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Vacuum-induced coherence in quantum dot systems
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We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor
quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one
dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors
characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the
single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as
well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by
an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the
trapping effect even in a structure with technologically realistic energy splitting of the order of milli–electron
volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects
are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence
effect and the associated long-living trapped excitonic population can be achieved in quantum dots.
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I. INTRODUCTION

Pairs of closely stacked quantum dots (QDs) coupled via
interband dipole moments1,2 (double quantum dots; DQDs)
or by tunneling resulting from carrier wave function over-
lap and Coulomb correlations3–6 (quantum dot molecules;
QDMs) attract much attention due to the richness of their
physical properties, which show huge technological promise
for nanoelectronics, spintronics, and quantum information
processing applications. The unique features of these systems,
compared to individual QDs, can be used as the basis for
long-time storage of quantum information7 and conditional
optical control of carrier states8 which pave the way to
the implementation of a two-qubit quantum gate.9 Double-
dot structures also enable coherent optical spin control and
entangling10–12 or may act as sources of entangled photons.13

It has been shown that the exciton spectrum of a QDM can be
used to define an excitonic qubit with an extended lifetime,14

that information can be written on the spin state of the dopant
Mn ion located in one of the dots forming a DQD,15 and
that a photon emitted by a nearby quantum point contact may
induce carrier transfer in a DQD system.16 The richness and
complexity of the physical properties of these systems have
been manifested in many optical experiments.17–19

The spacing between the dots forming intentionally man-
ufactured DQDs and QDMs is typically of the order of
nanometers, which is two to three orders of magnitude smaller
than the wavelength of a resonantly coupled photon. Under
such conditions, in atomic samples the effect of super-radiant
emission is observed.20 A similar effect of coupling to
common radiative modes also appears in the emission from
QD systems. Here also super-radiance-like phenomena occur
in the evolution of exciton occupation and polarization.21–24

Apart from the modified evolution for spontaneous emission,
collective coupling to the radiation field can lead to other
physical effects, one of which is vacuum-induced coherence
(VIC).25 This effect consists of spontaneous, partial coherent
excitation transfer from an initially occupied QD to an initially
empty one which results in exciton occupation trapping
in a decoherence-resistant state. Like the super-radiance

phenomena, the VIC effect can be expected to occur also in
QD systems.

On the other hand, although natural atoms and QDs have
many properties in common, the characteristic feature of
the latter is the inhomogeneity of transition energy, which,
for technologically realistic structures, is of the order of
milli–electron volts. Moreover, small spatial separation of
the dots leads to coupling between them.26 In our previous
works we studied the impact of the transition energy mismatch
and the coupling between the two emitters on the stability
of collective effects27,28 and their role in the linear29 and
nonlinear optical response of QDMs and DQD systems.30 We
showed that, in the absence of coupling between the QDs,
the appearance of an optically inactive subradiant state and a
rapidly decaying super-radiant one are extremely sensitive to
the fundamental transition energy mismatch and, already for a
mismatch of the order of micro–electron volts, the collective
character of the evolution is replaced by oscillation around
the average exponential decay. The destructive effect of the
system inhomogeneity may be, to some extent, overcome by
sufficiently strong coupling between the dots which rebuilds
collective behavior even in structures with technologically
realistic values of energy mismatch.22,28 We have also pointed
out that phonon-induced dynamics can slow down the decay
of a super-radiant state or speed up the emission from a
super-radiant one.31 Based on these previous investigations
of super-radiance phenomena in QDs, one can expect that
the VIC effect should, in principle, also be observable in
these systems, at least in the presence of sufficiently strong
coupling.27 However, to our knowledge, its stability against
various inhomogeneities and perturbations typical of the
solid-state environment (in particular, a nonparallel orientation
of the interband dipoles in the two dots as well as phonon
perturbations) have not been studied.

In this paper, we study the necessary conditions for the
VIC effect to appear in a system of two vertically stacked
semiconductor QDs. We investigate the role of the fundamental
transition energy mismatch, coupling between the dots, and
phonon-induced kinetics in this process. We also pay particular
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attention to the difference in the magnitudes of the interband
dipole moments as well as to their nonparallel alignment
(due to sub-band mixing). We show that in spite of all these
inhomogeneities that are typical of QD structures (as opposed
to natural atoms), VIC can be almost fully stabilized in realistic
pairs of nonidentical QDs in a certain range of parameters. In
particular, different interband dipole moments for the two dots
lead to the appearance of a state which is perfectly immune to
radiative decay for a particular choice of system parameters.

