
PHYSICAL REVIEW B 86, 205416 (2012)

Relation between dispersion lines and conductance of telescoped armchair double-wall nanotubes
analyzed using perturbation formulas and first-principles calculations
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The Landauer’s formula conductance of telescoped armchair nanotubes is calculated with a Hamiltonian
defined by first-principles calculations (SIESTA code). Herein, partially extracting the inner tube from the outer
tube is called “telescoping.” It shows a rapid oscillation superimposed on a slow oscillation as a function of the
discrete overlap length (L − 1

2 )a, with an integer variable L and lattice constant a. Considering the interlayer
Hamiltonian as a perturbation, we obtain an approximate formula of the amplitude of the slow oscillation
as |A|2/(|A|2 + ε2), where A is the effective interlayer interaction and ε is the band split without interlayer
interaction. The approximate formula is related to the Thouless number of the dispersion lines.
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I. INTRODUCTION

Single-wall nanotubes (SWNTs) show various useful char-
acteristics as nanoelectronic devices.1,2 They can be either
metallic or semiconducting, depending on their chirality.3

Although a semiconducting SWNT can act as a transistor by
itself,4 we can increase nanotube (NT) device functionality
by assembling SWNTs. For example, a junction between a
metallic SWNT and a semiconducting SWNT can work as
a Schottky diode.5,6 SWNTs can be connected by covalent
bonds5,7 and interlayer interactions.6,8 Double-wall nanotubes
(DWNTs), multiwall NTs, and NT bundles are all examples of
SWNTs that can be naturally assembled through interlayer
interactions. Processing these naturally assembled SWNTs
is one way of constructing higher-order structures for NT
devices. One prototype higher-order structure is the telescoped
double-wall nanotube (TDWNT), in which the inner tube is
partially extracted from a DWNT, as shown in Fig. 1. Since the
interlayer force is relatively small, the inner tube can be slid and
rotated with respect to the outer tube by attached piezoelectric
probes with a negligible change in intralayer bonding.9,10 In
this way, we can realize various interlayer configurations in the
TDWNT, unlike the case for bulk graphite. When a bias voltage
is applied between the attached probes, the resulting current is
significantly influenced by the interlayer configuration because
a carrier from one probe must travel an interlayer path to reach
the other probe. This sensitivity can be used in nanomechanical
switches and nanodisplacement sensors. In addition, TDWNTs
enable us to measure the interlayer conductance more directly
than untelescoped DWNTs.11

Among the reported theoretical work on TDWNTs,12–15

there are controversial results regarding the conductance
of a TDWNT composed of (10,10) and (5,5) armchair
NTs. Compared to a quantum conductance G0 = 2e2/h,
the maximum conductance was found to be 2G0 based on
tight-binding (TB) model calculations, but only G0 based
on first-principles calculations.14,15 Landauer’s formula was
used in these calculations, so the conductance in units of
G0 equals the sum of the transmission rates. In Ref. 15,
the author derived approximate formulas to clarify the direct
relationship between the transmission rate and the interlayer
Hamiltonian. The relation between the transmission rates and

the dispersion lines was used in this derivation. The energy
E, Hamiltonian H , and overlap matrix B were common to
the exact calculations and the approximate formulas. The
approximate formulas indicated that the disagreement comes
from differences in the interlayer Hamiltonian. The interlayer
Hamiltonian is also important in multilayer graphenes16 with
regard to, e.g., transmission through a boundary between
monolayer and bilayer graphene.17 The TB Hamiltonian was
used in Ref. 15 but is insufficient for the interpretation of the
first-principles calculations. Thus, both the exact method and
the approximate formulas were adapted to a first-principles
calculation code with an atomic orbital (AO) basis. The
effectiveness of the approximate formulas was judged from
their agreement with exact calculations.

II. INITIAL GEOMETRIC STRUCTURE AND SITE INDEX

Geometric optimization was performed with the initial
structure defined as follows. In the initial structure, cylindrical
coordinates (r,θ,z) = (rμ,θ

μ

l,m,z
μ

j,m) of the carbon atoms in
the tube μ = O (outer tube) and μ = I (inner tube) are
represented by

θ
μ

l,m = π

nμ

(
l + −5 − (−1)l+m

6

)
, (1)

z
μ

j,m = 0.5a(2j + m). (2)

Though the notation is similar to that of Ref. 15, the integer
index j in Ref. 15 is replaced with 2j + m here. The radius
of the tube μ is denoted rμ = √

3anμ/(2π ), with integers
nO = 10 and nI = 5 and lattice constant a = √

3 × 0.142 nm.
The unit cells are numbered j along the tube axis, while
the atoms in each unit cell are numbered m = −1,0 and
l = 1,2, . . . ,2nμ. As the DWNT considered here has no mirror
plane parallel to the tube axis, symmetric and antisymmetric
states are hybridized by the interlayer interaction. We use
μ, l, j , and m as site indexes in the following. We discuss
three structures: an untelescoped DWNT with five unit cells, a
TDWNT, and an untelescoped DWNT of infinite length. These
are denoted [fi], [td], and [in]. Although Eqs. (1) and (2) are
common among [fi], [td], and [in], the range of j at which the

205416-11098-0121/2012/86(20)/205416(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.205416


RYO TAMURA PHYSICAL REVIEW B 86, 205416 (2012)

attached probes
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FIG. 1. (Color online) Telescoped double-wall nanotube.

corresponding atoms exist is different, as

1 � j � 5 in [fi], (3)

1 � j < ∞ in tube I of [td],

−∞ � j � L in tube O of [td], (4)

and

−∞ < j < ∞ in [in], (5)

where L denotes the number of unit cells in the DWNT of [td].
In the initial structure of [fi], the direction of the C-H bond is
the same as that of the corresponding C-C bond and the C-H
bond length is 0.11 nm.

