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Diffusion on edges of insulating graphene with intravalley and intervalley scattering
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Band-gap engineering in graphene may open the routes towards transistor devices in which electric current can
be switched off and on at will. One may, however, ask if a semiconducting band gap alone is sufficient to quench
the current in graphene. In this paper we demonstrate that despite a bulk band gap graphene can still have metallic
conductance along the sample edges (provided that they are shorter than the localization length). We find this
for single-layer graphene with a zigzag-type boundary which hosts gapless propagating edge states even in the
presence of a bulk band gap. By generating intervalley scattering, sample disorder reduces the edge conductance.
However, for weak scattering a metallic regime emerges with the diffusive conductance G = (e2/h)(�

KK′ /L) per
spin, where �

KK′ is the transport mean-free path due to the intervalley scattering and L � �
KK′ is the edge length.

We also take intravalley scattering by smooth disorder (e.g., by remote ionized impurities in the substrate) into
account. Albeit contributing to the elastic quasiparticle lifetime, the intravalley scattering has no effect on G.
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I. INTRODUCTION

Unique electronic properties of single-atomic-layer
graphene1 stem from its two-dimensional (2D) semimetallic
energy spectrum with gapless conical conduction and valence
bands. Engineering of a semiconductor-type band gap is
expected to provide another desirable means of controlling
electric current in graphene, laying the basis for electronic
applications.2 Several mechanisms of the gap generation in
the single-layer graphene have been discussed in literature,2–7

including breaking the sublattice symmetry on a hexagonal
boron-nitride substrate (see, e.g., Ref. 4) and using mechanical
strain (see, e.g., Refs. 5–7).

Although the opening of the band gap could have a
desirable effect on transport in the 2D bulk of the material,
it is, generally, not sufficient to control electric conduction
near sample boundaries. Boundaries of graphene are natural
extended defects that can host unusual electronic states such
as edge states appearing on a zigzag boundary.8 Various
manifestations of such edge states in transport properties and
spectroscopy of graphene have been discussed in recent years
(e.g., Refs. 9–36). Most essential for our present discussion
is the finding that the edge states remain conducting even
when the 2D bulk turns into a band insulator, e.g., due to
a staggered potential breaking the sublattice symmetry (see,
e.g., Refs. 29 and 33). This is indeed expected since the edge
states reside on one of the graphene sublattices, and, therefore,
the influence of the staggered potential is reduced to an energy
shift without dramatic changes in the edge-state dispersion.
Thus, the edge states present a potential obstacle for the
realization of the band insulator regime in graphene, providing
pathways for leakage current. It is of both theoretical and
practical interest to identify the factors that may help to reduce
the edge conduction. As one of such factors, in this paper
we theoretically consider structural disorder involving both
smooth potential fluctuations, which couple states within the
same graphene valley (intravalley scattering), and atomically
sharp defects generating intervalley scattering.

Earlier, the influence of disorder on the edge transport was
studied numerically for the conventional semimetallic state of

graphene (see, e.g., Refs. 9, 20–22, and 37). Interestingly,
the edge transport cannot be quenched by usual potential
disorder, e.g., by smooth potential fluctuations due to remote
ionized impurities. Only atomically sharp defects suppress the
edge transport by mixing counterpropagating edge channels
through intervalley scattering. In this paper we extend these
findings to the edge transport in the insulating graphene
with the staggered potential, �. Instead of using numerical
approaches, we perform analytic diagrammatic calculations
of the edge conductance, explicitly proving that the edge-
transport mean-free path �KK ′ is limited only by scattering
between graphene’s two valleys, K and K ′, and unaffected by
smooth potential disorder. Our calculations indicate that the
undoped insulating graphene can host diffusive metallic edge
states with the conductance given per spin by

G = e2

h

�
KK′

L
, �

KK′ = h̄2v2

4w(k+ − k−)
, k± = ± �

h̄v
, (1)

where the transport mean-free path �KK ′ is expressed in
terms of the Fourier transform of the intervalley-disorder
correlation function, w(k), and the edge-state velocity v, and
k± are the edge-state Fermi points relative to the K and K ′
valleys, respectively (L is the distance between the source and
drain, assumed much larger than �KK ′ , but smaller than the
typical size of the system that exhibits full localization37).
The specifics of the insulating graphene lies in the fact
that the Fermi points k± are shifted with respect to K and K ′
points by the staggered potential �. Given furthermore the low
edge-state velocity v,10,12,16 a metallic diffusive regime under
weak scattering condition |k±|�

KK′ � 1 emerges without any
doping of the material. This is in stark contrast with the
conventional metallic transport which occurs when the Fermi
level is pushed into a conduction or valence band.

