an Ohmic bath (dot-
dash). For all curves, T1 = 10.

and

u̇i(
r,0) = −i
∑

β

√
h̄ωβ

2ρ
[aβuβ,i(
r) − a

†
βu∗

β,i(
r)], (24)

where [aβ,a
†
β ′ ] = δβ,β ′ , with β denoting the normal mode. The

normal modes are solutions to

cijkl∂j ∂kuβ,l = −ρω2
βuβ,i . (25)

Substituting Eqs. (23) and (24) into Eq. (22) and using Eq. (25)
and the orthonormality and completeness relations∫

V

d3ruβ,i(
r)u∗
β ′,i(
r) = δβ,β ′ (26)

and ∑
β

uβ,i(
r)u∗
β,j (
r ′) = δij δ(
r − 
r ′), (27)

respectively, we obtain

Happrox2TLS =
∑

β

[
h̄ωβ

2
(aβa

†
β + a

†
βaβ) + fβaβ + f

†
β a

†
β

]
,

(28)

where fβ is defined as

fβ =
√

h̄

2ρωβ

∫
V

d3ruβ,i(
r)νij

× [
∂j δ(
r − 
r (1))σ (1)

z + ∂j δ(
r − 
r (2))σ (2)
z

]
. (29)

Making the substitution aβ = bβ + cβ , we obtain

Happrox2TLS =
∑

β

[
h̄ωβ

2
(bβb

†
β + b

†
βbβ) + h̄ωβ(c†βbβ + cβb

†
β)

+ fβbβ + f
†
β b

†
β + cβfβ + c

†
βf

†
β + h̄ωβcβc

†
β

]
.

(30)
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FIG. 19. (Color online) T0n and Tnn for the
initial superposition state |ψ0〉 = 1/

√
2(|0〉 + |n〉)

with a range of T1 values shown in the legend.
In particular, T1 ranges from 1 to 100, while
“no bath” denotes that the TLS’s are undamped.
The observed trend for a given n is decreasing
decay time with increasing T1. For all curves, the
resonator is coupled to three interacting TLS’s.

Defining cβ = −f
†
β /h̄ω and c

†
β = −fβ/h̄ω, we see that the

mixed operator terms in Eq. (30) cancel out, and we have

Happrox2TLS =
∑

β

[
h̄ωβ

2
(bβb

†
β + b

†
βbβ) − fβf

†
β

h̄ω

]
. (31)

The TLS-TLS interaction term we are seeking is contained
within the quadratic f -term in Eq. (31). Substituting in Eq. (29)
and simplifying, we obtain the following for the TLS-TLS
interaction:

HTLS-TLS = −σ (1)
z σ (2)

z νikνjl

1

ρ

∑
β

1

ω2
β

∂kuβ,i(
r (1))∂lu
∗
β,j (
r (2)),

(32)

where we have neglected TLS self-interaction terms.
The strength of the interaction between the two TLS’s will

depend on the nature of the elastic medium in which the TLS’s
are embedded, as expressed by the mode sum in Eq. (32).
Let us now try to come up with a simple semiquantitative
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FIG. 20. Tnn and T0n vs T1 for the n = 4 superposition state.
The resonator is coupled to three noninteracting (black) and three
interacting (gray) TLS’s.

approximation to the mode sum part in the interaction term (32)
using dimensional analysis. From the completeness relation
(27), the displacement mode function uβ,i has the dimensions
L−3/2 in terms of some to-be-determined length scale L. The
mode frequency depends on the speed of sound v, and so
scales as ωβ ∼ v/L. Thus, the overall length dimension for
the mode sum in Eq. (32) is L−3. The relevant length scale,
however, depends on the geometry of the embedding elastic
medium. For a bulk, three-dimensional (3D) medium where
the two TLS’s are far from any of the medium boundaries, the
appropriate length scale must be the separation r12 between
the two TLS’s. Thus, for a 3D medium we have

H 3D
2TLS ∼ σ (1)

z σ (2)
z

ν2

ρv2

1

r3
12

, (33)

where we have neglected the anisotropy of the deformation
potential. For a membranelike elastic medium, where the
separation between the two TLS’s is large compared to the
membrane thickness d, we must lose one of the r12 factors
in Eq. (33), to be replaced by d. Thus, for an effectively 2D
medium, we have

H 2D
2TLS ∼ σ (1)

z σ (2)
z

ν2

ρv2d

1

r2
12

. (34)

Finally, for a wirelike elastic medium where the separation
between the two TLS’s is large compared to the wire’s cross-
sectional dimensions d and w, we must lose two of the r12

factors in Eq. (33). Thus, for an effectively 1D medium, we
have

H 1D
2TLS ∼ σ (1)

z σ (2)
z

ν2

ρv2dw

1

r12
. (35)

Note that, as the dimensions of the elastic structure are reduced,
the TLS-TLS interaction becomes longer-ranged. In particular,
for a wirelike structure, the reduced volume and hence reduced
number of TLS’s will in part be compensated by a longer-
ranged interaction.