III. BUILDING BLOCK PROCEDURE

The SIESTA code is used as the first-principles calculation of
structure [fi].18–20 The geometry is optimized by the conjugate
gradients method with the convergence criteria 0.04 eV/Å. The
optimized and initial structures are superimposed in Fig. 2.
We can see that the initial structure is almost maintained
after the optimization. The minimum, average, and maximum
bond lengths are 0.1175, 0.1177, and 0.1181 nm for C-H and
0.1413, 0.1451, and 0.1482 for C-C. The output data after
the geometrical optimization are used. Since the obtained
Hamiltonian matrix has an AO basis, it can be divided into
block matrices based on the unit cells. The one-electron wave
function ψ is represented by the linear combination of AOs
{φ}, as

ψ =
∑

μ=I,O

∑
j

2nμ∑
l=1

0∑
m=−1

∑
α

d
μ

l,m,α,jφ
μ

l,m,α,j . (6)

In Eq. (6), four single ζ AOs (α = 2s, 2px , 2py , 2pz) are
considered per atom.

The secular equations for structures [in] and [td] are
represented by∑

μ′=I,O

∑
j ′

H
μ,μ′
j,j ′ �d μ′

j ′ = E
∑

μ′=I,O

∑
j ′

B
μ,μ′
j,j ′ �d μ′

j ′ , (7)

FIG. 2. (Color online) Structure [fi] superimposed on its initial
structure.

where H
μ,μ′
j,j ′ and B

μ,μ′
j,j ′ are the block matrices of H and B,

respectively. The vector �d μ

j is composed of d
μ

l,m,α,j in Eq. (6).
The ranges of j ′ and j in Eq. (7) are shown in Eqs. (4) and (5).
From the obtained H

μ,μ′,[fi]
j,j ′ and B

μ,μ′,[fi]
j,j ′ , the block matrices

of structure [in] are defined as

H
μ,μ′
η,η+
j = tH

μ′,μ
η+
j,η ≡ H

μ,μ′,[fi]
3,3+
j (8)

for (μ,μ′) = (I,I ),(O,I ),(I,O),

H
O,O
η,η+
j = tH

O,O
η+
j,η ≡ H

O,O,[fi]
3,3+
j + 
εB

O,O,[fi]
3,3+
j , (9)

and

B
μ,μ′
η,η+
j = tB

μ′,μ
η+
j,η ≡ B

μ,μ′,[fi]
3,3+
j , (10)

where η is an arbitrary integer and 
j = 0,1,2. When
|
j | > 2, Bμ′,μ

η,η+
j ≡ 0 and H
μ′,μ
η,η+
j ≡ 0. Here we select block

matrices H [fi] and B[fi] for which the boundary effect is
relatively small and build them into the H and B matrices
of structure [in]. Once we obtain H [fi] and B[fi] from the
SIESTA code, there is no adjustable parameter except for 
ε.
The purpose of introducing the parameter 
ε is explained in
Sec. IV. The H and B matrices of structure [td] are defined
also by the building block procedure as shown in Sec.V B.

IV. DISPERSION RELATION

In order to discuss the dispersion relation of structure [in],
it is useful to define

XD,D ≡
(

XO,O XO,I

XI,O XI,I

)
(11)

and

X̃μ′,μ(k) ≡
M∑

j=−M

X
μ′,μ
0,j eikaj , (12)

where X = H,B. The dispersion relation Eμ
τ (k) and the wave

function per unit cell �gμ
τ (k) can be obtained by

H̃μ,μ(k)�gμ
τ (k) = Eμ

τ (k)B̃μ,μ(k)�gμ
τ (k) (13)
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FIG. 3. The dispersion lines near the neutral Fermi level E
(0)
F are

numbered based on the index τ under the conditions E
μ

|τ |((−1)τ 2π

3a
) =

E
μ

−|τ |( − (−1)τ 2π

3a
) � E

(0)
F and τ dE

μ
τ

dk
> 0.

with the band index τ . According to Eqs. (11)–(13), ED
τ (k)

corresponds to a DWNT with interlayer interaction, while
EI

τ (k) and EO
τ (k) correspond to isolated SWNTs.

The dispersion lines near the neutral Fermi level E
(0)
F are

denoted ED
±1, ED

±2, ED
±3, and ED

±4 for a DWNT with interlayer
interaction and EO

±1, EI
±1 EO

±2, and EI
±2 for isolated tubes

O and I . Figure 3 shows the dispersion lines numbered
based on the index τ under the conditions E

μ

|τ |((−1)τ 2π
3a

) =
E

μ

−|τ |( − (−1)τ 2π
3a

) � E
(0)
F and τ dE

μ
τ

dk
> 0. For the isolated

tubes μ = I and μ = O, E
μ

±1 and E
μ

±2 correspond to the
symmetric and antisymmetric states, respectively, with respect
to the mirror plane parallel to the tube axis. For a DWNT with
interlayer interaction, however, the mirror symmetry is broken
and the band splitting is increased as ED