The subsequent sections give a complete account of our
theoretical approach: In Sec. II we introduce the model for the
edge states in disorder-free insulating graphene with the stag-
gered potential and calculate the edge-state Green’s functions.
In Sec. III we introduce the model of disorder, calculate the
disorder-averaged Green’s functions, the renormalized edge
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velocity and, finally, the edge conductance from Kubo formula.
Section IV summarizes our results.

II. EDGE STATES IN INSULATING SINGLE-LAYER
GRAPHENE

A. Boundary problem

We begin by analyzing the edge states in disorder-free
graphene described by the effective four-band Hamiltonian:

Ĥ = v0τz σp + �τz σz, p = (−ih̄∂x,−ih̄∂y,0), (2)

where Pauli matrices τz and σx,y,z represent the valley and
sublattice degrees of freedom, respectively (throughout the
paper products of τ and σ matrices should be understood
as direct products), v0 is the bulk Fermi velocity determined
by the nearest-neighbor-hopping energy and lattice constant,
and � is the staggered (e.g., substrate-induced4) sublattice
potential. Equation (2) adopts the following convention for the
basis states: ⎛

⎜⎝
ψA+
ψB+
ψB−
ψA−

⎞
⎟⎠ , (3)

where A,B and ± label the sublattices and valleys, respec-
tively.

Following our previous work on the edge states in
semimetallic graphene15,24,26,28 we will work with the Green’s
function, ĝ(r,r′), defined by the equation

[ε Î − Ĥ ]ĝ(r,r′) = Î δ(r − r′), (4)

where energy ε includes an infinitesimal imaginary part
iδ, with δ > 0 (δ < 0) for the retarded (advanced) Green’s
function, and Î = τ0σ0 is a unit matrix composed of the unit
matrices in valley (τ0) and sublattice (σ0) spaces. Equation
(4) will be solved in a semispace −∞ < x < ∞, 0 � y < ∞
with a single edge at y = 0 described by the boundary
condition16,38 (see also Appendix A):

g|y=0 = −
[
τ0 + τz

2
σn+ + τ0 − τz

2
σn−

]
g|y=0. (5)

n± = (nx,0,∓nz), n2
± = n2

x + n2
z = 1. (6)

It involves two unit vectors n±, orthogonal to each other and
to the vector normal to the boundary nB ‖ y, ensuring the
vanishing of the particle current normal to the edge.16,38 The
vector components nx or nz serve to parametrize the boundary
types considered below in Secs. II C and II D.

The only restrictions on the boundary condition (5) are
the time-reversal symmetry and the absence of the intervalley
coupling. Thus, Eq. (5) can be seen as a generalized continuum
model for zigzag-type edges. It cannot be applied to the
armchair edges because the latter couples the K and K ′
valleys. However, extended armchair edges are unlikely to
occur because they are less stable than zigzag edges (see,
e.g., Ref. 27). As to the short-length armchair edges, they can
be treated as a special type of the boundary defects causing
intervalley scattering, which is considered later in Sec. III.
Therefore, Eq. (5) is a good starting point for analyzing

defect-free graphene. It is also easy to verify that Eq. (5)
ensures vanishing of the normal component of the particle
current jy(x,0).

B. Green’s function solution

The Green’s function is block diagonal in valley space,

ĝ =
(

ĝ+ 0
0 ĝ−

)
, (7)

where ĝ± are 2 × 2 matrices which, in the basis defined by
Eq. (3), have the following structures:

ĝ+ =
(

g+
AA g+

AB

g+
BA g+

BB

)
, ĝ− =

(
g−

BB g−
BA

g−
AB g−

AA

)
. (8)

Let us first calculate the matrix elements of ĝ+. Expanding

ĝ+(r,r′) =
∑

k

ĝ+
k (y,y ′) eik(x−x ′)/L,

where L is the edge length, and writing Eq. (4) in components,
it is straightforward to express the off-diagonal elements g+

AB|k
and g+

BA|k in terms of the diagonal ones as follows:

