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Exciton-polariton mediated light propagation in anisotropic waveguides
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To analyze the exciton-polariton dispersion relation of highly anisotropic thiacyanine films and nanofibers,
we formulated a plane-wave expansion method by which we could obtain the eigenfrequencies of polaritons as
eigenvalues of a non-Hermitian and frequency-independent matrix. The group refractive index calculated from
the slope of the dispersion curve agreed quite well with the Fabry-Perot interference patterns found in both the
calculated and observed transmission spectra. We found that the dispersion relation of the anisotropic polariton
was quite different from the isotropic case and depended strongly on the tilt angle of the optical transition dipole
moment of the constituent molecules to the propagation direction. Material parameters such as the transverse and
longitudinal exciton frequencies are also discussed.
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I. INTRODUCTION

Optical waveguides are widely used in various fields of
science and technology. In conventional waveguides like
core/clad optical fibers, the wave propagation is achieved by
index guiding, i.e., total reflection due to the higher refractive
index of the core material.1 Because the index difference
between the core and clad is usually small, a large bending
loss takes place when the optical fiber is bent at a large angle.

The bending loss can be reduced by several means.
High-index core materials like silicon apparently reduce the
bending loss, while coupled-resonator optical waveguides
(CROWs)2 and photonic-crystal waveguides3 may give an
ultimate solution to this problem although their fabrication
cost is very high for optical frequencies. Plasmonic waveguides
are another solution for reducing the bending loss,4 since their
wave propagation is achieved by surface plasmons whose elec-
tromagnetic field is naturally localized on metal surfaces due to
their negative dielectric constants. However, the considerably
large dielectric loss of metallic materials at optical frequencies
is a general problem for plasmonic waveguides.

Recently, Takazawa presented another promising method.
He observed the propagation of optical waves in thiacyanine
nanofibers whose dimension was typically 500 nm in diameter
and 100 μm in length, and found that the intensity of
transmitted waves did not decrease appreciably even when
the nanofibers were bent with a radius of curvature as small as
10 μm.5–7 It was apparent that this small bending loss was not
brought about by index guiding. He pointed out the possibility
of wave propagation by exciton polaritons, which was later
examined theoretically.8

Exciton polaritons, which are combined states of excitons
and the electromagnetic field, have been studied for a long
time.9–11 In the case of organic systems like aggregates and
fibers of thiacyanine molecules, the exciton is of the Frenkel
type, that is, both an electron in an excited state and a hole
are located in the same molecule and the exciton propagates
resonantly from molecule to molecule. Its binding energy is
generally large compared with Wannier excitons and their
LT splitting (energy difference between the longitudinal and

transverse excitons) is also large because of large transition
dipole moments of organic dye molecules. These properties
stabilize the exciton polaritons even at room temperature.

On the other hand, because exciton polaritons in cer-
tain semiconductors such as ZnO are also stable at room
temperature,12–15 their nanowires have been actively studied
as efficient optical waveguides in which light is confined more
effectively than conventional dielectric waveguides.16,17

For bulk exciton polaritons with isotropic dielectric con-
stants, their dispersion relation consists of two branches.
The upper branch is located above the longitudinal exciton
frequency ωL, while the lower one is located under the
transverse exciton frequency ωT . There is no eigenmode in the
frequency range between them where the dielectric constant
is negative. When the frequency of the lower-branch polariton
approaches ωT , its group velocity, which is given by the slope
of the dispersion curve, becomes small and its wave number
diverges. In the case of polariton waveguides, we should note
the presence of the light line defined by the dispersion relation
of surrounding materials, above which the electromagnetic
modes are leaky. So, those polariton modes with large wave
numbers, which are far from the light line, are expected to be
tolerant of the leakage on waveguide corners.

In addition to Refs. 5–8, stable propagation and lasing of
exciton polaritons at room temperature have been reported
in several organic crystals.18–21 When we analyze the polari-
ton modes in these organic crystals, we have to take into
consideration the large anisotropy of their optical response,
since their transition dipole moments are aligned in certain
crystallographic directions. For example, in J (H) aggregates,
the transition dipole moments of adjacent molecules are
aligned side-by-side (face-to-face) to result in a red (blue) shift
of their absorption band from their monomer absorption.22

In the case of polariton nanofibers, the tilt angle α of the
transition dipole moment to the fiber axis was regarded as
0◦ � α � 54.7◦ for J aggregates and 54.7◦ < α � 90◦ for H
aggregates based on the point-dipole approximation.22 α = 0◦
and 90◦ are often chosen as ideal values for J and H aggregates,
respectively. Although these aggregates have long been studied
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by many researchers, their properties as optical waveguides are
still unclear.

In this paper, we reexamine the polariton states of thiacya-
nine waveguides by fully taking into account the anisotropy
of their dielectric constant, which results in dispersion curves
qualitatively different from those reported in Ref. 8. In many
crystalline organic systems including thiacyanine nanofibers,
their dielectric constant is highly anisotropic due to the
anisotropy of their molecular structure and orientation in the
crystal. In the present case of thiacyanine nanofibers, the tilt
angle of molecules to the fiber axis is unknown so far. We will
determine it by comparing our calculation with observation
provided by Takazawa. This information of the tilt angle will
then be used to fix the anisotropic dielectric tensor that will be
used in successive calculations.