3 − ED
1 > |EO

1 − EI
1 |

and ED
4 − ED

2 > |EO
2 − EI

2 |.
Figure 4 shows the dispersion relation of the isolated

SWNTs without 
ε for M = 1 (open circles) and M = 2
(filled diamonds). The shift between M = 1 and M = 2 is
about 0.002–0.003 Ry for the E−1 band. In order to include this
energy difference, the integer M in Eq. (12) is set to 2 hereafter.
Squares and circles in Fig. 5 show the intralayer and interlayer
effective Hamiltonian elements h(�r,�r ′), respectively, for the
atomic distance 0.3 nm < |�r − �r ′| < 0.45 nm. The effective
Hamiltonian h(�r,�r ′) is defined by

h ≡
∣∣∣∣∣∣

∑
α,α′ g

∗
�r,αHg�r ′,α ′√∑

α,α′ g
∗
�r,αBg�r,α′

√∑
α,α′ g

∗
�r ′,αBg�r ′,α′

∣∣∣∣∣∣ , (14)

FIG. 4. The dispersion lines without interlayer interaction for
M = 1 (open circles) and M = 2 (filled diamonds), where M denotes
the integer parameter of Eq. (12).

where g�r,α denotes the component of �gI
−1,�gO

−1 for E =
−0.4 Ry, atomic position �r , and AO type α = 2s, 2px ,
2px , 2pz. The spatial range of the effective Hamiltonian is
considerably longer compared to the TB Hamiltonian used
in Ref. 15. Crosses represent the intralayer elements between
the second-nearest-neighbor unit cells. They cause the energy
difference between M = 1 and M = 2 in Fig. 4.

According to Ref. 15, we define the intrinsic shift as

ετ ≡ EO
τ (k) − EI

τ (k). (15)

Figure 4 shows a reasonable value of dEμ

dk
. However, |ετ (k)|

is considerably larger than other first-principles calculation
results, probably because of the finite-size effect of structure
[fi] used in the first step of the building block procedure. The
parameter 
ε in Eq. (9) changes ετ as

ετ = ε(0)
τ + 
ε, (16)

where ε(0)
τ denotes the intrinsic shift in Fig. 4. As 
ε is

common to the exact and approximate methods, it is not a
parameter that can be adjusted to produce agreement between
the results obtained by the two methods. Figure 4 shows that
ε

(0)
−1 = −0.022 Ry and ε

(0)
2 = −0.028 Ry at k = 0.65π/a.

When μ = D, Eq. (13) can be transformed to
t �g D

τ ′ (k)∗
[
H̃D,D(k) − ED

τ ′ (k)B̃D,D(k)
]�gD

τ ′ (k) = 0. (17)

In the following, we consider the wave number k as a function
of the energy E. The wave numbers of the isolate tubes I and O
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FIG. 5. (Color online) Effective Hamiltonian elements defined by
Eq. (14).
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are denoted kI (E) and kO(E), respectively. Neglecting mixing
between different τ values, the lowest order approximation is
represented by

t �g D
τ ′ (k) � (

yO
t �g O

τ (kO), yI
t �g I

τ (kI )
)
, (18)

where τ ′ = τ,τ + 2 τ
|τ | . Here the three different wave numbers

have a common energy as E = ED(k) = EI (kI ) = EO(kO)
and k 	= kI 	= kO .

Using Eq. (18) and

X̃μ′,μ(k) � X̃μ′,μ(kμ) + (k − kμ)
d

dk
X̃μ′,μ

∣∣∣∣
k=kμ

, (19)

Eq. (17) can be approximated by

Re[(Aτ + Cτ )y∗
OyI ] +

∑
μ=I,O

k − kμ
τ√

bI
τ b

O
τ

bμ
τ

dEμ
τ

dk
|yμ|2 � 0,

(20)

where

bμ
τ ≡ t�gμ

τ (kμ)∗B̃μ,μ(kμ)�gμ
τ (kμ), (21)

bμ
τ

dEμ
τ

dk
=

(
t�gμ∗

τ

dP̃ μ,μ(k)

dk
�gμ
τ

)∣∣∣∣
k=kμ

, (22)

Aτ ≡ 2 t �g O
τ (kO)∗P̃ O,I (kI )�g I

τ (kI )√
bO

τ bI
τ

, (23)

Cτ ≡ 2(k − kI )√
bO

τ bI
τ

t �g O∗
τ

(
kO
τ

)(dP̃ O,I

dk
�g I
τ

)∣∣∣∣
k=kI

, (24)

P̃ μ,μ′
(k) ≡ H̃μ,μ′

(k) − EB̃μ,μ′
(k), (25)

dP̃ μ,μ′

dk
≡ dH̃μ,μ′

dk
− E

dB̃μ,μ′

dk
. (26)

Here Eq. (22) is proved in Appendix B.
From Eq. (20), kD

τ ′ can be approximated by

k
D,A
τ ′ (E) = 1

2

[
kI
τ (E) + kO

τ (E) ± 
kD,A
τ

]
, (27)

where


kD,A
τ ≡ |
k̃τ |

√
1 + xτ , (28)


k̃τ ≡ kO
τ (E) − kI

τ (E), (29)

and xτ is a dimensionless parameter defined by

xτ ≡ |Aτ |2
∣∣∣∣dkI

dE

dkO

dE

∣∣∣∣(
k̃)−2. (30)

The band split along the k axis without interlayer interaction
is denoted by Eq. (29), while that with interlayer interaction,


kD
τ ≡ ∣∣kD

τ+2 τ
|τ |

(E) − kD
τ (E)

∣∣, (31)

is approximated by Eq. (28). Since |C| 
 |A|, the effect of
Eq. (24) is neglected here. Note that we define �gO

τ , �gI
τ , bO

τ , bI
τ ,

kO
τ , and kI

τ without the interlayer matrices HO,I and BO,I .

V. TRANSMISSION RATE

In the following, Tτ,τ ′ denotes the transmission rate from
the τ ′(=1,2) channel of tube O to the τ (= 1,2) channel of tube

I . Here, the notation of τ is the same as that in Sec. IV, i.e.,
τ = 1 and τ = 2 are symmetric and ant-symmetric channels,
respectively.