ĝ+
k =

(
g+

AA|k
v0p−
ε−�

g+
BB|k

v0p+
ε+�

g+
AA|k g+

BB|k

)
, p± = h̄k ± h̄∂y, (9)

where g+
AA|k and g+

BB|k satisfy the equations[
∂2
y − q2

]
g+

AA|k(y,y ′) = ε + �

h̄2v2
0

δ(y − y ′), (10)

[
∂2
y − q2

]
g+

BB|k(y,y ′) = ε − �

h̄2v2
0

δ(y − y ′), (11)

q =
√

k2 + �2 − ε2

h̄2v2
0

. (12)

The boundary conditions for Eqs. (10) and (11) follow from
Eqs. (5), (7), and (8) as

∂

∂y
g+

AA|k(0,y ′) = κA g+
AA|k(0,y ′), (13)

κA = −1 − nz

nx

ε + �

h̄v0
− k, (14)

∂

∂y
g+

BB|k(0,y ′) = κB g+
BB|k(0,y ′), (15)

κB = 1 + nz

nx

ε − �

h̄v0
+ k. (16)

We seek the solutions to Eqs. (10) and (11) in the form of the
linear combinations:

g+
AA|k(y,y ′) = − ε + �

2h̄2v2
0q

e−q|y−y ′ | + CA(y ′)e−qy,

g+
BB|k(y,y ′) = − ε − �

2h̄2v2
0q

e−q|y−y ′ | + CB(y ′)e−qy,

where the first terms are the Green’s functions of the unter-
minated sublattices, while the second ones are the decaying
solutions of the corresponding homogeneous equations. The
coefficients CA,B are obtained from boundary conditions (13)
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and (15) with the following results:

g+
AA|k(y,y ′) = ε + �

2h̄2v2
0q

(e−q(y+y ′) − e−q|y−y ′ |)

+ (1 + nz)(q + k) + nx(� + ε)/h̄v0

2(ε − nz�+ nxh̄v0k)
e−q(y+y ′),

(17)

g+
BB|k(y,y ′) = ε − �

2h̄2v2
0q

(e−q(y+y ′) − e−q|y−y ′ |)

+ (1 − nz)(q − k) + nx(� − ε)/h̄v0

2(ε − nz�+ nxh̄v0k)
e−q(y+y ′).

(18)

The first terms in Eqs. (17) and (18) vanish at the boundary
y = 0 and do not have poles within the gap, |ε| < �, implying
that the edge states are entirely described by the second terms.
The latter have a pole within the gap at ε = nz� − nxh̄v0k.
Assuming that the energy is close to this pole, we can neglect
the first terms in Eqs. (17) and (18) and find a compact
expression for the matrix ĝ+

k [see Eq. (9)]:

ĝ+
k (y,y ′) = (σ0 − σn+)

�(nzk + nx�/h̄v0)

ε − nz� + nxh̄v0k
q e−q(y+y ′).

(19)

The expression for ĝ−
k can be obtained from Eq. (19) by

replacing v0 → −v0, � → −�, and nz → −nz:

ĝ−
k (y,y ′) = (σ0 − σn−)

�(−nzk + nx�/h̄v0)

ε − nz� − nxh̄v0k
q e−q(y+y ′).

(20)

The poles in Eqs. (19) and (20) yield the edge spectrum in
valleys K and K ′ under the condition that the arguments of
the Heaviside (θ ) functions in the numerators are positive.
These restrictions are, in turn, enforced by the positiveness of
the inverse decay length q. Consequently, the edge spectrum
is given by

ε+,k = nz� − nxh̄v0k, nzk + nx

�

h̄v0
> 0, for valley K,

(21)

ε−,k = nz�+ nxh̄v0k, −nzk + nx

�

h̄v0
> 0, for valley K ′.

(22)

These edge states can also be viewed as the solution of a
strictly 1D problem described by Green’s functions (19) and
(20) integrated over the transverse coordinate y:

ĝ±
k =

∫ ∞

0
ĝ±

k (y,y)dy = σ0 − σn±
2

�(±nzk + nx�/h̄v0)

ε − nz� ± nxh̄v0k
.

(23)

Below we analyze these results for two commonly considered
confinement types, viz. the zigzag edge and the mass confine-
ment.