B. Three interacting TLS’s

We now include TLS-TLS interactions. We group all vari-
ables in Eq. (32) except the σ operators into a single variable,

205419-11
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FIG. 21. (Color online) Left: Pn vs ωt for a resonator coupled to six interacting TLS’s. Right: ln(P )n vs ωt . For all curves, T1 = 10.

ζ (αβ), simplifying the TLS-TLS interaction Hamiltonian to

HTLS-TLS = −σ (α)
z σ (β)

z ζ (αβ). (36)

For the plots in this section and the next, we choose a value for
ζ and then generate a random ζ (αβ) within ±50% of this value
for each pair of TLS’s. Unless otherwise specified, the values
are centered around ζ = 0.1/6. This interaction strength is
somewhat larger than estimates based on Eq. (35), chosen to be
comparable to the resonator-TLS coupling strength λ so as to
resolve the effects of including the TLS-TLS interactions. We
plot Pn versus ωt for a resonator coupled to three interacting
TLS’s.

Figure 17 shows that Pn decays exponentially as a function
of time, and we again apply a linear fit to the log plot to
extract a decay rate. In Fig. 18, we plot the normalized decay
rate for a resonator coupled to three noninteracting TLS’s
(solid), to three interacting TLS’s (dash), and to an Ohmic bath
(dot-dash). The dot-dashed and dashed curves are practically
indistinguishable, suggesting that the addition of TLS-TLS
interactions allows the three TLS’s to absorb energy like an
Ohmic bath, even for higher-n Fock states.

We now investigate the decay of a superposition state.
Figure 19 shows the on- and off-diagonal decay times T0n

and 2Tnn as a function of n for a range of TLS T1 values. As in
the case of three noninteracting TLS’s, the curves have slopes
≈ − 1 and also T0n ≈ 2Tnn; dephasing is negligible.

Figure 20 shows the T1 dependence of the on- and
off-diagonal decay times for a resonator coupled to three
noninteracting (black) and three interacting (gray) TLS’s. The
decay times are reduced for the resonator coupled to interacting
TLS’s, with the same unexpected T1 dependence as noted in
the preceding section.

C. Six interacting TLS’s

We now couple the resonator to six interacting TLS’s.
Figure 21 shows the number state probability as a function of
time for a resonator coupled to six damped, interacting TLS’s.
The shape of the curves is similar to that for six noninteracting

TLS’s, with the log plot appearing approximately linear.
Again, the oscillations appearing in the larger n curves at long
times are numerical artifacts due to the exponentially small
decay probabilities. In Fig. 22, we plot the decay rate as a
function of n for six TLS’s with (dash) and without (solid)
TLS-TLS interactions, and for a resonator coupled only to an
Ohmic bath (dot-dash). We note that the decay is similar for
the two cases with slope close to 1.

Next we study the T1 dependence of the on- and off-diagonal
terms of the density matrix for a superposition of Fock states,
as we did in Fig. 20. Figure 23 shows Tnn and T0n as a function
of T1 for the n = 4 superposition state for a resonator coupled
to six noninteracting (black) and six interacting (gray) TLS’s.
The plot shows that in both cases, a reduction of T1 causes an
increase in the decay time of the on- and off-diagonal terms. As

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

n

no
rm

al
iz

ed
 d

ec
ay

 r
at

e

 

 

without interactions

with interactions

ohmic bath

FIG. 22. (Color online) Normalized decay rate vs n for a single
Fock state. The resonator is coupled to six noninteracting TLS’s
(solid), six interacting TLS’s (dash), and to an Ohmic bath (dot-dash).
For all curves, T1 = 10.
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FIG. 23. Tnn and T0n vs T1 for the n = 4 superposition state. The
resonator is coupled to six noninteracting (black) and six interacting
(gray) TLS’s.

for the three interacting TLS’s case, the addition of TLS-TLS
interactions decreases the decay times.