This paper is organized as follows. In Sec. II, we derive the
anisotropic dielectric tensor of nanofibers assuming a uniform
tilt angle of thiacyanine molecules to the fiber axis. We also
formulate a plane-wave expansion (PWE) method to calculate
the dispersion relation for the thiacyanine nanofiber and film.
We further derive basic equations for the finite-difference
time-domain (FDTD) calculation of the wave propagation. In
Sec. III, we present the numerical results of dispersion curves
for four different tilt angles calculated by the PWE method
and transmission spectra calculated by the FDTD method. We
show that the group refractive index derived from these two
methods agree with each other quite well, which proves the
accuracy of our calculation. We also show a good agreement
between our calculation and the group refractive index reported
in Takazawa’s experiments.8 A brief summary of the present
study is given in Sec. IV. In Appendix A, a key equation
is derived for the non-Hermitian eigenproblem of the present
study. An important feature of the anisotropic dielectric tensor,
which results in an infinite number of dispersion curves, is
described in Appendix B.

II. THEORY

In this section, we derive the anisotropic frequency-
dependent dielectric tensor of exciton polaritons and discuss
the computational methods for dispersion curves and light
propagation.

A. Anisotropic dielectric tensor

In the Hamiltonian H, we consider N identical two-level
systems with ground and excited states:

H = h̄ω0

2
J3 − d0 · E(t) [J12 + J21] , (1)

where ω0 is the transition frequency between the ground and
excited states, d0 is the transition dipole moment, and E(t) is
the electric field. While J3 ≡ J22 − J11 denotes the population
difference between the two states, J12 (J21) deexcites (excites)
one two-level system to the ground (excited) state. The
atomic operators satisfy [J12,J3] = 2J12, [J3,J21] = 2J21, and
[J21,J12] = J3. The Heisenberg equation of motion yields

d〈J12(t)〉
dt

= − i

h̄
〈[J12(t),H]〉

= −iω0〈J12(t)〉 − i
d0 · E(t)

h̄
〈J3(t)〉, (2)

where brackets denote statistical averages. When the intensity
of the electric field is not very high, we can safely assume
that 〈J3(t)〉 � −N . Then, the electric polarization P(t) ≡
d0n [〈J12(t)〉 + 〈J21(t)〉] /V , where n ≡ d0/d0 is a unit vector
and V is the volume, satisfies

d2P(t)

dt2
+ ω2

0P(t) = 2ω0Nd2
0

h̄V
[n · E(t)] n. (3)

By Fourier transformation of P(t) with respect to time, we
obtain

P(ω) = 2ω0Nd2
0

h̄V
(
ω2

0 − ω2
)n ⊗ n · E(ω), (4)

where (n ⊗ n)ij = ninj and [n · E(ω)]n = n ⊗ n · E(ω). P(ω)
and E(ω) are the frequency components of P(t) and E(t), re-
spectively. From ε0ε∞E(ω) + P(ω) = ε0ε(ω)E(ω), where ε0

is the permittivity in free space and ε∞ is the dielectric constant
at high frequencies, the frequency-dependent dielectric tensor
ε(ω) is given by

ε(ω) = ε∞1 + 2ω0Nd2
0

ε0h̄V
(
ω2

0 − ω2
)n ⊗ n

= ε∞

{
1 + 2

ω2
L − ω2

T

ω2
T − ω2

n ⊗ n
}

, (5)

where 1 denotes a unit tensor. We have chosen ωT = ω0

and ω2
L − ω2

T = (ω0Nd2
0 )/(ε0ε∞h̄V ). When transition dipole

moments are uniformly aligned in the xz plane, n =
(sin α,0, cos α), where α is the orientation angle to the z axis.
Then, the frequency-dependent dielectric tensor is

ε(ω)

= ε∞

⎧⎨
⎩1 + 2

ω2
L − ω2

T

ω2
T − ω2

⎡
⎣ sin2 α 0 sin α cos α

0 0 0
sin α cos α 0 cos2 α

⎤
⎦

⎫⎬
⎭ .

(6)

On the other hand, when transition dipole moments are
randomly oriented in the xz plane, 〈sin2 α〉av ≡ (1/2π )

∫ 2π

0
dα sin2 α = 1/2, 〈cos2 α〉av = 1/2, and 〈sin α cos α〉av = 0.
(The subscript av denotes the average value.) Then,

ε(ω) = ε∞

⎡
⎢⎣

ω2
L−ω2

ω2
T −ω2 0 0

0 1 0

0 0 ω2
L−ω2

ω2
T −ω2

⎤
⎥⎦ . (7)

