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Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise
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We study the domain of applicability of the classical telegraph noise model in the study of decoherence in qubits.
We investigate the decoherence of a qubit coupled to either a quantum fluctuator, a quantum two-level system
(TLS) again coupled to an environment, or to a classical fluctuator modeled by random telegraph noise. In order to
do this, we construct a model for the quantum fluctuator where we can adjust the temperature of its environment,
and the decoherence rate independently. The model has a well-defined classical limit at any temperature and this
corresponds to the appropriate random telegraph process, which is symmetric at high temperatures and becomes
asymmetric at low temperatures. We find that the difference in the qubit decoherence rates predicted by the
two models depends on the ratio between the qubit-fluctuator coupling and the decoherence rate in the pointer
basis of the fluctuator. This is then the relevant parameter, which determines whether the fluctuator, has to be
treated quantum mechanically or can be replaced by a classical telegraph process. We also compare the mutual
information between the qubit and the fluctuator in the classical and the quantum model.
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I. INTRODUCTION

The interaction between a quantum system and its environ-
ments leads to loss of quantum coherence, or decoherence, in
the system. Understanding decoherence is crucial for grasping
the boundary between quantum and classical physics.1–4

It is also essential for testing theories describing quantum
measurements.5–8

From an engineering point of view, the decay of coherence
in quantum bit devices (qubits) is the most important obstacle
for constructing a working quantum computer. Solid state
qubits are leading candidates in the projects of designing
quantum circuits, where the coherence times of the qubits are
required to be sufficiently long to allow for manipulations and
transfer of information by logical gates. The most important
source of decoherence in many realizations of solid state
qubits are believed to be bistable fluctuators— two-level
systems (TLSs), present as tunneling states in the amorphous
substrate9,10 used to fabricate the qubit, or in the tunneling
junction in superconductor-based devices.11–18

These fluctuators are quantum-mechanical systems that
are, in turn, coupled to their own environments, which
are conventionally considered as uncorrelated thermal baths.
Usually, one does not worry about the fine details of the
environment of the fluctuators, but rather uses simplified
models. The most popular is the Bloch-Redfield approach,19

where the environment is taken into account by introduction of
the relaxation and decoherence rates of the fluctuators. If the
fluctuators couple more strongly to their own environment than
to the qubit, they are usually treated classically. This means that
the dynamical description of the quantum fluctuator is replaced
by a classical dynamics of a fluctuating system, which switches
randomly between its two metastable states according to a
random telegraph process (RTP).20,21 This approach is often
referred to as the spin-fluctuator model.11,18,22 In many cases,
however, the decoherence of the qubit is determined by only
a few fluctuators that are more strongly coupled to the qubit
than others.23–27 In such cases, one might question the validity

of the classical model. From a practical point of view, it is
therefore important to know when such a simplified classical
description can replace the full quantum mechanical one. It is
also of more fundamental interest in view of the decoherence
approach to the quantum-classical transition.1–4

In this paper, we will develop a simple model allowing
to show when a quantum system can in practice be replaced
by a classical one, in the sense that interference effects can
no longer be observed due to the entanglement with the
environment. However, we believe that this is only a question
of a system becoming in practice classical, i.e., when we can
use a classical model to calculate a physical property of a
quantum system. It does not directly shed any light on the
fundamental limitations of quantum mechanics, in particular,
the measurement problem, where one can discuss deviations
from linear quantum mechanics, see Ref. 5 for a discussion.

Previously, the boundary between quantum and classical
regime for the fluctuator has been explored in a model where
the qubit is coupled to an impurity state, and an electron can
tunnel between this state and an electron reservoir (metal).28,29

The same model has also been used in order to study the effect
of Coulomb interaction between the charged impurities and
the reservoir electrons.30

The qubit dephasing rate calculated in the quantum model
was found to converge to the classical result in the high-
temperature limit. In the study by Abel and Marquardt,29

a threshold for strong coupling between the qubit and the
fluctuator was defined by the onset of visibility oscillations
in the qubit as a function of the ratio between the coupling
to the qubit and the reservoir. The threshold for visibility
oscillations was found for higher values of the qubit coupling
in the quantum model compared to the classical model, the
thresholds finally converge at high T/γ , where γ is the
fluctuator-reservoir coupling. Thus both in the decoherence
rate and in the visibility oscillations the classical limit is
recovered at high temperature. In this model, the temperature
plays a dual role: it affects both the energy relaxation rate
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of the fluctuator, which maps to the switching rate of the
RTP, and it affects the dephasing rate of the fluctuator.
The usefulness of separation of the two effects is seen by the
fact that it is perfectly possible to consider finite-temperature
classical fluctuators by using an asymetric RTP.31,32 This is
never obtained in any limit of the model discussed in Refs. 28
and 29.