C. Zigzag edge

In our parametrization of the boundary condition, the
zigzag-type edge corresponds to the limit nz → 1. In this case

−Δ

−1 −0.5 0.5 −1 −0.5 0.5

−Δ

−Δ

0 0

Δ

11

Δ

Δ

ε+

ε+

5 −5

ε−

k

(a) Zigzag edge

k

ε−
(b) Mass confinement

k+ k−
01−01 15 −1520 −20

FIG. 1. (Color online) Edge states ε+(k) and ε−(k) within bulk
band gap [−�,�] in valleys K and K ′, respectively: (a) zigzag
boundary [see Eqs. (24) and (25) with nz = 0.99] and (b) mass
confinement [see, e.g., Eq. (29)]. Edge momentum k is measured
in units of �/h̄v0.

the edge-state spectrum, Eqs. (21) and (22), reduces to

ε±(k) = � ∓ h̄vk, ±k > 0, (24)

where v is the edge-state velocity,

v = v0nx = v0

√
1 − n2

z � v0. (25)

It vanishes for nz = 1, which corresponds to the flat edge-state
band. In what follows we keep the velocity v finite (but small
compared with the bulk velocity v0), so that the edge states
remain dispersive. We also note that the staggered sublattice
potential shifts the edge states by energy � such that they cross
the midgap energy at finite wave vectors k± [defined in Eq. (1)]
with respect to the K and K ′ points [Fig. 1(a)]. The energy
shift reflects the fact that the zigzag edge states reside on one
of the sublattices. This is seen from the matrix structure of the
edge Green’s function [Eqs. (7) and (23)] which for nz → 1
has only two diagonal nonzero matrix elements. To simplify
the model, from now on we will work with the effective 1D
Green’s function:39

ĝk =

⎛
⎜⎝

g+
k 0 0 0
0 0 0 0
0 0 0 0
0 0 0 g−

k

⎞
⎟⎠ = P̂ +

τ P̂ +
σ g+

k + P̂ −
τ P̂ −

σ g−
k , (26)

where P̂ ±
τ and P̂ ±

σ are the projector matrices in the valley and
sublattice spaces, respectively:

P̂ ±
τ = τ0 ± τz

2
, P̂ ±

σ = σ0 ± σz

2
; (27)

matrix elements g+
k and g−

k are given by

g±
k = �(±k)

ε − � ± h̄vk
, (28)

Equation (28) describes the left-moving (+) and right-moving
(−) states originating from valleys K and K ′, respectively.
Comparing Eqs. (7) and (8) with (26), we see that both left
and right movers reside on the same sublattice A (the case
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of sublattice B corresponds to the boundary condition with
nz → −1), as we mentioned in the Introduction.

D. Mass confinement

This confinement type40 is realized in the limit nz → 0,
resulting in the edge-state spectrum,

ε±,k = ∓h̄v0k. (29)

These edge states have the velocity equal to the bulk one,
v0, and cross the midgap energy at points K and K ′. Unlike
the zigzag edge, there is no energy shift due to the staggered
potential because in this case the edge states propagate on two
sublattices. This is again seen from the matrix structure of the
edge Green’s function [Eqs. (7) and (23)] which for nz → 0
has both diagonal and off-diagonal matrix elements in each
valley:

ĝk =

⎛
⎜⎜⎝

g+
k −g+

k 0 0
−g+

k g+
k 0 0

0 0 g−
k −g−

k

0 0 −g−
k g−

k

⎞
⎟⎟⎠

= P̂ +
τ (σ0 − σx)g+

k + P̂ −
τ (σ0 − σx)g−

k , (30)

where the valley projectors P̂ ±
τ are defined in Eq. (27) and

matrix elements g±
k are given by

g±
k = 1

ε ± h̄v0k
. (31)

Equations (30) and (31) recover the corresponding results of
Ref. 41 for the edge states in 2D topological insulators. Their
transport properties are reviewed in detail in Ref. 42.

III. EDGE CONDUCTANCE

In the rest of the paper we focus specifically on transport
properties of the edge states on a zigzag-type boundary. In the
metallic regime the conductance of the edge states is given by
Kubo formula:

G = e2h̄

2πL

∫
dk

2π
Tr

[
v̂ ĜR

k (ε = 0) V̂k ĜA
k (ε = 0)

]
, (32)

where Ĝ
R,A
k are the disorder-averaged retarded and advanced

edge Green’s functions, v̂ and V̂k are the bare and renormalized
edge-state velocity operators, and L is the length of the edge
(e.g., the distance between the source and drain contacts). To
evaluate Eq. (32) we need to calculate first Ĝ

R,A
k and V̂k in the

presence of disorder.