The paper is organized as follows. In Sec. II, we describe the
system under investigation and define its model. In Sec. III, the
method for describing the evolution is described. Section IV
contains a discussion of the results. Concluding remarks are
contained in Sec. V.

II. THE SYSTEM

The investigated system is composed of two vertically
stacked semiconductor QDs interacting with a quantum
electromagnetic field and lattice vibrations. We restrict the dis-
cussion to ground-level transitions with fixed polarization and
spin orientations. We take into consideration only “spatially
direct”states in which electron-hole pairs reside in the same
QD. Due to the strong Coulomb coupling these states have a
much lower energy than “dissociated” states (external electric
fields which would change this picture6,32 are not considered
in our discussion). In this manner, the DQD or QDM may
be described as a four-level system, with state |00〉 denoting
empty dots, states |10〉 and |01〉 representing single-exciton
states with electron-hole pairs residing in the lower or higher
QD, and state |11〉 corresponding to the biexciton state, that
is, to both QDs being occupied by an exciton.

As it is currently impossible to produce on demand pairs
of QDs with identical fundamental transition energies, we
assume that the exciton transition energies for the two dots
are different,

E1 = E + � and E2 = E − �,

where E is the average transition energy and � is the energy
mismatch.

As in Ref. 29, we describe the evolution in the “rotating
basis” defined by the unitary transformation

U = e−i[E(|10〉〈10|+|01〉〈01|+2|11〉〈11|)+Hrad+Hph]t/h̄,

where Hrad and Hph are the standard free photon and phonon
Hamiltonians, respectively. The Hamiltonian of the system is
then

H = HDQD + HDQD−ph + HDQD−rad. (1)

The first term describes exciton states in a DQD structure,

HDQD = �
(|10〉〈10| − |01〉〈01|) + VB|11〉〈11|

+V
(|10〉〈01| + |01〉〈10|), (2)

where VB is a biexciton shift due to the interaction of static
dipole moments and V is the amplitude of the coupling
between the single-exciton states of the dots.

The QDs are separated by a distance of the order of a
few nanometers, which is much smaller than the relevant
wavelength of the electromagnetic field with which the dots
interact. This allows us to neglect the spatial dependence

of the electromagnetic field and describe the coupling of
excitons to the photon modes in the Dicke limit.20 The relevant
Hamiltonian in the dipole and rotating-wave approximations
is then

HDQD−rad =
2∑

α=1

∑
kλ

σ α
−gα

kλe
−i( E

h̄
−ωk)t b

†
k,λ + H.c.,

where σα
+ = (σα

−)† are the creation and annihilation operators

for the exciton in the αth QD, b†k is the creation operator of the
photon mode with the wave vector k, and

gα
kλ = idα· êλ(k)

√
h̄ωk

2ε0εrv

is a coupling constant for the αth QD, where dα is the interband
dipole moment for the αth QD, êλ(k) is the unit polarization
vector of the photon mode with polarization λ, ωk is the
corresponding frequency, ε0 is the vacuum dielectric constant,
εr is the relative dielectric constant of the semiconductor, and
v is the normalization volume. We investigate only wide-gap
semiconductors with fundamental transition energies of the
order of 1 eV for which the zero-temperature approximation
for electromagnetic modes may be used at any reasonable
temperature.

Interaction of the carriers confined in the two dots with
phonon modes is modeled by the Hamiltonian

HDQD−ph =
∑

α=1,2

σα
+σα

−
∑

q

f (α)
q (cq + c

†
−q),

where c
†
q and cq are the creation and annihilation operators of

the phonon mode with the wave vector q and f
(1,2)
q are the

system reservoir coupling constants for the first and second
QD, respectively. We model the electron and hole wave
functions by identical Gaussians with extensions l in the xy

plane and lz along the growth direction,

�(r) ∼ exp

(
−1

2

x2 + y2

l2
− 1

2

z2

l2
z

)
.