The subsequent considerations are based on the following
qualitative picture: the dephasing of the qubit is caused by the
generation of entanglement between the qubit and the envi-
ronment. If the qubit and the fluctuator are strongly coupled,
then they behave as a combined four-level quantum system
and the quantum nature of the fluctuator will be important. In
such a situation, one cannot replace it by a classical RTP. On
the other hand, if the fluctuator is sufficiently strongly coupled
to the environment, it means that the information about its
state is continuously transferred to the environment and this
prevents any quantum interference to take place. From this,
we can guess that the relevant quantity determining whether
the fluctuator can be considered either classical or quantum
is the ratio of the qubit-fluctuator coupling (which determines
the rate of entanglement generation between the qubit and the
fluctuator) and the fluctuator dephasing rate.

The goal of this paper is to study the applicability of
the classical model for qubit decoherence due to a quantum
fluctuator. In order to achieve this, we study a model where the
dephasing rate of the fluctuator can be varied independently
of the temperature, so that the classical limit can be taken at
any temperature and correspond to the proper assymetric RTP.
By use of a model borrowed from the study of fluctuators in
glasses, but where we allow for more freedom in the choise
of parameters than we find in typical glasses, we compare the
pure decoherence rate of the qubit subject to either a quantum
fluctuator, in turn coupled to its environment, or a classical
fluctuatur, modeled by random telegraph noise. Our model
allows us to separate the effects of temperature, coupling to
the bath, and decoherence rate of the fluctuator. We find that
the difference in the qubit decoherence rate predicted by the
quantum model and the classical one depends on the ratio,
ξ/γ̄2, where ξ is the qubit-fluctuator coupling strength and γ̄2

is the decoherence rate of the fluctuator in the pointer basis.

II. MODEL

A. Quantum model for the fluctuator

We start by describing the quantum-mechanical model for
the fluctuator. The model we use for the fluctuator originates
in the study of tunneling states in glasses, i.e., a particle, or
a group of particles that can be approximated by a single
configurational coordinate in a double-well potential.33 It gives
rise to a potential on the qubit that depends on its position in
the double well.

Following Refs. 9, 10, and 33, the Hamiltonian for the
coupled qubit fluctuator is split into the Hamiltonians Hq for
the qubit, Hf for the fluctuator, Hi for the qubit-fluctuator
interaction, He for the environment and Hf e for the fluctuator-
environment interaction:

H = Hq + Hf + Hi + He + Hf e, Hq = Eqτz,

Hf = (1/2)(�σz + �0σx), Hi = (1/2) ξτzσz, (1)

where the Pauli matrices τα and σα are operators in the
Hilbert spaces of the qubit and the quantum fluctuator,
respectively.

The energy splitting � and the tunnel amplitude �0 can be
calculated from the shape of the double-well potential.33 The
energy of the qubit depends on the position of the particle in the
double well (we will in the following refer to the eigenstates
of σz as the position basis) and the coupling strength is given
by ξ . In this work, we will assume the simplified case where
the qubit does not directly interact with the environment and
therefore has no intrinsic dynamics in the absence of the
fluctuator. Furthermore, we consider a model where the qubit
is subject to pure dephasing, [Hq,Hi] = 0, there is no energy
relaxation of the qubit in this model and the decoherence of
the qubit is therefore insensitive to the qubit energy splitting
Eq . When energy relaxation is present, coherent beatings
between the qubit and resonant fluctuators are observed.23,34

In this strong coupling regime, the fluctuator has to be
treated as a quantum system. Our present work concentrates
solely on nonresonant fluctuators, which are typically modeled
classically.