Lastly, we plot Tnn and T0n as a function of the TLS-TLS
coupling parameter ζ . Figure 24 shows the ζ dependence of
the decay times for two different sets of random ζ (αβ). In both
cases, the decay time of the diagonal terms, Tnn, shows a
linear dependence on the strength of the TLS-TLS coupling,
with a slight variation in the slope for the two realizations.
The off-diagonal terms, particularly for the second group
of random ζ (αβ) values, decay less uniformly with respect
to ζ , but the overall behavior shows a clear dependence on
ζ , with stronger TLS-TLS coupling leading to faster decay
of both the diagonal and off-diagonal terms of the density
matrix.
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FIG. 24. Tnn and T0n vs the TLS-TLS interaction strength ζ for
two different realizations of the random ζ (ij ) values. The resonator is
initially in the n = 4 superposition state. For all curves, T1 = 10.

V. CONCLUSION

In this work, we have explored the effects of near-resonant
TLS’s on the decay of initial Fock states and their superpo-
sitions for a mechanical oscillator at low temperatures. We
began our investigation with an oscillator coupled to a single
TLS, then we increased the number to three, and then six
TLS’s. For initial Fock states |n〉 of an oscillator coupled to a
single, damped TLS, we observed oscillatory decay with a rate
that appeared to decrease with increasing n. In contrast, for an
oscillator coupled to three TLS’s, we found that Fock states
and Fock state superpositions decayed monotonically, similar
to that due to an Ohmic oscillator bath. In particular, the decay
rate T −1

nn of the initial Fock state |n〉 scaled closely as n, while
the interference terms of the Fock state superposition |0〉 + |n〉
decayed close to twice as slowly, T0n ≈ 2Tnn, approximately
coinciding with the Fock state decay behavior of an oscillator
system coupled to a bath of free oscillators with Ohmic spectral
density. We noted that there was some variation in the Fock
state decay times for different realizations of the random TLS
variables, reflecting the fact that we were intermediate between
a single TLS and a dense spectrum of TLS’s. For an oscillator
coupled to six TLS’s, we continued to find an Ohmic-like
decay dependence, while the variation in the decay for different
random TLS realizations was less than for the three-TLS’s
case.

The mechanical resonator Fock state decay rates showed
an unexpected dependence on the TLS relaxation time T1, in
particular increasing with increasing T1. The analysis based
on the Born approximation in the resonator-TLS coupling in
Sec. III D suggested a possible explanation in terms of the T1

dependences of the TLS decay linewidths. However, the Born
approximation breaks down in the limiting case T1 → ∞, and
hence it cannot explain how the effectively Ohmic oscillator
bath decay behavior is maintained even when the mechanical
resonator is coupled to as few as three undamped TLS’s. As
stated in the Introduction, the latter behavior is reminiscent
of subsystem thermalization of closed, interacting many-body
systems.27 We shall explore this connection further in a future
publication.

Including strain-mediated pair interactions between the
TLS’s serves to enhance the Fock state decay rates while
maintaining the Ohmic-like decay behavior. We noted that the
strain-mediated pair interactions are longer-ranged in reduced
dimensional systems. Thus, while there will be fewer TLS’s
near resonance in a vibrating nanowire as compared with a
bulk mechanical resonator of the same material, we might
expect that the longer-ranged TLS-TLS interactions in the
former system will partly compensate by limiting the Fock
state lifetimes.

This work highlights the need for analytical approximations
in order to understand the numerical results. One possible start-
ing point is to assume the rotating wave approximation for the
oscillator-TLS Hamiltonian (2), giving the Tavis-Cummings
Hamiltonian with randomly distributed TLS energies and cou-
plings. We can then apply a polaronlike unitary transformation
to decouple the oscillator from the TLS’s.32 Evidentally, the
numerical simulations presented here can serve as a useful
check for the validity of possible analytical approximations.
Given the established validity of an approximation method,
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one can then go beyond the small TLS number limitation
of computational methods to account also for lower-energy
TLS defects in the mechanical resonator. Such far-from-
resonant TLS’s are responsible for 1/f noise, resulting in
shorter off-diagonal T0n < 2Tnn decay times [through the
longitudinal cos θα contribution in the Born approximated
Eq. (8)].11 Much work remains to be done to understand
the quantum-classical correspondence for nanomechanical
resonators interacting with tunneling TLS defects at low
temperatures, particularly now that experiments demonstrat-

ing such systems in the quantum limit are becoming a
reality.
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