For such wave functions and for the deformation potential
couplings between the confined carriers and longitudinal
phonon modes, the coupling constants have the form31

f (1,2)
q = fq exp

[
± iqzD

2

]
,

where D is the distance between the dots and

fq = (σe − σh)

√
h̄q

2ρvcl
exp

[
− l2

z q
2
z + l2q2

⊥
4

]
.

Here σe/h are deformation potential constants for elec-
trons/holes, ρ is the crystal density, cl is the speed of
longitudinal sound (linear phonon dispersion is assumed), and
q⊥,z are momentum components in the xy plane and along the
z axis.

III. THE EVOLUTION

Analytical formulas describing the evolution of a pair of
QDs are available for uncoupled systems (V = 0) interacting
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only with phonon modes33 and, in the Markov limit, if
only radiative decay is included.28 In this paper we use the
previously proposed method,34 which allows us to deal with
the simultaneous action of both the phonon and the photon
surroundings. Our approach is based on the equation of motion
for the reduced density matrix of the carrier subsystem in the
interaction picture,

ρ̇ = Lrad[ρ] + Lph[ρ]. (3)

Here the first term accounts for the effects induced by the
radiative environment, which is described in the Markov limit
by the Lindblad dissipator,

Lrad[ρ] =
2∑

αβ=1

�αβ

[
σα

−(t)ρσ
β
+(t) − 1

2
{σβ

+(t)σα
−(t),ρ}

]
, (4)

where

σα
−(t) = [

σα
+(t)

]† = exp

[
iHDQDt

h̄

]
σα

− exp

[
− iHDQDt

h̄

]
and

�αβ = �∗
βα = E3

3πε0εrh̄
4 dα · d∗

β. (5)

If we assume that the spontaneous decay rates for the two QDs
are �11 and �22, then it follows directly from Eq. (5) that

�12 = �∗
21 =

√
�11�22 d̂1 · d̂

∗
2,

where d̂α = dα/dα . By redefining the relative phase of the
exciton states in the two dots, one can assume without any loss
of generality that �12 and �21 are real.

The second term in Eq. (3) accounts for the effects due to
interaction with the phonon surroundings, allowing for non-
Markovian dynamics. To describe these effects we use the
time-convolutionless equation

Lph[ρ] = −
∫ t

0
dτTrph[HDQD−ph(t),[HDQD−ph(τ ),ρ(t) ⊗ ρph]],

where

HDQD−ph(t) = exp

[
iHDQDt

h̄

]
HDQD−ph exp

[
− iHDQDt

h̄

]
,

ρph is the phonon density matrix at thermal equilibrium, and
Trph denotes the partial trace with respect to the phonon degrees
of freedom. The parameters used in the numerical simulations
correspond to self-assembled QDs and are listed in Table I.

IV. RESULTS AND DISCUSSION

Below, we present our results of simulations of the VIC
process in pairs of QDs. In all the analyzed cases, we assume
that the system is prepared initially in a localized state |10〉.
In Sec. IV A we explain the effect in a system of identical,
uncoupled dots. Then, in Sec. IV B, we analyze the role of the
relative magnitude and orientation of the dipole moments and,
in Sec. IV C, the effect of the energy mismatch and coupling
between the dots. In Sec. IV D we analyze the interplay of all
the parameters that distiguish QDs from natural atoms in the
evolution of QDs interacting only with the radiation reservoir.
The phonon impact on VIC is discussed in Sec. IV E.

TABLE I. Parameters used in numerical simulations. The values
correspond to a self-assembled InAs/GaAs system.

Parameter Symbol Value

Difference of deformation potential
constants for electrons vs holes σe − σh 9 meV

Crystal density � 5350 kg/m3

Speed of longitudinal sound cl 5150 m/s
Carrier localization extensions

in the xy plane l 4.5 nm
Carrier localization extensions

in the growth direction lz 1 nm
Spatial separation of the dots D 8 nm

A. Identical QDs

Collective coupling of two identical QDs (systems with
identical fundamental transition energies and parallel dipole
moments of equal magnitudes) to the quantum electromagnetic
vacuum leads to the appearance of a short-living (bright)
super-radiant state, |+〉 = (|10〉 + |01〉)/√2, and an optically
inactive (dark) subradiant state, |−〉 = (|10〉 − |01〉)/√2. The
initial state of the analyzed system is a localized single-exciton
state (|10〉 or |01〉) which can appear naturally, e.g., as an effect
of incoherent trapping or controlled tunnel injection of carriers
in an injection structure similar to that studied in Ref. 35.
Such a state of a system of two identical and uncoupled QDs
may be expressed as an equal combination of the sub- and
super-radiant states, |−〉 and |+〉:

|10〉 = 1√
2

(|+〉 + |−〉) , |01〉 = 1√
2

(|+〉 − |−〉) . (6)