The double-well potential is, in general, perturbed by
electromagnetic and strain fields modifying the asymmetry
energy �, while perturbations of the barrier height can usually
be ignored.35–37 In our model, we therefore assume that the
environment couples to the fluctuator in the position basis,
i.e., the eigenbasis of σz. Rather than formally specifying He

and Hf e we take the freedom to consider two kinds of inter-
action between the fluctuator and the external environment,
resonant and nonresonant. We will later in addition also use
parameters for the fluctuator-environment coupling that are
outside what we typically encounter in glasses. This is done
in order to have more freedom to tune the parameters that
are relevant to study the domain of applicability of the RTP
model.

The resonant phonons creates a strain field uik that modifies
the double-well potential of the TLS as follows:

� = �(0) + λikuik, �0 = const,

where �(0) is the energy splitting in the absence of the strain
field and λik is the deformation potential of the fluctuator. In
the energy basis of the fluctuator, this interaction creates two
terms:

⎛
⎝ �√

�2 + �2
0

σ̃z + �0√
�2 + �2

0

σ̃x

⎞
⎠ λikuik,

where σ̃z and σ̃x act in the energy eigenbasis of the fluctuator.
The first term will give rise to pure dephasing of the

fluctuator, while the second gives rise to relaxation. We will in
the following assume that the rate of resonant phonons is small
compared to the nonresonant ones, and that the contribution
to pure dephasing given by the first term can be neglected.
Resonant interaction, e.g., phonons with frequency close to
the eigenfrequency of the fluctuator, are therefore responsible
for direct transitions between the eigenstates of the fluctuator,
|ψg〉 and |ψe〉.
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We model this interaction by use of the generalized
measurement operators defined for a small time step �t as38

M1(�t) =
√

γab(T )�t I ⊗ σx |ψg〉〈ψg|,
M2(�t) =

√
γem(T )�t I ⊗ σx |ψe〉〈ψe|, (2)

M3(�t) =
√

1 − M
†
1M1 − M

†
2M2 .

Here, I is the identity matrix in the Hilbert space of the
qubit and the matrices σx |ψg(e)〉〈ψg(e)| “measures” whether
the fluctuator is in the ground (excited) state, projects the
fluctuator onto this state and flips it. The rates for absorbtion
and emission are

γab(T ) = γ1N (E) = γ1

eE/T − 1
,

(3)
γem(T ) = γ1[N (E) + 1] = γ1

1 − e−E/T
.

Here, T is the temperature, N (E) = (eE/T − 1)−1 is the Planck
distribution, and E = √

�2 + �2
0 is the energy splitting of

the fluctuator. The nonresonant interaction does not cause
transitions between the eigenstates of the fluctuator. However,
we might assume that, in general, the state of a phonon
interacting with the fluctuator is perturbed by the interaction,
and that the perturbation depends on the position of the system
in the double well. These are assumed to be low-frequency
phonons h̄ω � E, which does not significantly alter the level
splitting of the fluctuator. Schematically, we can write

|ψi〉
∣∣φph

0

〉 t→ |ψi〉
∣∣φph

i

〉
, (4)

where i ∈ {0,1} index the state of the fluctuator in the position
basis, |φph

0 〉 is the initial state of the phonon and |φph
i 〉 is the

state of the phonon after the interaction, conditioned upon
that the fluctuator was initially in the state indexed by i. The
interaction (4) results in entanglement between the phonon
and the fluctuator, reducing the coherence of the latter. The
rate of decoherence due to nonresonant phonons depends on
the overlap element α = 〈φph

0 |φph
1 〉 and on the rate of phonons

interacting with the system. We model this interaction by the
single parameter γ2, which is responsible for the decay rate of
the off-diagonal density matrix elements of the fluctuator in
the position basis.

In this model, we effectively adjust the nature of Hf e by
the ratio �0/�. Therefore the equilibrium density matrix of
the fluctuator will not necessarily lie along the z axis of the
Bloch sphere. The equilibrium density matrix is determined
by the rate γ2 due to nonresonant phonons responsible for
decay perpendicular to the z axis on the Bloch sphere and by
relaxation to the thermal level along the z′ axis in the eigenbasis
of the fluctuator induced at the rate γ1 by resonant phonons.