A. Potential and intervalley coupling disorder

We assume that edge disorder can be described by equation

V̂ (x) = ÎV (x) +
∑

μ=x,y

∑
α=0,x,y

Wμα(x)τμσα, (33)

where the first diagonal term accounts for smooth random
potential fluctuations, e.g., due to remote ionized impurities
in the substrate. The potential V (x) is characterized by the
correlation function

〈V (x)V (x ′)〉 = u(x − x ′), (34)

R

A

+

= +
R

A

=

(a)

R

A

R

A

(b)

(c)

FIG. 2. Diagrammatic representations of (a) Kubo formula (32)
for the conductance, (b) Dyson Eq. (36) for disorder-averaged Green’s
functions (thick lines) and (c) Eq. (45) for renormalized current vertex
in ladder approximation. Thin and dashed lines correspond to the
unperturbed Green’s function and disorder correlator, respectively.

with averaging 〈. . .〉 over disorder configurations (e.g., over
impurity coordinates). The second term in Eq. (33) describes
atomically sharp defects (lattice vacancies, short-length arm-
chair edges, etc.) which couple the valleys (and, generally,
the sublattices). For this disorder type we use the correlation
function

〈Wμα(x)Wμ′α′(x ′)〉 = w(x − x ′)δμμ′δαα′ , (35)

where the Kronecker symbols imply completely uncorrelated
valley τμ and sublattice σα disorder components. The calcu-
lations below are done for spatially isotropic disorder with
u(x − x ′) = u(x ′ − x) and w(x − x ′) = w(x ′ − x).

B. Disorder-averaged Green’s function

Within the standard self-consistent Born approximation43

the disorder-averaged Green’s functions can be obtained from
the Dyson equation [see diagram in Fig. 2(b)] which (with
suppressed superscripts R,A for brevity) is given by

Ĝk = ĝk + ĝk�̂kĜk, (36)

where �̂k is the self-energy:

�̂k =
∫

dk′

2π

[
uk−k′Ĝk′ + wk−k′

∑
μα

τμσαĜk′τμσα

]
, (37)

and uk−k′ and wk−k′ are the Fourier transforms of the
correlation functions u(x − x ′) and w(x − x ′) [see Eqs. (34)
and (35)]. We seek the solution to Eq. (36) in the form of the
projector expansion:

Ĝk = P̂ +
τ P̂ +

σ G+
k + P̂ −

τ P̂ −
σ G−

k , (38)

with two unknown scalar functions G+
k and G−

k . The ansatz
(38) is valid only for the zigzag-type edge [cf. Eq. (26)].
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Inserting this into Eq. (37) we have

�̂k = P̂ +
τ P̂ +

σ

∫
dk′

2π

[
uk−k′G+

k′ +
∑

μ,α=1,2

wk−k′G−
k′

]

+ P̂ −
τ P̂ −

σ

∫
dk′

2π

[
uk−k′G−

k′ +
∑

μ,α=1,2

wk−k′G+
k′

]

+ P̂ −
τ P̂ +

σ

∑
μ=1,2

∫
dk′

2π
wk−k′G+

k′

+ P̂ +
τ P̂ −

σ

∑
μ=1,2

∫
dk′

2π
wk−k′G−

k′ . (39)

Here the first two terms include the potential scattering and
intervalley coupling between the left and right movers, G+

k′
and G−

k′ . This coupling originates from those disorder terms
which swap both the valleys and sublattices. The other two
terms in Eq. (39) result from the disorder which swaps either
the valleys or the sublattices. The latter has no effect on Ĝk

because upon inserting Eq. (39) into Eq. (36) the corresponding
products of projectors vanish: P̂ ±

τ P̂ ±
σ P̂ −

τ P̂ +
σ = 0. Notice that

the summation over the valley and sublattice indices in Eq. (39)
yields the factor of 4.