Since the interlayer Hamiltonian breaks the mirror symme-
try, the interchannel transmission rates T1,2 and T2,1 are not
0. Nevertheless, the large difference between k1 � −2π/(3a)
and k2 � 2π/(3a) suppresses T1,2 and T2,1. In the approximate
formulas, we consider only the intrachannel transmission rates
T1,1 and T2,2.

A. Approximate formula

In order to clarify the relation of Eq. (23) to the effective
interlayer interaction of Ref. 15, we transform Eq. (23) into

A = 2
∫

χO(1)∗(Ĥ − E)
I (k)d3�r√∫
χO(1)∗
O(k)d3�r

√∫
χI (1)∗
I (k)d3�r

, (32)

where Ĥ is the Hamiltonian operator,


μ(k) ≡
∞∑

j=−∞
eikajχμ(j ), (33)

χμ(j ) ≡
2nμ∑
l=1

0∑
m=−1

∑
α

g
μ

l,m,α(k)φμ

l,m,α,j , (34)

and g
μ

l,m,α(k) denotes the component of �gμ(k). Equation (32)
clearly indicates that A

2 equals the matrix element of the
perturbation HO,I − EBO,I between the unperturbed states

O and 
I per unit cell. When μ = O,I , Eq. (33) is
the eigenfunction of the intralayer Hamiltonian Hμ,μ and
bears no relation to the interlayer Hamiltonian HO,I . Since
A from Ref. 15 can also be represented by Eq. (32), the
physical meaning of A is common to the present paper and
Ref. 15. There is, however, another possible definition of A

where P̃ O,I = H̃O,I − EB̃O,I is replaced by H̃O,I . The two
definitions cause no difference when the interlayer overlap
matrix BO,I is absent. Though the effect of EB̃O,I is also
investigated in Sec. VI, definition (23) is chosen here.

The approximate formula from Ref. 15 is represented by

T ′
τ,τ = |Aτ |2

ε2
τ + |Aτ |2 sin2

[√
ε2
τ + |Aτ |2 dk

dE
L

a

2

]
, (35)

where

dk

dE
≡

√∣∣∣∣dkO
τ

dE

dkI
τ

dE

∣∣∣∣ (36)

is proportional to the geometrical mean of the density of states.
Since the dispersion lines are almost straight and parallel,

ετ �
(

dk

dE

)−1


k̃τ . (37)

Using Eqs. (28), (30), (36), and (37), we can transform Eq. (35)
to

T ′
τ,τ =

(
1 −

∣∣∣∣ 
k̃τ


k
D,A
τ

∣∣∣∣2)
sin2

(

kD,A

τ

2
La

)
= xτ

1 + xτ

sin2

(√
1 + xτ


k̃τ

2
La

)
. (38)
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B. Exact numerical calculations

The scattering matrix method was used as an exact
method.21–23 We can also use the Green’s function method,
which is useful for including inelastic scattering, electron cor-
relation, and finite bias.24,25 Without these effects, however, the
same transmission rate is obtained by both methods.26 There
are advantages of using the scattering matrix method compared
to the Green’s function method. One is the explicit relation to
the wave function, and the other is that we can estimate the
numerical error from the unitarity of the scattering matrix.

We can obtain only the propagating states from Eq. (13),
but the evanescent wave states are also necessary for the exact
calculation of the transmission rate. In order to obtain both the
propagating and the evanescent states, the transfer matrix �μ

is defined as

�μ ≡

⎛⎜⎜⎜⎝
0, 1, 0, 0

0, 0, 1, 0

0, 0, 0, 1

Ỹ
μ

2 , Ỹ
μ

1 , Y
μ

0 , Y
μ

1 ,

⎞⎟⎟⎟⎠ (39)

where

Y
μ

j ≡ −(
P

μ,μ

3,5

)−1
P

μ,μ

3,3+j , (40)

Ỹ
μ

j ≡ −(
P

μ,μ

3,5

)−1 tP
μ,μ

3,3+j . (41)

The matrix P is defined as

P
μ′,μ
j ′,j ≡ H

μ′,μ,[fi]
j ′,j − (E − 
εδμ′,μδμ,O)Bμ′,μ,[fi]

j ′,j . (42)

Figure 6 shows the relation between structure [fi] and matrices
P . The matrix P D,D is composed of P I,I , P O,I , P I,O , and
P O,O in the same way as Eq. (11).

The secular equation is represented by �ej+1 = �μ�ej ,
where t�ej ≡ (t�d μ

j−2,
t�d μ

j−1,
t�d μ

j , t�d μ

j+1), with μ corresponding

µ, µ µ, µ

FIG. 6. Schema for matrix P .

to j as (μ = O,j � −2), (μ = D,3 � j � L − 2) and
(μ = I,L + 3 � j ). For the propagating waves, the
eigenvector �u and the eigenvalue λ of the transfer matrix �μ

satisfying �μ�u = λ�u and �ej = λj �u can be related to k and �gμ

of Eq. (13) as λ = eika and t �u = ( t�gμ, λ t�gμ, λ2 t�gμ, λ3 t�gμ).
In the following, the dimension of �g μ

τ is denoted Nμ(NI = 80,
NO = 160, ND = 240). The 4Nμ independent eigenvectors
of the 4Nμ × 4Nμ matrix �μ are labeled τ as follows. For
propagating waves (|λμ

τ | = 1), τ = ±1,±2, . . . ,±N
μ
c .