B. PWE method for dispersion curves

We calculate the dispersion curves of films and fibers with
anisotropic polariton dielectric tensors by the PWE method
with a supercell technique. According to the experimental
condition of Takazawa et al.,5–8 we assume that a film or a fiber
is placed on a transparent glass substrate. We take Cartesian
coordinates as shown in Fig. 1. In the case of the polariton
film, we denote its height by h and assume that it uniformly
occupies all the xz plane. For the polariton fiber, we assume
that it has a rectangular cross section and denote its height
and width by h and w, respectively. We also assume that it
is infinitely long in the z direction. As we mentioned before,
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FIG. 1. (Color online) The structures of (a) the polariton film
and (b) nanofiber made of crystalline aggregates of thiacyanine
molecules that are assumed in our calculation. They are placed on
transparent glass (SiO2) substrates according to the experimental
condition by Takazawa. Their dimensions are also chosen according
to his observations. It is assumed that the transition dipole moment d0

of thiacyanine molecules is tilted at angle α to the wave propagation
(z) direction in the xz plane.

we further assume that the transition dipole moment of the
constituent molecules is tilted from the z axis, which is the
direction of wave propagation, by angle α in the xz plane.

To apply the PWE method to the present problem, we have
to assume a structural periodicity in the y direction for the film
and in both the x and y directions for the fiber, that is, we
assume ε(y,ω) = ε(y + Ly,ω), with a condition of Ly 	 h,
etc., so that the presence of multiple layers has a negligible
influence on the dispersion curves.

By eliminating the magnetic field from the Maxwell
equations, the eigenequation for the electric field is obtained
as follows:

∇ × ∇ × Enk(r) = ω2
nk

c2
ε(r; ωnk) · Enk(r), (8)

where n is the band index, k ≡ (0,0,kz) is the wave vector,
and ωnk is the eigen-angular-frequency. We should note that the
dielectric tensor ε is dependent on position r and frequency. We
denote it as a sum of frequency-independent and -dependent
terms:

ε(r; ωnk) = η(r)1 + 2
ξ (r)c2

ω2
T − ω2

nk

n ⊗ n. (9)

From Eq. (6), η(r) is ε∞ in the polariton film and fiber.
Otherwise, it is the dielectric constant of the substrate or
air. ξ (r) = ε∞(ω2

L − ω2
T )/c2 in the film or fiber, and ξ (r) = 0

otherwise. Because η(r) and ξ (r) are periodic functions
according to the supercell condition, they can be expressed

by Fourier series:

η(r) =
∑

G

ηGeiG·r, (10)

ξ (r) =
∑

G

ξGeiG·r, (11)

where G is the reciprocal lattice vector, which is given by G =
(0,2πmy/Ly,0) for the film and G = (2πmx/Lx,2πmy/Ly,0)
for the fiber, where mx and my are integers. In the actual
numerical calculation, we have to truncate the infinite sum-
mation for mx and my in Eqs. (10) and (11) at sufficiently
large values, which we denote by Mx and My . So, we take
|mx | � Mx and |my | � My . Then, the number of reciprocal
lattice vectors taken into consideration, NG, is 2My + 1 for
the film and (2Mx + 1)(2My + 1) for the fiber.

Taking the electric flux density Dnk(r) =
ε0ε(r; ωnk) · Enk(r) = ε0η(r)Enk(r) + Pnk(r), where Pnk(r) =
2ε0ξ (r)c2n ⊗ n · Enk(r)/(ω2

T − ω2
nk) = 2ε0ξ (r)c2 [n · Enk(r)]

n/(ω2
T − ω2

nk), Eq. (8) is decomposed into two equations:

∇ × ∇ × η−1(r)Dnk(r)

−∇ × ∇ × η−1(r)Pnk(r) = ω2
nk

c2
Dnk(r), (12)

−2ξ (r)η−1(r) [n · Dnk(r)] n + ω2
T

c2
Pnk(r)

+ 2ξ (r)η−1(r) [n · Pnk(r)] n = ω2
nk

c2
Pnk(r). (13)

We have used ε0Enk(r) = η−1(r)[Dnk(r) − Pnk(r)]. From
Bloch’s theorem,

Dnk(r) =
∑

G

2∑
λ=1

D
(λ)
nk (G)e(λ)

k+Gei(k+G)·r, (14)

Pnk(r) =
∑

G

Pnk(G)ei(k+G)·rn, (15)

where e
(1)
k+G and e

(2)
k+G are unit vectors perpendicular to k +

G. We assume without loss of generality that e
(1)
k+G, e

(2)
k+G,

and k + G form a right-handed orthogonal system. Then, it
follows that ∇ · Dnk(r) = 0 as it should be. As described in
Sec. II A, we should also note that Pnk(r) is parallel to n.
Substituting Eqs. (10), (11), (14), and (15) into Eqs. (12) and
(13), we obtain the following 3NG-dimensional non-Hermitian
eigenvalue equation (Appendix A):[

M(k)
DD M(k)

DP

M(k)
PD M(k)

PP

] [
D̃nk

P̃nk

]
= ω2

nk

c2

[
D̃nk

P̃nk

]
, (16)

where D̃nk and P̃nk are 2NG- and NG-dimensional vectors,
respectively, in which the G elements are [D(1)

nk (G),D(2)
nk (G)]

and Pnk(G) and M(k)
DD , M(k)

DP , M(k)
PD , and M(k)

PP are 2NG × 2NG,
2NG × NG, NG × 2NG, and NG × NG matrices, respectively.