Inserting Eq. (39) into Eq. (36) and collecting coefficients
at P̂ ±

τ P̂ ±
σ we obtain algebraic equations for G±

k :

G+
k = 1

h̄v(k − k+) − �+
k

, G−
k = 1

h̄v(k− − k) − �−
k

, (40)

where �±
k are scalar functions given by

�±
k =

∫
dk′

2π
[uk−k′G±

k′ + 4wk−k′G∓
k′ ]. (41)

Like in conventional metals (see, e.g., Ref. 44), Eqs. (40) can
now be solved using the sharpness of the Green’s functions
G±

k near Fermi points k±, which yields the finite quasiparticle
lifetime τ :

G+
k = 1

h̄v(k − k+) + sih̄
2τ

, G−
k = 1

h̄v(k− − k) + sih̄
2τ

, (42)

where the sign s is positive or negative for the retarded or
advanced functions, respectively. The potential and intervalley
scattering mechanisms give additive contributions to the
spectral broadening:

1

τ
= 1

τ
V

+ 1

τ
KK′

, (43)

1

τ
V

= u0
2πN

h̄
,

1

τ
KK′

= 4wk+−k−
2πN

h̄
, (44)

where N is the density of states per valley and spin.
Since potential disorder cannot cause backscattering, the
corresponding scattering rate 1/τ

V
involves the correlation

function uk−k′ at zero momentum transfer k − k′ = 0, which
corresponds to forward scattering. In contrast, intervalley
scattering occurs between the Fermi points k± (see Fig. 1),
so that the corresponding scattering rate 1/τ

KK′ involves the
correlation function wk+−k− with finite momentum transfer
k+ − k− = 2�/h̄v.

C. Vertex renormalization

We demonstrate below the interplay of the scattering times
τ,τ

V
and τ

KK′ [Eqs. (43) and (44)] in the disorder-renormalized
velocity V̂k , which is one of the central result of this paper.
In order to calculate the renormalized velocity V̂k in the
conductance formula (32) we consider the vertex equation in
the usual ladder approximation [see, e.g., Refs. 44 and diagram
in Fig. 2(c)]:

V̂k = v̂ +
∫

dk′

2π

[
uk−k′ĜR

k′ V̂k′ĜA
k′

+wk−k′
∑
μ,α

τμσαĜR
k′ V̂k′ĜA

k′τμσα

]
, (45)

v̂ = v(P̂ +
τ P̂ +

σ − P̂ −
τ P̂ −

σ ). (46)

Like the edge Green’s function (26) the bare edge velocity
matrix v̂ (46) has only two diagonal elements v and −v cor-
responding to two counterpropagating channels from different
valleys. We seek the solution to Eq. (45) in the form of the
projector expansion:

V̂k = P̂ +
τ P̂ +

σ V+
k − P̂ −

τ P̂ −
σ V−

k + P̂ −
τ P̂ +

σ V (1)
k − P̂ +

τ P̂ −
σ V (2)

k ,

(47)

with four unknown scalar functions V+
k , V−

k , V (1)
k , and V (2)

k .
Inserting Eqs. (38), (46), and (47) into Eq. (45) and collecting
the coefficients at the projectors, we find that V (1,2)

k can be
expressed through V±

k by means of

V (1,2)
k =

∫
dk′

2π
2wk−k′G±R

k′ V±
k′ G

±A
k′ , (48)

and V±
k satisfy the following equations:

V±
k = v +

∫
dk′

2π

[
uk−k′G±R

k′ V±
k′ G

±A
k′ − 4wk−k′G∓R

k′ V∓
k′ G

∓A
k′

]
.

(49)

Here again the integral over k′ can be calculated using the
sharpness of the Green’s functions at k = k± [see Eqs. (42)
and (43)], which yields the following result:

V±
k = v + uk−k±

u0 + 4wk+−k−
V±

k± − 4wk−k∓

u0 + 4wk+−k−
V∓

k∓ . (50)

In parallel, we perform the k integration in the conductance
formula (32), obtaining

G = e2

hL
(V+

k+ + V−
k−)τ. (51)

The required sum of the renormalized velocities at Fermi
points k = k± is obtained from Eq. (50) as

V+
k+ + V−

k− = v
u0 + 4wk+−k−

4wk+−k−
= v

τ
KK′

τ
, (52)

yielding, finally, the edge conductance:

G = e2

h

τ
KK′

τ

vτ

L
= e2

h

vτ
KK′

L
. (53)

IV. RESULTS AND CONCLUSIONS

We have demonstrated that in single-layer graphene with
insulating bulk zigzaglike edges provide pathways for metallic
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conduction. Both intravalley and intervalley scattering have
been taken into account. Although both scattering mechanisms
contribute to the elastic broadening of the spectrum (43),
only the intervalley scattering time τ