Coupling to the electromagnetic reservoir induces emission
from the bright state and, consequently, the decay of half
of the initial excitation, while the other half is unaffected
(trapped) due to the stability of the subradiant state for a system
of two identical two-level systems.28 This is observed as a
spontaneous and coherent excitation transfer from the initially
occupied dot to the initially empty one until occupation of
both QDs stabilizes at the same level [Fig. 1(a)]. While this
process is taking place, coherence builds up spontaneously in
the system [Fig. 1(b)]. As a consequence, the pair of identical
QDs is trapped in a delocalized and decoherence-resistant state
with the exciton occupation number equal to 0.5 and the real
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FIG. 1. (Color online) Vacuum-induced coherence in a system
of two identical (� = 0, �11 = �22 = 1 ns−1) two-level systems.
(a) Exciton occupation of the system and occupations of states |10〉
(n10) and |01〉 (n01). (b) The off-diagonal density matrix element
ρ01,10.
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FIG. 2. (Color online) (a) Exciton occupation for a pair of
decoupled (V = 0) QDs with identical transition energies (� = 0)
but with nonidentical values of the spontaneous recombination rates
(�11 	= �22). (b–d) The total exciton occupation [solid (red) line] and
the occupations of the individual dots [dashed (green) and dotted
(blue) lines] for the three cases shown in (a). The value of �11 = 1
ns−1 is the same for all the graphs.

off-diagonal matrix element equal to −0.25. This effect is
referred to as VIC.

B. The role of dipole moments

Vertically stacked semiconductor QDs differ slightly in
size and shape. If the system was formed in a self-assembled
two-layer process, then the upper QD is usually bigger than
the lower one.36 The geometry and the structure of the QDs
are reflected in the carrier wave functions and thus in the
interband dipole moments. According to Eq. (5), this leads to
different spontaneous decay rates for the two QDs forming the
investigated system. The dipoles corresponding to the upper
and lower QD may differ in amplitude and, if the hole states
in the two structures have different light-hole admixtures, also
in orientation (see the Appendix).

The equation of motion describing the evolution of a system
of two energetically identical (� = 0) and uncoupled (V = 0)
QDs interacting only with the radiation reservoir is described
by Eq. (3), with Lph = 0 and Lrad given by Eq. (4) with
σα

±(t) = σα
±. It is known that in three-level open systems

of this kind, nonradiating superposition states occur under
certain conditions.37–40 In our case, a nontrivial (different
from the ground state |00〉〈00|) stationary solution to the open
system evolution equation, corresponding to the spontaneously
formed, stable, delocalized dark state discussed above, exists
only for �12 = √

�11�22, i.e., for parallel dipole moments
[Eq. (5)] (such that d̂1 = d̂2 up to a phase factor). For dipoles
that are parallel but have different amplitudes, the evolution
is similar to the case of identical systems, i.e., coupling to
photon surrounding leads to excitation transfer and occupation
trapping. As can be seen in Fig. 2, the fraction of trapped
exciton occupation depends on the values of the single-dot
decay rates and stabilizes at the level �11/(�11 + �22).
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FIG. 3. (Color online) Exciton occupation of a pair of uncoupled
(V = 0) QDs with identical transition energies (� = 0) and different
spontaneous recombination rates (�11 	= �22) for a few values of the
angle θ between the dipole moments. The values of �11 and �22

shown in (a) are valid for (b) also.