C. FDTD method for wave propagation

The electric field E(r,t) and magnetic field H(r,t) satisfy
the Maxwell equations:

∇ × E(r,t) = −μ0
∂H(r,t)

∂t
, (17)

∇ × H(r,t) = ∂P(r,t)
∂t

+ ε0η(r)
∂E(r,t)

∂t
, (18)
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(a) (b)

(c) (d)

FIG. 2. Dispersion curves of exciton polaritons for (a) α = 0◦, (b) 30◦, (c) 60◦, and (d) 90◦ in the thiacyanine film on a glass substrate. Gray
regions are light cones in which electromagnetic modes are leaky. Dispersion curves for α = 0◦ and 90◦ are TM and TE modes, respectively.

where μ0 is the permeability in free space. From Eq. (3), P(r,t)
in films and nanofibers satisfies

d2P(r,t)
dt2

+ ω2
T P(r,t) = 2ε0ε∞

(
ω2

L − ω2
T

)
[n · E(r,t)] n.

(19)

Otherwise, P(r,t) = 0. Solving Eqs. (17), (18), and (19)
self-consistently, time-dependent light propagation can be
obtained. In the FDTD method, these equations are discretized
with respect to time and space. On the boundary of the
computational domain, the second-order Higdon absorbing
boundary condition is used to enable electromagnetic waves
to propagate without reflection.23

III. Results and discussion

A. Material parameters

For numerical calculation of dispersion curves and wave
propagation, we need several material parameters. For trans-
verse and longitudinal exciton frequencies, we use h̄ωT =
2.85 eV and h̄ωL = 3.2 eV, which were obtained from
observed reflection spectra as described in Sec. III D. On the
other hand, we take h = 150 nm and w = 500 nm in Fig. 1
as representative values obtained by experimental studies by
Takazawa.5–8 For dielectric constants, we use εSiO2 = 2.34 and

εair = 1.0, respectively. As for ε∞ of thiacyanine films and
nanofibers, it is unknown so far. However, it does not affect
numerical results much, so we assume the same value for it as
SiO2, i.e., 2.34.

B. Numerical results for films

When we ignore the spatial dispersion, conventional
isotropic bulk exciton polaritons have the dispersion relation
k = (ω/c)

√
ε(ω) > 0, where ε(ω) = ε∞(ω2

L − ω2)/(ω2
T − ω2).

Thus, while there exist lower and upper branches for ω < ωT

and ω > ωL, respectively, an exciton-polariton gap appears for
ωT � ω � ωL. For ω < ωT , the wave number diverges as ω

approaches ωT .
The dispersion relation is very different for exciton polari-

tons in anisotropic films. Figure 2 shows dispersion curves
calculated by the PWE method for four different tilt angles.
Gray areas, which are separated from lower regions by the light
line ω = ck/

√
εSiO2 , denote light cones where electromagnetic

modes are leaky. Genuine eigenmodes are shown by solid lines
under the light line. For this calculation, we took Ly = 2.0 μm
and NG = 81 and we placed the thiacyanine film in the
center of the supercell. We checked the convergence of the
calculation by increasing Ly and NG and confirmed that no
appreciable changes took place in the dispersion curves except
their number.
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As is shown in Appendix B, there are an infinite number of
dispersion curves for exciton polariton films with anisotropic
dielectric tensors. The number of dispersion curves found
by our PWE method with the supercell approximation is,
however, limited by the number of plane waves used in the
calculation, NG. In each panel of Fig. 2, the first ten dispersion
curves are plotted. We should note that this feature of multiple
dispersion curves is distinct from coupled surface polaritons
in isotropic thin films. In the latter case, there is one surface
polariton branch on each of the two surfaces in the frequency
range of ωT < ω < ωL, and when the thickness of the film is
sufficiently small, two surface polariton branches are mixed
to generate symmetric and antisymmetric coupled surface
polaritons.

The dispersion curves strongly depend on the tilt angle α

of the transition dipole moment in the film. When off-diagonal
elements of the dielectric tensor vanish in Eq. (6), which
happens for α = 0◦ and 90◦, polaritons can be classified into
TM (transverse magnetic) modes, for which α = 0◦ and the
magnetic (electric) field is parallel to the x axis (yz plane),
and TE (transverse electric) modes for which α = 90◦ and the
electric (magnetic) field is parallel to the x axis (yz plane).
This classification, however, does not apply to general α. As α

increases from 0◦ to 90◦, dispersion curves move from ω > ωT

to ω < ωT and the lowest dispersion curve becomes especially
distant from the light line.