Note also that differences in the qubit decoherence between
the quantum and the classical model is not observed when the
z′ axis is parallel with the z axis. The situation is illustrated
in Fig. 1. We define the decoherence rate of the fluctuator, γ̄2,
by the rate at which the off-diagonal density matrix elements
decay in the basis where the density matrix is diagonal in
equilibrium.

The time evolution in the quantum model is obtained by
numerical integration of the von Neumann equation for the
Hamiltonian given by Eq. (1), with two modifications. We add

eq
ρ

γ2

‘pointer’ basis

z′

z

FIG. 1. The Bloch sphere for the fluctuator coupled to both
nonresonant and resonant phonons. The nonresonant phonons are
responsible for decay perpendicular to the z axis, the eigenbasis of
σz, while the resonant phonons are responsible for relaxation parallell
to the z′ axis, which is the eigenbasis of the fluctuator. We define the
pointer basis by the basis in which the equilibrium density matrix ρeq

is diagonal. The rate of decay perpendicular to this axis is denoted
by γ̄2.

a damping term γ2 to our differential equation:

ρ̇αα′ = i〈α|[ρ,H ]|α′〉 − αα′ραα′ , (5)

where ρ is the density matrix of the system composed of the
qubit and the fluctuator and  = γ2I ⊗ σx , which determines
the decay of the off-diagonal density matrix elements of the
fluctuator in the eigenbasis of σz. In addition, the fluctuator
absorbs and emits phonons at the rates γab(T ) and γem(T ).
The absorption and emission of phonons is implemented as
follows: for each time step �t , we make a transformation to
the eigenbasis of the fluctuator,

ρ̄ = R(θ )ρR†(θ ), (6)

using the rotation matrix

R(θ ) = I ⊗
(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)
, θ ≡ arctan

(
�0

�

)
.

The density matrix is then updated according to the rates of
absorption and emission as

ρ̄ ′ = M1ρ̄M
†
1 + M2ρ̄M

†
2 + M3ρ̄M

†
3, (7)

before we make the inverse transform ρ ′ = R†(θ )ρ̄ ′R(θ ), back
to the position basis. Here, ρ ′ is the density matrix after the
(potential) interaction with the resonant phonons.

B. Classical telegraph noise

Pure dephasing of the qubit by a classical telegraph noise
can be described by the interaction Hamiltonian

Hi = (1/2)ξ (t)τz, (8)

where ξ (t) = ±ξ is the position of the fluctuator at time t . For
details on this model see, e.g., Ref. 39 and references therein.
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The probability for the fluctuator to switch from the state ξ−
to ξ+, and from ξ+ to ξ− in the interval dt is given by �−+dt

and �+−dt , respectively. To describe finite temperature, we
will consider the situation where the flipping rates �−+ and
�+− of the fluctuator are, in general, not identical, but the
states are symmetric ξ− = −ξ+. The situation with asymmetric
switching rates was previously studied in Refs. 31 and 32. The
equilibrium average is given by

〈ξ 〉 = ξ (peq
+ − p

eq
− ) = ξ (�−+ − �+−)/�, (9)

where

� = �−+ + �+−, (10)

and p±(t) is the probability for the fluctuator to be found in
the state ξ±. The relaxation towards equilibrium is exponential
with rate �.

The decoherence of the qubit is obtained by averaging over
the realizations and initial conditions of the noise process
ξ (t). For a given realization of ξ (t), the Schrödinger equation
yields a superposition of the eigenstates of the qubit with a
contribution to the relative phase φ(t) = ∫ t

0 ξ (t ′)dt ′. Averaged
over the realizations of the stochastic process ξ (t), we obtain
the qubit coherence D(t) = 〈eiφ(t)〉. Here, we will use the
transfer matrix method developed by Joynt et al.,40 where
we obtain directly the ensemble averaged Bloch vector of the
qubit.