For evanescent waves (|λμ
τ | 	= 1), τ = ±(Nμ

c + 1),
± (Nμ

c + 2), . . . , ± 2Nμ. The sign of τ is chosen to be
consistent with the propagation direction and decay direction
when |τ | � N

μ
c and |τ | � N

μ
c + 1, respectively. Here, the

channel number N
μ
c denotes half the number of independent

propagating waves in region μ. In the present paper, the energy
E is close to the neutral Fermi level, and thus NI

c = NO
c = 2

and ND
c = 4.

The amplitude vector �dj is represented by

�d μ

j =
Nμ∑

τ=−Nμ

(
λ μ

τ

)j �g μ
τ γ μ

τ , (43)

where τ 	= 0 and the correspondence between μ and j is
represented by (μ = O, j � 0), (μ = D, 1 � j � L), and
(μ = I , L + 1 � j ).

In the periodic region (μ = O, j � −2), (μ = D, 3 � j �
L − 2), and (μ = I , L + 3 � j ), the secular equations can be
represented by

�d μ

j+2 =
−1∑


j=−2

Ỹ
μ

|
j | �d μ

j+
j +
1∑


j=0

Y
μ


j
�d μ

j+
j (44)

with Eqs. (40) and (41). In the transition region, the secular
equations can be represented by

tQO
1 �c O

−3 + QO
0 �c O

−1 + qOD�c D
1 = 0, (45)

tqOD�c O
−1 + q ′

0�c D
1 + QD

1 �c D
3 = 0, (46)

tQD
1 �c D

L−3 + q ′′
0 �c D

L−1 + qDI �c I
L+1 = 0, (47)

tqDI �c D
L−1 + QI

0 �c I
L+1 + QI

1 �c I
L+3 = 0 . (48)

where the matrices Q and the vector �c are defined as

�c μ

j ≡
( �d μ

j

�d μ

j+1

)
, (49)

Q
μ

0 ≡
(

P
μ,μ

3,3 , P
μ,μ

3,4
tP

μ,μ

3,4 , P
μ,μ

3,3

)
, (50)

Q
μ

1 ≡
(

P
μ,μ

3,5 , 0

P
μ,μ

3,4 , P
μ,μ

3,5

)
, (51)

and the matrices q are defined as

q ′
0 ≡

(
P

D,D
1,1 , P

D,D
1,2

tP
D,D
1,2 , P

D,D
2,2

)
, (52)

qOD ≡
(

P
O,O
3,5 , P

O,I
3,5 , 0, 0

P
O,O
3,4 , P

O,I
3,4 , P

O,O
3,5 , P

O,I
3,5

)
, (53)
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q ′′
0 ≡

(
P

D,D
4,4 , P

D,D
4,5

tP
D,D
4,5 , P

D,D
5,5

)
, (54)

tqDI ≡
(

tP
O,I
3,5 , tP

I,I
3,5 , tP

O,I
3,4 , tP

I,I
3,4

0 0 tP
O,I
3,5 , tP

I,I
3,5

)
. (55)

Although the coefficients {γ I
τ }, {γ O

τ }, and {γ D
τ } in Eq. (43)

can be chosen arbitrarily to satisfy Eq. (44), they are subject
to the conditions expressed in Eqs. (45)–(48). Using Eqs. (43),
(45), (46), and (49), we can obtain a 400 × 400 matrix
σOD satisfying (t �γ O

− ,t �γ D
+ ) = (t �γ O

+ ,t �γ D
− ) t σOD , where t �γ μ

± =
(γ μ

±1,γ
μ

±2, · · · ,γ
μ

±Nμ
). The matrix σDI satisfying (t �γ D

− ,t �γ I
+ ) =

(t �γ D
+ ,t �γ I

− ) t σDI can be obtained in the same way. By
eliminating �γ D

± from these equations, we can obtain the
matrix σOI satisfying (t �γ O

− ,t �γ I
+ ) = (t �γ O

+ ,t �γ I
− )t σOI . The 4 ×

4 scattering matrix SOI is obtained from the 240 × 240 matrix
σOI as (SOI )τ,τ ′ = (σOI )τ,τ ′ , SOI

τ+2,τ ′ = σOI
τ+160,τ ′ , SOI

τ,τ ′+2 =
σOI

τ,τ ′+160 and SOI
τ+2,τ ′+2 = σOI

τ+160,τ ′+160, where τ = 1,2 and
τ ′ = 1,2. From the scattering matrix, we can obtain Tτ,τ ′ =
|SOI

τ+2,τ ′ |2.
The difference between t SOI∗SOI and the unit matrix is

represented by

err(SOI ) ≡
4∑

l1=1

4∑
l2=1

∣∣∣∣∣∣
⎛⎝ 4∑

l3=1

SOI∗
l3,l1

SOI
l3,l2

⎞⎠ − δl1,l2

∣∣∣∣∣∣
2

. (56)

When there is no numerical error, SOI must be unitary
and Eq. (56) must be 0 with the normalization shown in
Appendix A.26,27 As the unitarity represents that the sum of
transmission rate and reflection rate must be unity, the numer-
ical error in the transmission rate is estimated to be Eq. (56).

VI. RESULTS

Figure 7 shows the dispersion lines for 
ε = −0.015
Ry [Fig. 7(a)], 
ε = 0 [Fig. 7(b)], and 
ε = 0.020 Ry
[Fig. 7(c)]. The relationship between 
ε and ετ is shown
by Eq. (16). At k = 0.65π/a, ε−1 = −0.022 + 
ε and
ε2 = −0.028 + 
ε. Crosses represent EO

τ (k) and EI
τ (k)

without interlayer interaction. In Fig. 7(c), EO
−1 and EI

−1
almost coincide with each other as ε−1 � 0. The dispersion
lines with interlayer interaction are shown by circles for the
exact ED(k) and by solid lines for the approximate ED,A(k)
defined by Eqs. (27)–(30). Since |A2| 
 |ε2|, EO

2 and EI
2

are almost the same as E
D,A
2 and E

D,A
4 , respectively. In the

symmetric bands specified by τ = −1, on the other hand,
the relatively large |A−1| causes a clear difference between
the solid lines and the crosses. As |A−1| is almost constant,
EI

−1 and EO
−1 are almost parallel to E

D,A
−1 and E

D,A
−3 . The solid

lines reproduce the band split of the τ = −1 channel but
underestimate that of the τ = 2 channel.