For long-distance light propagation with clear Fabry-Perot
interference as observed in experiments,8 a frequency region
of single-mode propagation is necessary. By this condition,
we can restrict the range of possible α. For example, there
is no such frequency region in Fig. 2(a), so the possibility
of α = 0◦ can be eliminated. In each of the remaining three
cases, there is a single-mode range in the low frequency
region. In addition, there is an interesting feature for the
second lowest branch in panels (b) and (c), which results
in an effectively wider single-mode frequency range. In the
experimental study of Takazawa, optical transmittance was
measured with fluorescence of thiacyanine molecules in the
specimens as a light source. So, its electric field is polarized in
the xz plane. On the other hand, we found that the dominant
component of the electric field of the second lowest branch is
perpendicular to the xz plane. Therefore, the coupling between
them is small and clear single-mode Fabry-Perot interference
by the lowest mode is expected even in the frequency range
of the second lowest mode. Such a single-mode propagation
range is h̄ω < 2.82 eV for α = 30◦ and h̄ω < 2.72 eV for
α = 60◦.

In order to verify the above discussion, we calculated
the Fabry-Perot peaks for α = 30◦ and 60◦ in films with a
propagation length of 5 μm by the FDTD method (Sec. II C).
In Fig. 1(a), space and time were discretized such that 
y/a =
1/20, 
z/a = 1/60, and c
t/a = 1/120, respectively, where
a = 500 nm. Since we have to deal with large kz and the
wavelength in the z direction becomes very short, we had to
take a finer mesh in the z direction than in the y direction for
accurate calculation.

The entire computational domain was −3.5 � y � 1.5 μm
and |z| � 3.5 μm. The region of |y| � 75 nm and |z| � 2.5 μm
was occupied by the film, and the region of y < −75 nm was
occupied by the glass substrate. We excited the left edge of the

(a)

(b)

FIG. 3. Transmission spectra of the thiacyanine film for (a)
α = 30◦ and (b) 60◦.

film by a Gaussian-pulse electric field Ein(t) polarized parallel
to d0 with a center frequency h̄ω of 2.5 eV and a full width
at half maximum of 0.3 eV. The output electric field Eout(t)
was evaluated by an average on the right edge of the film:
Eout(t) ≡ 1/h

∫ h/2
−h/2 dyE(y,t).

Figure 3 shows transmission spectra thus calculated for
α = 30◦ and 60◦, where Fabry-Perot interference peaks are
observed. The transmission intensity was scaled with the
fluorescence intensity of thiacyanine specimens, which is
shown in Fig. 4, to easily compare with experimental ob-
servations. Figure 4 shows experimental results of absorption
and fluorescence spectra of the thiacyanine nanofiber (solid
line) and monomer (dashed line) in aqueous solution.5 The
inset is the structural formula of thiacyanine. There are two
peaks in the absorption spectrum of thiacyanine nanofibers in
aqueous solution at approximately 3.1 and 2.95 eV, the latter of
which is the same as the monomer solution. In the specimen
of the nanofibers in water, there also existed uncrystallized
monomers. So, the absorption peak at 2.95 eV was attributed
to the monomer absorption. Then, the absorption peak of the
nanofiber is blue shifted by 0.15 eV, which is characteristic of H
aggregates.22 The Stokes shift is large,24 so there is only a small
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FIG. 4. (Color online) Absorption and fluorescence spectra of
thiacyanine fiber (solid line) and monomer (dashed line) in aqueous
solution. The inset is the structural formula of thiacyanine. Experi-
mental data were provided by Takazawa.5

overlap between the absorption and emission spectra. Details
of the fabrication of the nanofibers can be found in Refs. 5,6.
In Fig. 3, transmission intensity for h̄ω < 2.6 eV is shown,
since the fluorescence emission is free from reabsorption in
this range. As is found in Fig. 2(c), there is the second lowest
mode for h̄ω > 2.5 eV for α = 60◦. But we still can observe
clear monotonic interference peaks between 2.5 and 2.6 eV
due to the small coupling between the second lowest mode
and the fluorescence emission as mentioned previously. The
finesse of the Fabry-Perot interference is larger for α = 60◦
than α = 30◦, which originates from a larger group refractive
index ng for the former.

We can evaluate ng by two methods. Since ng ≡ c/vg ≡
c(∂ω/∂kz)−1, where vg denotes the group velocity in the
z direction, we can directly obtain ng from the dispersion
curve calculated by the PWE method. On the other hand, it
can also be evaluated from the spacing between interference
peaks as follows. When we denote the length of the specimen
by L, the condition for achieving peaks in the interference
pattern is given by kz × 2L = 2πm, where m is an integer.
So, when we denote the frequencies of two successive peaks
by ωm and ωm+1, then ωm+1 − ωm ≈ (∂ω/∂kz)
kz = πvg/L.
Therefore, ng ≈ πc/[L(ωm+1 − ωm)]. The results are shown
in Fig. 5, where a good agreement between the two independent
calculations is found. This gives evidence of the accuracy of
our calculations.