The state of the qubit-fluctuator system can be stored in the
six-dimensional vector

�q(t) = �m+(t) ⊗
(

1
0

)
p+(t) + �m−(t) ⊗

(
0
1

)
p−(t), (11)

where �m± is the Bloch vector of the qubit conditioned upon
the state ξ± of the fluctuator. The propagator for �q averaged
over the individual realizations of the RTP can be expressed
as A(t) = e−Bt , where

B = I3 ⊗ V − i
ξ

2
Lz ⊗ υz, V =

(
�+− −�−+

−�+− �−+

)
,

while I3 and Lz are generators of the SO3 group and υZ is the
Pauli matrix. A direct advantage of this approach is that the
qubit state conditioned upon whether the fluctuator is in
the state ξ±, ρ±

q follows directly from �q.

III. RESULTS

In order to compare the decoherence of the qubit subject to
either the quantum fluctuator, or the classical telegraph noise,
we calculate similar relaxation rates towards the equilibrium
level in the two models. First, we choose a set of parameters,
�, �0, γ1, γ2, and T for the quantum model and prepare the
fluctuator in the initial state |ψ1〉. At this preliminary stage,
we are not interested in the qubit and consider the fluctuator
and its environment decoupled from the qubit. We compute
numerically the equilibrium occupation probabilities p

eq
0 and

p
eq
1 of the quantum fluctuator in the position basis as well as the

relaxation rate �. Note that both the equilibrium occupations
and the relaxation rate are, in general, complicated functions of
all the parameters in our model. In this work, we always restrict
ourselves to the regime where the fluctuator is overdamped
�,�0 � γ2, i.e., the decoherence rate is sufficiently large such

that coherent oscillations are not observed in the fluctuator. In
this regime, the decay of the fluctuator towards its equilibrium
value can be fitted to a simple exponential. Beyond this regime,
the fluctuator behave as a quantum system, and can therefore
not be modeled by the classical telegraph process. Note also
that since the states |ψi〉 are not eigenstates of the Hamiltonian,
the occupation numbers p

eq
i are not given by the Boltzmann

weights at the bath temperature.
The decoherence rate is expressed through the rates �±∓

and the equilibrium occupancy 〈ξ 〉 with the help of Eqs. (9)
and (10). The qubit decoherence rate is, in general, a sum
over multiple rates. For symmetric telegraph noise and pure
dephasing, the decay of coherence in the qubit D(t) is given
by39

D(t) = e−�t/2

2μ
[(μ + 1)e�μt/2 + (μ − 1)e−�μt/2], (12)

where μ ≡
√

1 − (2ξ/�)2. However, in the regime where the
coupling to the qubit is weak compared to the damping of the
fluctuator, � > ξ , the long-time behavior of the decoherence
is strongly dominated by a single rate,

�c
q = �(1 − μ)/2.

We finally compute the decoherence rate �
q
q of the qubit

when it is coupled to the same quantum fluctuator from which
we calculated the relaxation rate and equilibrium occupations
previously, but this time the initial state of the fluctuator is
the thermal equilibrium state. The decoherence rate of the
qubit is calculated by numerical simulation of the coupled
qubit-fluctuator density matrix ρ(t) from which we can find
the qubit density matrix by tracing out the degrees of freedom
of the quantum fluctuator. From the qubit density matrix,
ρq(t) = Trf [ρ(t)], we find the coherence |ρq

↑↓(t)|, where ↑
and ↓ denote the eigenstates of the qubit. Finally, the long-time
behavior of |ρq

↑↓(t)| is fitted to the exponential function e−�
q
q t .

Note that the initially |ρq

↑↓(t)| might have contributions from
several rates, like in the classical model (12). Note also that in
the regime where the fluctuator is near resonant with the qubit,
these two systems need to be treated as a four-level system,
and the dynamics is characterized by four distinct rates. This
regime was studied in Ref. 41 in order to characterize the effect
of coherent impurities on the qubit.