Figures 8 and 9 show T1,1 and T2,2, respectively, as a
function of the number of unit cells L. The circles represent
the exact transmission rate. The values of 
ε in Figs. 8 and 9
are the same as in Fig. 7. Because L must be larger than 3 in the
exact calculation with Eqs. (46) and (47), L � 4 in Figs. 8 and
9. Triangles in Fig. 9 represent Eq. (56), showing the numerical
errors of T1,1 + T2,2 + T2,1 + T1,2 in the exact calculation.
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  (

R
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-0.39

-0.38

-0.37

FIG. 7. (Color online) The dispersion lines for (a) 
ε = −0.015,
(b) 
ε = 0. and (c) 
ε = 0.020 Ry. At k = 0.65π/a, ε−1 =
−0.022 + 
ε and ε2 = −0.028 + 
ε. The crosses represent kO

τ (E)
and kI

τ (E) without interlayer interaction. The dispersion lines with
interlayer interaction are shown by circles for the exact kD(E) and
by solid lines for the approximate kD,A(E). The wave number k is
calculated for the discrete energies E = −0.428 + 0.004j , where
j = 0,1,2, . . . ,14.

Both Eq. (56) and T1,2 + T2,1 reach the magnitude 10−4 to
10−3. This indicates that T1,2 + T2,1 cannot be discussed with
sufficient accuracy. Thus we focus our discussion on T1,1

and T2,2. Although the interlayer Hamiltonian could cause
a pseudogap in the energy band of the DWNT,28 there is no
pseudogap at the energy E = −0.4 Ry chosen here. The circles
shows a rapid oscillation superposed on a slow oscillation. The
rapid oscillation is due to a standing wave caused by a large
intralayer reflection at the open edges j = 1,L in structure
[td]. As the wave number k is close to ±2π/(3a), the period
of the rapid oscillation is close to 3. In order to see the slow
oscillation of the exact T (L),

T ave(L) ≡ T (L − 1) + T (L) + T (L + 1)

3
(57)
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FIG. 8. (Color online) The transmission rate T1,1 at an energy
E = −0.4 Ry. The values of 
ε are the same as in Fig. 7. Circles
represent the exact T1,1 with Eqs. (46) and (47). Crosses represent
the exact T1,1 when q ′

0 and q ′′
0 in Eqs. (46) and (47) are replaced with

QD
0 . The averages defined by T ave(L) = (T (L − 1) + T (L) + T (L +

1))/3 are shown by the dot-dashed and dashed lines for the circles
and crosses, respectively. The approximate formula, (38), is shown by
thick solid lines. The thin solid lines represent Eq. (38), where EB̃O,I

in Eq. (23) is replaced with 0;, i.e., the interlayer overlap matrix is set
to 0. The thin solid lines are shown only for the first period.

is shown by the dot-dashed lines. In order to estimate the edge
effect, q ′

0 in Eq. (46) and q ′′
0 in Eq. (47) are replaced with QD

0 .
The exact T1,1 and T ave

1,1 with this replacement are shown by
crosses and dashed lines, respectively, in Fig. 8. The agreement
between the dashed line and the dot-dashed line indicates that
the slow oscillation defined by Eq. (57) is not sensitive to the
detail of the edge modeling. Though crosses and dashed lines
are omitted in Fig. 9, it is also confirmed that the two edge
models show similar T ave

2,2 .
The thick solid lines represent T ′ defined by Eq. (38), while

the thin solid lines represent Eq. (38), where EB̃O,I in Eq. (23)
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FIG. 9. (Color online) The same calculation as in Fig. 8 for the
transmission rate T2,2. Crosses and dashed lines are omitted. Triangles
show Eq. (56).

is replaced with 0; i.e., the interlayer overlap matrix is set to 0.
The thin solid lines are shown only for the first period. Though
the thin solid lines are close to T ave for the small L, the thick
solid lines qualitatively reproduce T ave for the wider range of
L. Thus we concentrate our discussion on the thick solid lines
below. The effective interlayer interaction of the symmetric
state A1 is much larger than that of the antisymmetric state
A2. This is the reason why T1,1 � T2,2. In the derivation of
Eq. (35) shown in Ref. 15, the interlayer Hamiltonian is the
same as that for structure [td], while the intralayer Hamiltonian
is the same as that for structure [in]. Thus, Eq. (35) does not
include the strong intralayer reflection at the edge j = 1,L of
structure [td]. This is why the rapid oscillation does not appear
in Eq. (38).

The period of the exact T ave is close to 2π/
kD , where

kD

τ denotes the exact band split of channel τ with interlayer
interaction. Since 
k

D,A
1 � 
kD

1 , the thick solid line and
the dot-dashed line have almost the same period in Fig. 8.
On the other hand, the thick solid lines show a longer
period than the dot-dashed lines in Fig. 9 because 
k

D,A
2 <
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kD
2 . Nevertheless, the peak height of T ave is qualitatively

reproduced by x/(1 + x) of Eq. (38) both in Fig. 8 and in Fig. 9.