In Fig. 6, we show the distribution of the electric-field
amplitude |E(y,z)|, induced by a continuous excitation with an
x-polarized electric field at h̄ω = 2.5925 eV, which is one of
the peak frequencies observed in Fig. 3(b), on the left edge of
the film. For α = 0◦, the emitted light leaks into the substrate
and air regions and does not propagate in the film, since there
is no dispersion curve for h̄ω < 2.85 eV in Fig. 2(a). For
α = 30◦ and 60◦, on the other hand, it can propagate in the film
with nodes and antinodes of standing waves. The electric-field
amplitude in the film is larger for α = 60◦ than α = 30◦, which
is caused by the confinement of the electromagnetic energy due
to the Fabry-Perot resonance. The larger amplitude is also a
consequence of the compression of the electromagnetic energy
density due to the small group velocity, which is equal to the
energy velocity, for the case of α = 60◦.

FIG. 5. Group refractive indices of the thiacyanine film calculated
by the PWE (solid line) and FDTD (solid circle) methods for α = 30◦

and 60◦.

C. Numerical results for nanofibers

For the PWE calculation of dispersion curves of nanofibers,
we took Lx = Ly = 2.0 μm and NG = 332 and we placed
the thiacyanine fiber in the center of the supercell. Figure 7
shows the result of calculations for α = 30◦ and 60◦. There
are multiple branches below the light line as thiacyanine films.
The second lowest mode is inactive to fluorescence emission
as before. We also confirmed that there was no mode below
ωT for α = 0◦. That is the reason why in ideal J aggregates
(Sec. I) effective propagation of fluorescence has never been
reported.

Figure 8 shows the group refractive index of nanofibers
obtained from the dispersion relation, but we did not evaluate

(a)

(b)

(c)

FIG. 6. (Color online) Electric-field distribution |E(y,z)| of light
propagation in the thiacyanine film on the glass substrate for
(a) α = 0◦, (b) 30◦, and (c) 60◦.
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(a)

(b)

FIG. 7. Dispersion curves of the thiacyanine nanofiber for
(a) α = 30◦ and (b) 60◦.

it by the FDTD method for this case, since it required
a three-dimensional and time-consuming calculation. It is
remarkable that the group index exceeds 12 even in the
transparent frequency range below 2.6 eV for α = 60◦.

FIG. 8. Group refractive index of the nanofibers calculated by the
PWE method.

Det.
Exc.

Exc.

Det.

-30
o

60
o

FIG. 9. (Color online) The dependence of the fluorescence
intensity of the thiacyanine nanofiber on the polarization angle of
the excitation light source. The direction of the polarizer, which is
also the direction of the analyzer, is shown by a pair of arrows.
Experimental data were provided by Takazawa.25

D. Comparison with experimental results

In this section, we show that our theoretical calculation
can successfully explain the experimental results by properly
choosing material parameters.

The tilt angle of the transition dipole moment of thiacyanine
molecules in the nanofiber can be evaluated experimentally
by observing the excitation polarization dependence of the
fluorescence intensity, which is shown in Fig. 9.25 The
specimen was irradiated by a polarized light from a Hg lamp
in the absorption band shown in Fig. 4. The polarization-angle
dependence clearly shows a sinusoidal variation and it takes a
maximum approximately at 60◦. So, we assume that α = 60◦
hereafter.

To examine ωT and ωL, we compared the reflection
spectrum obtained by our calculation with that observed
by Takazawa.8 In the experimental study, he placed about
50 nanofibers on a glass substrate with random orientation
and measured their reflection spectrum, which is shown in
Fig. 10(a). There are two broad peaks around 3.1 and 2.5 eV.
The former is close to the absorption peaks in Fig. 4, and
the latter is close to the emission peak. The former peak can
naturally be attributed to the polariton gap between ωT and
ωL where the relevant component of the dielectric tensor is
negative, while the latter peak originated from a limitation
of the measurement facility that placed a monochromator
between the specimen and the detector, so the fluorescence
emission excited by shorter wavelength components of the
input white light was observed as reflection.8 Then, we
calculated reflection spectra by assuming several combinations
of ωT and ωL to reproduce the reflection peak around 3.1
eV. Because of the random orientation of the nanofibers, we
used Eq. (7) for the dielectric tensor. The specular reflectance
was calculated by assuming an unpolarized plane-wave input
from the positive y direction in Fig. 1(a). A strong reflection
is expected in the polariton gap between ωT and ωL. An
optimized spectrum thus calculated is shown in Fig. 10(b),
where h̄ωT and h̄ωL were assumed to be 2.85 and 3.2 eV,
respectively. As will be described in the next paragraph,
this choice of ωT and ωL can well reproduce the group
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(a)

(b)

Theory

Experiment

FIG. 10. (a) Experimental and (b) theoretical results of the
reflectance of the thiacyanine nanofibers. To reproduce the reflection
peak around 3.1 eV, h̄ωT and h̄ωL were assumed to be 2.85 and 3.2 eV,
respectively. Experimental data were provided by Takazawa.8

refractive index found in Takazawa’s experiment. Exciton
polaritons in thiacyanine films and fibers are stable at room
temperature, since their LT splitting is as large as 350 meV,
which is approximately 12 times larger than the thermal energy
(30 meV).