The relative difference in the decoherence rate of the qubit
due to classical telegraph noise and the quantum fluctuator is
defined as

δ�q = (
�q

q − �c
q

)/
�c

q, (13)

where �
q
q and �c

q are the decoherence rate of the qubit subject
to the quantum fluctuator and to the classical telegraph noise,
respectively. This quantity is presented in Fig. 2 as a function
of the dephasing rate of the fluctuator γ2 and temperature
T . We have restricted ourselves to a parameter range where
the fluctuator does not undergo coherent oscillations. It is
evident that the relative difference in the qubit decoherence
rate is small for strong decoherence of the fluctuator, and for
high temperatures. In this case, we can safely use the simple
RTP model rather than the much more complicated quantum
model. Superimposed on the contours for δ�q , we have plotted
curves where the ratio ξ/γ̄2 is constant. We find that the
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FIG. 2. (Color online) Contour plot of the relative difference
δ�q in the decoherence rate of the qubit subject to either classical
telegraph noise, or a quantum fluctuator. In units of the fluctuator
energy splitting E, the parameters of the quantum fluctuator are
� = �0 = 1/

√
2 and γ1 = 1.0, the coupling to the qubit is ξ = 0.1.

Color coding for δ�q is shown on the right. The relaxation rate to
equilibrium along the σz axis is the same for both the quantum and
the classical fluctuator. Contours where the ratio ξ/γ̄2 is constant are
plotted for comparison (black lines).

difference between the quantum and the classical fluctuator
depends to a very good accuracy on the ratio ξ/γ̄2. Note that
we have numerically checked that the dependence of the qubit
decoherence on the parameter ξ/γ̄2 holds also in the regime
where ξ > � confirming that the RTP model can be applied
in the strong-coupling regime also in the case when the qubit
couples strongly to the fluctuator, as long as ξ � γ̄2. The
requirement � > ξ is only needed to ensure that the qubit
decoherence follows a simple exponential law.

When the qubit is put in contact with the quantum fluctuator,
the qubit and the fluctuator will in general entangle due to their
coupling. The mutual information, the information about the
state of one of the systems that can be inferred by measuring
the other, will for the quantum fluctuator have an entanglement
contribution in addition to the classical correlation.

The mutual information for the qubit-quantum fluctuator is
defined straightforwardly by the von Neumann entropy38

S(q : f ) = S(ρq) + S(ρf ) − S(ρqf ), (14)

where ρq , ρq , and ρqf are the density matrices of the qubit,
the fluctuator, and the composite system, respectively. When
we treat the qubit subject to a classical telegraph noise, we
introduce quantum states |±〉 corresponding to the states ξ± of
the RTP and use the formula

ρqf = p+ρ+
q ρf + + p−ρ−

q ρf −. (15)

Here, p± is the probability for the telegraph process to be
found in the state ξ±, ρ±

q is the density matrix of the qubit
conditioned upon that the telegraph process is in the state ξ±
and ρf ± = |±〉〈±|.

The time evolution of the mutual information for a qubit
coupled either to the quantum or the classical fluctuators is
shown in Fig. 3. The entanglement between the two systems
builds up at a rate given by the coupling ξ but is lost to
the environment at a rate given by the decoherence rate of
the quantum fluctuator, γ̄2. The increased information about
the qubit encoded in the quantum fluctuator, compared to
the classical fluctuator, increases the transfer of entropy to

0 5 10 15 20 25 30
0

0.05

0.1

Γ t

S
(q

:f) Classical

Quantum

FIG. 3. (Color online) Mutual information S(q : f ) for the qubit
coupled to the quantum fluctuator (black, dashed) and the qubit
subject to the classical spin fluctuator (blue, solid). The mutual
information is larger when both systems are treated as quantum
objects, due to quantum entanglement between the two systems.
In this simulation the parameters, in units of E, are ξ = 0.1,
� = �0 = 1/

√
2, γ1 = 1.0, γ2 = 20, and E/T = 1.0.

the environment, thus increasing the decoherence rate of the
qubit. This effect might explain the positive δ�q found for
low values of T and γ2. It has been stated, see, e.g., Refs. 42
and 43, that there exist situations where increased information
transfer decreases the decoherence rate of the qubit. However,
we are not sure that the information transfer is reduced in the
particular system discussed in Refs. 42 and 43.