VII. DISCUSSION

In the present paper, we consider the differential conduc-
tance dI/dV at zero bias voltage V = 0. We have to use more
sophisticated numerical methods to obtain the effect of a finite
V on the current I .25 If the rigid-band picture is effective,
however, the current I for finite V can be approximated by

I = e

h

∫ EF +eV

EF

T (E,ε + eV )dE, (58)

where EF is the Fermi level of tube O and the interlayer
transmission rate is represented by T (E,ε) as a function of the
energy E and the intrinsic shift ε.

The effective interlayer interaction A defined by Eqs. (23)
enables us to analyze the effects of the interlayer Hamiltonian
on the transmission rate. For example, we can discuss the dif-
ference between the TB model used in Ref. 15 and the SIESTA

code used here. The longer cutoff distance of the interlayer
Hamiltonian decreases |A2| as discussed in Ref. 15. The cutoff
distance for SIESTA is much larger than that for TB as shown in
Fig. 5. This is why |A2/A1| and T2,2 for SIESTA are negligible
compared to those for TB. Using the perturbation formulas,
we can distinguish the effects of the intralayer Hamiltonian
HO,O,HI,I from those of the interlayer Hamiltonian HO,I .
Rigorously speaking, the interlayer interaction influences HI,I

and HO,O in the self-consistent calculation of structure [fi] for
the building block procedure. Nevertheless, HI,I and HO,O

are approximately considered as the Hamiltonian of isolated
SWNTs. As long as a real-space basis such as an AO basis
is used, the calculation methods in the present paper can be
applied to various other first-principles calculation codes.

Equation (38) is effective both in the SIESTA Hamiltonian
and in the TB Hamiltonian. We have to be careful that
the effective interlayer interaction (23) must include the
interlayer overlap matrix BO,I that is absent in Ref. 15. Using
Eq. (38), we can predict the amplitude of T ave(L) as shown in
Figs. 8 and 9. The qualitative dependence on ε is reproduced.
The period of T ave

1,1 (L) is also reproduced well, but that of
T ave

2,2 is overestimated. It is common to TB and SIESTA that
Eq. (38) is more effective for T1,1 than for T2,2. The period
2π/
k has been discussed in other papers, but the amplitude
formula xτ /(1 + xτ ) in Eq. (38) is proposed first here. Note
that the dimensionless parameter xτ is defined by Eq. (30)
without a fitting parameter. Owing to the linear dispersion, the
amplitudes of T ′

1,1 are represented by the energy ratios as

1 −
∣∣∣∣ 
k̃1


kD
1

∣∣∣∣2

= 1 −
∣∣∣∣ ε1

ED
3 − ED

1

.

∣∣∣∣2

(59)

When |ε1|/(ED
3 − ED

1 ) � 1, Eq. (59) is close to 2(ED
3 −

ED
1 − |ε1|)/|ε1|. Since ED

3 − ED
1 − |ε1| is the energy shift

caused by the interlayer interaction, its ratio to |ε1| can be
considered as the Thouless number.29 The author expects that
Eq. (38) represents the generalized Thouless number analysis
and can be applied to other related systems with commensurate
interlayer configurations.

APPENDIX A: RELATION BETWEEN THE
NORMALIZATION AND THE PROBABILITY FLOW

The probability flow J (γ ′|γ ) from orbital γ = (μ,l,m,α,j )
to orbital γ ′ = (μ′,l′,m′,α′,j ′) is represented by

J (γ ′|γ ) ≡ Im[(Hγ ′,γ − EBγ ′,γ )d∗
γ ′dγ ,] (A1)

where H , B, and E represent the Hamiltonian matrix, the
overlap matrix, and the energy, respectively. Equation (A1)
satisfies the two necessary conditions for stationary flow:
“direction of flow,” represented by J (γ |γ ′) = −J (γ ′|γ ), and
“conservation of probability,” represented by∑

γ

J (γ ′|γ ) = 0. (A2)

Equation (A2) is derived from the secular equation∑
γ (Hγ ′,γ − EBγ ′,γ )dγ = 0. Using Eq. (A1), the probability

flow Itot(j ) through the cross section at z = (j − 3
4 )a is

represented by

Itot(j ) = I
μ

j,j−1 + I
μ

j+1,j−1 + I
μ

j,j−2, (A3)

where

I
μ

j,j ′ ≡
∑
l,m,α

∑
l′,m′,α′

J (μ,l,m,α,j |μ,l′,m′,α′,j ′). (A4)

Corresponding to M = 2 in Eq. (12), Iμ

j,j ′ = 0 when |j − j ′| �
3. Using Eqs. (42), (43), (51), (A1), and (A4), Eq. (A3) can be
expanded as

Itot(j ) =
Nμ∑

τ=−Nμ

Nμ∑
τ ′=τ

(
1 − δτ,τ ′

2

)[
η

μ

τ ′,τ + η
μ

τ,τ ′
]
, (A5)

where τ 	= 0, τ ′ 	= 0,

η
μ

τ ′,τ ≡ Im
[(

λ
μ∗
τ ′ λμ

τ

)j
Z

μ

τ ′,τ γ
μ∗
τ ′ γ μ

τ

]
, (A6)

Z
μ

τ ′,τ ≡ (
λμ

τ

)−2(t �f μ∗
τ ′

)
tQ

μ

1
�f μ
τ , (A7)

and

�f μ
τ ≡

(
�g μ
τ

λμ
τ �g μ

τ

)
. (A8)

In Eq. (A5), the correspondence between μ and j is repre-
sented by (μ = O, j � −2), (μ = D, 3 � j � L − 2), and
(μ = I , L + 3 � j ).