Figure 11 shows calculated and observed group indices,
where the solid line is the same as Fig. 8 for α = 60◦,
and solid circles represent those values obtained from the
Fabry-Perot interference peaks observed for nanofibers with
various lengths. The interference peaks were measured with
the fluorescence of thiacyanine molecules excited by a fo-
cused laser beam as a light source, so their measurement
frequency range was limited by the fluorescence band, which
is approximately from 2.2 to 2.7 eV as shown in Fig. 4. The
measurement range was also limited by the absorption loss of
the nanofiber, which was considerably large for h̄ω > 2.55 eV.
So, the data are shown for 2.2 to 2.6 eV. Figure 11 shows a
good agreement between the experimental observation and
the theoretical calculation assuming h̄ωT = 2.85 eV and
h̄ωL = 3.2 eV.

FIG. 11. (Color online) Theoretical (solid line) and experimental
(solid circles) results of group refractive indices. The measurement
was done for nanofibers with four different lengths. Experimental
data were provided by Takazawa.8

Let us make one remark here. In Ref. 8, the interference
pattern was analyzed not with the group refractive index
but with the phase refractive index given by ckz/ω, which
led to an overestimation of the LT splitting. Moreover, h̄ωL

was estimated at 3.64 eV from a minimum of the reflection
spectrum. This energy is apparently higher than the upper
edge of the broad reflection peak, which is expected to be
close to h̄ωL from the calculation of the reflectance given in
this paper.

In actual thiacyanine nanofiber specimens, h and w ranged
from 100 to 200 nm and from 400 to 600 nm, respectively. So,
we calculated dispersion curves assuming 
h = ±50 nm for
w = 500 nm and 
w = ±100 nm for h = 150 nm. We found
that the lowest dispersion curve shifted by 
kz ≈ 106 m−1

to the right (left) with increasing (decreasing) cross section,
w × h, in Fig. 7(b). However, the slope of the dispersion curve
did not change appreciably, which can explain the relatively
narrow distribution of ng among four different specimens in
Fig. 11.

In Ref. 26, Bragg gratings were introduced to thiacyanine
nanofibers along the fiber axis by direct electron-beam writing.
Then, a stop band with relatively high reflectivity was observed
in each specimen, whose frequency was dependent on the
period of the grating, �. Because the stop band was created by
coherent multiple scattering, there is the following relation
between � and the wave number of the first-order stop
band: kz ≈ π/�. If we assume that the modification of the
refractive index due to the grating is not so large, the frequency
of the stop band is approximately given by the frequency
of the dispersion curve at kz = π/�. It was reported in
Ref. 26 that the wavelength of the stop band was 560 nm
(h̄ω = 2.21 eV) for � = 160 nm (kz = 1.96 × 107 m−1).
These values are very close to the lowest dispersion curve in
Fig. 7(b), which gives another evidence of the accuracy of our
calculation.

Finally, we point out the differences in exciton polaritons
between organic-dye nanofibers and inorganic semiconductor
nanowires. In ZnO nanowires,16,17 clear Fabry-Perot peaks
resulting from exciton polaritons can also be observed at room
temperature. However, since original contrasts of refractive
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indices of these semiconductors nanowires and substrates are
large, light is confined even without effects of exciton polari-
tons. In other words, strong light confinement results not only
from exciton polaritons but also from the total internal reflec-
tion due to large contrasts of refractive indices. In organic-dye
nanofibers, on the other hand, strong light confinement results
only from exciton polaritons, since in this paper refractive
indices of organic-dye nanofibers and substrates are assumed
to be the same (ε∞ = εSiO2 = 2.34). It is surprising that
group refractive indices of organic-dye nanofibers nevertheless
exceed 12.

IV. CONCLUSIONS

To analyze the exciton-polariton dispersion relation of
highly anisotropic thiacyanine films and nanofibers, we
formulated a PWE method with the supercell technique
that can calculate the eigenfrequencies as eigenvalues of a
non-Hermitian matrix whose elements do not depend on
frequency. We also analyzed the wave propagation in the
film by the FDTD method. The group refractive index
obtained from the slope of the dispersion curve agreed quite
well with that obtained from the spacing of Fabry-Perot
interference peaks in the transmission spectra. This agreement
of the two independent calculations gives evidence of the
accuracy of our calculation. In addition, we compared the
reflection spectrum calculated for a thiacyanine film with
an observed spectrum to estimate the transverse (ωT ) and
longitudinal (ωL) exciton frequencies at 2.85 and 3.2 eV,
respectively.

We found that exciton polaritons of the Frenkel type
in anisotropic films and fibers were quite different from
isotropic ones. The number of polariton branches was infinite
in the former due to the presence of diagonal elements with
opposite signs in the anisotropic dielectric tensor. Moreover,
the polariton dispersion relation strongly depended on the
tilt angle α of the optical transition dipole moment of
the constituent molecules to the propagation direction. By
assuming α = 60◦, we could reproduce quite well the group
refractive index observed for thiacyanine nanofibers with
various lengths. This value of the tilt angle was consistent with
the experimental observation of the excitation-polarization
dependence of the fluorescence intensity of the nanofibers.
We also found that the effective single-mode frequency range
was widened by the small coupling between the second lowest
polariton branch and the electromagnetic field excited by the
fluorescence of thiacyanine molecules, which resulted in the
clear observation of a group index larger than 12 in a high
frequency range close to ωT .
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APPENDIX A: DERIVATION OF EQ. (16)