KK′ (44) enters the edge
conductance (53). The transport mean-free path can then be
identified as �

KK′ = vτ
KK′ . We emphasize that Eq. (51) holds

under weak scattering condition |k±|�
KK′ = �τ

KK′ /h̄ � 1,
enforced by the staggered potential � in zigzag-type termi-
nated graphene. Let us discuss qualitatively the dependence
of the edge conductance on the staggered potential � and
disorder strength, assuming a Gaussian correlation function
for the intervalley disorder,

w(k) =
√

2πW 2Lc exp
(−k2L2

c

/
2
)
, (54)

where Lc is the disorder correlation length and W is the root-
mean-square amplitude of the disorder. From Eqs. (1) and (54)
we have

G(�) = e2

h

h̄2v2

4
√

2πLLcW 2
exp

(
2�2L2

c

h̄2v2

)
. (55)

We see that the edge conductance exponentially increases
with �. The reason is that the intervalley scattering involves
the finite momentum transfer k+ − k− = 2�/h̄v between the
Fermi points k±, with the scattering probability ∝ w(k+ −
k−) = w(2�/h̄v) reducing with �. On the other hand, G gets
suppressed algebraically as 1/W 2 with increasing root-mean-
square disorder amplitude W , which may help in practice to
reduce the edge conductance.
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APPENDIX A: DERIVATION OF BOUNDARY
CONDITION (5)

We begin by deriving the boundary condition (5) for the
Green’s function at the sample edge y = 0. To be concrete
we consider the retarded Green’s function in real space and
time g(rt,r′t ′). It is a 4 × 4 matrix in valley and sublattice
space, with matrix elements gjj ′(rt,r′t ′) standardly expressed
through the annihilation �j (rt) and creation �

†
j ′ (r′t ′) field

operators as

gjj ′(rt,r′t ′) = �(t − t ′)
ih̄

〈〈�j (rt)�†
j ′(r′t ′) + �

†
j ′(r′t ′)�j (rt)〉〉,

(A1)

where j (and independently j ′) runs over the index set
A+,A−,B−, and B+ of the basis states introduced in Eq. (3),
the double brackets denote averaging with the equilibrium
statistical operator, and �(t) is the Heaviside function.

It is obvious from Eq. (A1) that the boundary condition for
the Green’s function is just the same as for �j (rt). Indeed,
the boundary condition for �j (rt) (derived earlier in Refs. 16
and 38) can be written as

�j (rt)|y=0 = Mji�i(rt)|y=0, (A2)

where Mji are the elements of the 4 × 4 matrix,

M = −τ0 + τz

2
σn+ − τ0 − τz

2
σn−, (A3)

which is defined in Eq. (5) and the main text. Inserting Eq. (A2)
into Eq. (A1) at y = 0, we obtain the boundary condition for
the matrix elements of the Green’s function:

gjj ′(rt,r′t ′)y=0 = Mjigij ′(rt,r′t ′)|y=0, (A4)

which along with Eq. (A3) yields Eq. (5).

APPENDIX B: DERIVATION OF BOUNDARY
CONDITIONS (13) AND (15)

In order to derive these equations we start with the
boundary condition for the upper block of the Green’s function,
g+|y=0 = −σn+g+|y=0 [see Eqs. (5), (7), and (8)], which has
the explicit form(

g+
AA g+

AB

g+
BA g+

BB

)
y=0

=
(

nz −nx

−nx −nz

) (
g+

AA g+
AB

g+
BA g+

BB

)
y=0

.

(B1)

Therefore, for the upper diagonal element we have

g+
AA|y=0 = nz g+

AA|y=0 − nx g+
BA|y=0. (B2)

Expanding in plane waves eik(x−x ′) and using the relation [see
Eq. (9)]

g+
BA|k(y,y ′) = h̄v0

ε + �
(k + ∂y)g+

AA|k(y,y ′), (B3)

we obtain from Eqs. (B2) and (B3) a closed boundary condition
for g+

AA|k|y=0, which after elementary algebra yields the
boundary condition (13). Repeating step by step the same
calculation for g+

BB |y=0 in Eq. (B1) leads to the boundary
condition (15) for the other diagonal matrix element of the
Green’s function.
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