On the other hand, we can obtain

((
λμ

τ

)−2 tQ
μ

1 + Q
μ

0 + (
λμ

τ

)2
Q

μ

1

) �f μ
τ = 0 (A9)

from the secular equations. Multiplying Eq. (A9) by t �f μ∗
τ ′ , we

can obtain(
λμ

τ λ
μ∗
τ ′

)2
Z

μ∗
τ,τ ′ + Z

μ

τ ′,τ + t �f μ∗
τ ′ Q

μ

0
�f μ
τ = 0. (A10)

Exchanging τ and τ ′ in the complex conjugate of Eq. (A10),
we can also obtain(

λμ
τ λ

μ∗
τ ′

)2
Z

μ

τ ′,τ + Z
μ∗
τ,τ ′ + t �f μ∗

τ ′ Q
μ

0
�f μ
τ = 0. (A11)
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When the condition (
λμ

τ λ
μ∗
τ ′

)4 = 1 (A12)

does not hold, we can show

Z
μ

τ ′,τ = Z
μ∗
τ,τ ′ = − t �f μ∗

τ ′ Q
μ

0
�f μ
τ(

λ
μ
τ λ

μ∗
τ ′

)2 + 1
(A13)

from Eqs. (A10) and (A11). Thus, η
μ

τ ′,τ + η
μ

τ,τ ′ has a nonzero
value only when condition (A12) holds. Under condition
(A12), we only have to consider three cases: (i) |λμ

τ | =
|λμ

τ ′ |−1 	= 1, (ii) τ = τ ′,|λμ
τ | = 1, and (iii) τ 	= τ ′,|λμ

τ | =
|λμ

τ ′ | = 1. When |λI
τ1
| > 1 and |λO

τ2
| < 1, γ I

τ1
= γ O

τ2
= 0 be-

cause finite values of γ I
τ1

and γ O
τ2

cause the divergence of

| �d μ

j | at j = ∞ and j = −∞, respectively. Thus, γ
μ∗
τ ′ γ μ

τ in
Eq. (A6) must be 0 in case i. In case iii, (λμ

τ )4 and (λμ

τ ′)4

are accidentally degenerate. Since this degeneracy is lifted
by an infinitesimal change in the energy E, case iii can be
excluded. Since η

μ

τ ′,τ + η
μ

τ,τ ′ is nonzero only in case ii, Eq. (A5)
is represented by

Itot(j ) =
N

μ
c∑

τ=1

Im
(
Zμ

τ,τ

)∣∣γ μ
τ

∣∣2 + Im
(
Z

μ
−τ,−τ

)∣∣γ μ
−τ

∣∣2
. (A14)

Equations (A5) and (A6) do not depend on j because λ
μ∗
τ ′ λμ

τ =
λμ∗

τ λμ
τ = |λμ

τ |2 = 1 in case ii.
When the vectors �f μ

τ are normalized as Im(Z|τ |,|τ |) = 1
and Im(Z−|τ |,−|τ |) = −1, we can show

Itot =
NI

c∑
τ=1

(∣∣γ I
τ

∣∣2 − ∣∣γ I
−τ

∣∣2) =
ND

c∑
τ=1

(∣∣γ D
τ

∣∣2 − ∣∣γ D
−τ

∣∣2)
=

NO
c∑

τ=1

(∣∣γ O
τ

∣∣2 − ∣∣γ O
−τ

∣∣2)
. (A15)

Here, conservation of probability guarantees that Itot

is common to regions I , D, and O. Equation (A15)

is equivalent to t SOD∗SOD = 1, tSDI∗SDI = 1, and
t SOI∗SOI = 1.

APPENDIX B: RELATION BETWEEN THE
NORMALIZATION AND THE GROUP VELOCITY

From Eqs. (13) and (21), we can obtain

bμ
τ Eμ

τ = t �gμ∗
τ H̃ μ,μ �gμ

τ . (B1)

Differentiating Eq. (B1) with respect to k,

bμ
τ

dEμ
τ

dk
= −dbμ

τ

dk
Eμ

τ + d t �gμ∗
τ

dk
H̃μ,μ �gμ

τ

+ t�gμ∗
τ

dH̃μ,μ

dk
�gμ
τ + t�gμ∗

τ H̃ μ,μ d �gμ
τ

dk
. (B2)

Using Eqs. (12), (13), (21), and (42), Eq. (B2) is represented
by

bμ
τ

dEμ
τ

dk
= t�gμ∗

τ

[
dH̃μ,μ

dk
− Eμ

τ

dB̃μ,μ

dk

]
�gμ
τ

= 2Re

[
t�gμ∗

τ

2∑
j=1

P
μ,μ

3,3+j

(
d

dk
eikaj

)
�gμ
τ

]
. (B3)

From Eqs. (51), (A7), and (A8), Eq. (B3) is represented by

bμ
τ

dEμ
τ

dk
= 2aIm

(
Zμ

τ,τ

)
. (B4)

With Eqs. (23), (36), and (B4), Eq. (30) can be represented
by

xτ =
∣∣t�g O

τ

(
kO
τ

)∗
P̃ O,I

(
kI
τ

)�g I
τ

(
kI
τ

)∣∣2∣∣Im(
ZO

τ,τ

)
Im

(
ZI

τ,τ

)∣∣a2
k̃2
τ

. (B5)

When the normalization |Im(ZO
τ,τ )| = |Im(ZI

τ,τ )| = 1 is
used,

xτ =
∣∣t�g O

τ

(
kO
τ

)∗
P̃ O,I

(
kI
τ

)�g I
τ

(
kI
τ

)∣∣2

a2
(
kO
τ − kI

τ

)2 . (B6)
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