Experimentally, since the composite density matrix ρqf is
required, the mutual information can only be extracted in
the case where one has access to measurement on both the
qubit and the fluctuator simultaneously. Since the fluctuator by
definition is a system of the environment outside our control,
this cannot be achieved. However, the mutual information
could potentially be studied in two coupled qubits, where
one of the qubits are subject to controlled noise and takes
the role of the fluctuator. Qubits subject to engineered noise
under the control of the experimentalist has been realized
in optically trapped 9Be+ ions,44 where also the required
quantum gates has already been implemented in a similar
systems.45

IV. DISCUSSION

In general, the dynamics of the quantum fluctuator in an
environment depends on three parameters; the relaxation rate
γ1, the dephasing rate γ2 and the temperature T determining
the equilibrium occupations. In this paper, we use a model
where the processes responsible for pure dephasing couple to
the position basis, while the relaxation processes take place in
the eigenbasis of the fluctuator. This model was used in order to
study the relevance of the classical RTP model for description
of decoherence of a qubit. If the interaction responsible for
pure dephasing processes in the fluctuator (characterized by γ2)
commutes with the qubit-fluctuator Hamiltonian, i.e., �0 = 0
in our model, then the pure dephasing rate γ2 will not have
any effect on the decoherence rate of the qubit as long as
the fluctuator is prepared in the thermal equilibrium state.
The quantum fluctuator will in this case always behave as
a classical fluctuator and can therefore straightforwardly be
modeled by the classical telegraph noise.

In general, the difference in decoherence rate δ� depends
on the ratio �0/� in addition to the ratio ξ/γ̄2. We find that δ�
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increases monotonously as a function of the ratio �0/� for
�0/� ∈ [0,π/4] and that δ� = 0 for �0/� = 0. However,
the contours of constant ξ/γ̄2 in the ln T versus γ2 plot, match
those of constant δ� for all values of �0/�.

Furthermore, we note that our results do not tell us that it
is, in principle, not possible in ad hoc fashion to construct
a classical telegraph model, e.g., a classical model with
feedback, providing the same decoherence rate for the qubit
as the quantum fluctuator, even in the regime where the
deviation δ�q between the two models are large according
to Fig. 2. We show that the decoherence rate of the qubit
differs in the two models in the case where the relaxation
rates of the classical and quantum fluctuator are identical. To
the best of our knowledge, there exist no general relationship
between the quantum fluctuator model and the classical
spin-fluctuator model. Therefore one should be careful in
applying the classical telegraph model unless one expects the
decoherence rates of the fluctuators to be much larger than
the qubit-fluctuator coupling. ξ/γ̄2 � 1. However, in systems
such as glasses this inequality is usually expected to hold, and
the quantum fluctuator can be treated effectively by random
telegraph noise,33 with an exception if the system is subject to
an external ac field.46

The pointer states of a quantum system are defined as
the pure states that are the least affected by environmental
decoherence.1,3 It is generally believed that when the dynamics
of the system is dominated by the interaction with the
environment, the pointer states are the eigenstates of the
interaction Hamiltonaian.1 On the other hand, when the system
is weakly coupled to the environment, the pointer states are
assumed to be the eigenstates of the isolated system.2 Our
model can be considered to interpolate between the two

extremes. If we define the pointer basis as the basis where the
Bloch vector of the system lies along the z axis in equilibrium,
the decoherence rate γ̄2 of the system is the rate of decay of
the off-diagonal elements of the density matrix in this basis.

As a final note we mention that our main result, that
the difference in decoherence rate of the qubit between the
quantum fluctuator model and the telegraph noise model, might
be model specific. Further work is needed in order to settle
whether or not this result is universal.

In conclusion, we have constructed a model for the quantum
fluctuator where we can study its effect on the qubit as a
function of both the temperature and its decoherence due to
its interaction with the environment. We have compared the
decoherence rate of the qubit found in this model, and in the
widely used classical telegraph noise model. We find that the
difference in the qubit decoherence rates depends on the ratio
ξ/γ̄2 between the strength of the qubit-fluctuator coupling and
decoherence rate of the fluctuator in the pointer basis. In the
limit ξ/γ̄2 � 1, the fluctuator behaves essentially classically
and the qubit decoherence rate can accurately be predicted by
the telegraph noise model. Our results validate the application
of the RTP model for the study of decoherence in qubits also
when the coupling between the qubit and the fluctuator is
strong as long as the fluctuator couples even more strongly to
its own environment.

This work is part of the master project of one of the authors
(H.J.W.) and more details can be found in his thesis.47
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