Substituting Eqs. (10), (11), (14), and (15) into
Eqs. (12) and (13) yields the following matrix

equations:

−
∑
G′,λ

η−1
G−G′(k + G) × [

(k + G) × e(λ)
k+G′

]
D

(λ)
nk (G′)

+
∑
G′

η−1
G−G′(k + G) × [(k + G) × n]Pnk(G′)

= ω2
nk

c2

2∑
λ=1

D
(λ)
nk (G)e(λ)

k+G, (A1)

−2
∑
G′,λ

ζG−G′n · e(λ)
k+G′D

(λ)
nk (G′) + ω2

T

c2
Pnk(G)

+ 2
∑
G′

ζG−G′Pnk(G′) = ω2
nk

c2
Pnk(G), (A2)

where

ζG−G′ =
∑
G′′

ξG−G′′η−1
G′′−G′ (A3)

and η−1
G−G′ is the (G,G′) element of the inverse of an NG-

dimensional matrix whose (G,G′) element is ηG−G′ . Taking
the inner product of e(1),(2)

k+G and Eq. (A1), we obtain

∑
G′

M(k)
DD(G,G′)

[
D

(1)
nk (G′)

D
(2)
nk (G′)

]

+
∑
G′

M(k)
DP (G,G′)Pnk(G′) = ω2

nk

c2

[
D

(1)
nk (G)

D
(2)
nk (G)

]
, (A4)

∑
G′

M(k)
PD(G,G′)

[
D

(1)
nk (G′)

D
(2)
nk (G′)

]

+
∑
G′

M(k)
PP (G,G′)Pnk(G′) = ω2

nk

c2
Pnk(G). (A5)

In Eqs. (A4) and (A5),

M(k)
DD(G,G′)

= η−1
G−G′ |k + G|2

[
e(1)

k+G · e(1)
k+G′ e(1)

k+G · e(2)
k+G′

e(2)
k+G · e(1)

k+G′ e(2)
k+G · e(2)

k+G′

]
, (A6)

M(k)
DP (G,G′) = −η−1

G−G′ |k + G|2
[

n · e(1)
k+G

n · e(2)
k+G

]
, (A7)

M(k)
PD(G,G′) = −2ζG−G′

[
n · e(1)

k+G′ n · e(2)
k+G′

]
, (A8)

M(k)
PP (G,G′) = ω2

T

c2
δG,G′ + 2ζG−G′ , (A9)

where δG,G′ is Kronecker’s delta and M(k)
ij (G,G′) (i,j = D,P )

is the (G,G’) element of the coefficient matrix M(k)
ij in Eq. (16).

APPENDIX B: NUMBER OF DISPERSION CURVES

We examine the number of dispersion curves that should
appear in Fig. 2. Let us consider the simplest case here, that
is, Fig. 2(a), for which α = 0◦ and the polariton modes are
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all transverse magnetic. So, the magnetic field only has the x

component, which we denote by Hx . It satisfies the following
wave equation in the film (|y| � h/2):

− 1

εzz(ω)

∂2Hx(y,z)

∂y2
− 1

εyy(ω)

∂2Hx(y,z)

∂z2
= ω2

c2
Hx(y,z).

(B1)

Because the dielectric tensor is uniform in the film, Hx

should be proportional to exp{i(kyy + kzz)}. (Note that ky can
be imaginary.) Substituting Hx into Eq. (B1), we obtain

k2
y = εzz(ω)

[
ω2

c2
− k2

z

εyy(ω)

]
. (B2)

According to the sign of k2
y , there are two cases:

Hx(y,z) =
{

eikzz[A sin(kyy) + B cos(kyy)]
(
k2
y > 0

)
eikzz[Ae|ky |y + Be−|ky |y]

(
k2
y < 0

) ,

(B3)

where two coefficients, A and B, are determined by the
boundary conditions at y = ±h/2.

For isotropic exciton polaritons, εxx(ω) = εyy(ω) =
εzz(ω) < 0 for ωT < ω < ωL. So, in this frequency range
where there are surface modes, k2

y = εzz(ω2/c2) − k2
z < 0.

Therefore, the y dependence of Hx is exponential with a real
argument, which corresponds to conventional coupled surface
polaritons.

For the anisotropic dielectric tensor given by Eq. (6), on the
other hand, εxx(ω) = εyy(ω) = ε∞ and εzz(ω) = ε∞(2ω2

L −
ω2

T − ω2)/(ω2
T − ω2). Because ω2/c2 < k2

z /ε∞ below the
light line,

k2
y = εzz(ω)

[
(ω2/c2) − (

k2
z

/
ε∞

)]
> 0 (B4)

for εzz(ω) < 0. Then, ky is real and the y dependence of Hx is
sinusoidal in the film. For a given kz, k2

y diverges to positive
infinity when ω approaches ωT from the positive side, since εzz

diverges to negative infinity. So, there are an infinite number of
modes, each of which is characterized by a different number
of nodes.
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