As in the case of identical QDs, the suppression of the
exciton decay is due to the existence of a dark state which, for
�11 	= �22, is not strictly antisymmetric,

|dark〉 =
√

�11|10〉 − √
�22|01〉√

�11 + �22
. (7)

Due to unequal contributions from the localized single-exciton
states to the dark state, (7), the final occupation of the dots is
nonsymmetric also and equals

n10 =
(

�11

�11 + �22

)2

and n01 = �11�22

(�11 + �22)2 ,

respectively. Different dipole moments allow one to achieve
different final situations. In the trapped state, the occupation
of the initially excited dot may be lower [Figs. 2(b) and 2(c)]
or higher [Fig. 2(d)] than that of the initially empty dot.

Another factor that influences the interband dipole moments
is the light-hole admixture. If this admixture is different for
the two dots, then the dipole moments corresponding to the
QDs forming the QDM or DQD become nonparallel (see the
Appendix). This means that the off-diagonal decay rate �12 =√

�11�22(1 − θ2/2) 	= √
�11�22, where θ is the angle between

the interband dipole moments of the two dots [see Eq. (A2)].
Consequently, the stationary solution to Eq. (4) does not exist
and quenching of the final exciton occupation is observed. The
values of θ are determined by the light-hole admixture and
typically are of the order of 0.01.41 However, as can be seen
in Fig. 3, even for much larger values of the angle between
the dipoles, quenching of the occupation is weak. Although
the system loses its coherence at long times, the character
of the evolution remains the same as in the case of parallel
dipoles on time scales much longer than the nominal exciton
lifetime, i.e., initially excitation transfer between the dots takes
place until the occupation rate n10/n01 close to that defined by
the decay rates �11 and �22 is reached, and then the impact of
hole–sub-band mixing is manifested as a slow and equal decay
of occupations [Fig. 3(b)].

C. The role of the energy mismatch and coupling
between the dots

In spite of rapid technological progress, manufacturing of
DQDs or QDMs with identical fundamental transition energies
is still not feasible. As can be seen in Fig. 4(a), for the realistic
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FIG. 4. (Color online) (a) Impact of the energy mismatch on exci-
ton occupation of a pair of uncoupled QDs. (b) Exciton occupation of
a technologically realistic QDM for a few values of coupling between
the emitters (�11 = �22 = 1 ns−1).

case of nonzero energy mismatch, the effect of trapping the
system in an occupied and optically inactive state is destroyed.
Already for energy splitting of the order of tens of micro–
electron volts, quenching of the final occupation is observed
(the relevant energy scale is the transition energy line width
h̄� = 1.7 μeV). QDs constituting such an inhomogeneous
double-dot system interact with disjoint energy ranges of the
electromagnetic field, which destroys the collective character
of coupling to photon modes. The energy mismatch of the dots
slows the decay of the super-radiant state and induces emission
from the subradiant one.28 Due to the lack of a stable exciton
state in which the system might be trapped, the VIC effect in
inhomogeneous QDMs is destroyed.

Initially, the character of the evolution of an exciton
occupation of inhomogeneous pairs of QDs does not differ
considerably from the corresponding case of a pair of iden-
tical dots. Until t ∼ h̄/(2�), the coupling to photon modes
maintains its collective character and excitation transfer from
the initially occupied QD to the initially empty one takes place.
Later, due to the emission from the subradiant as well as from
the super-radiant state, occupations of both dots decay.27

If the distance between the QDs is sufficiently small,
coupling between the systems (Förster or tunneling) becomes
effective and affects the evolution of carriers confined in the
structure. Since sub- and super-radiant states are eigenstates
of the coupling part of the Hamiltonian [Eq. (2)] separated
by the energy 2V , sufficiently strong interaction between the
dots rebuilds the collective character of the interaction even in
structures with technologically realistic energy mismatches,
of the order of 1 meV.19,28 This also enables the VIC effect
in inhomogeneous QDMs to be rebuilt. As can be seen in
Fig. 4(b), for V 
 �, a transition from a localized initial
single-exciton state to a nearly stable state is possible for a
system with a technologically achievable energy mismatch.
Although full stabilization of the VIC effect is impossible
for energetically nonidentical dots with equal dipole moments
and quenching of the exciton occupation always takes place,
sufficiently strong coupling between the dots considerably
reduces the decay of the trapped state. For a weaker coupling
between the dots, the exciton occupation decay is faster but
still reduced compared to that for a system of uncoupled QDs.
In contrast to identical dots, the two localized states have
different contributions from the sub- and super-radiant states.
This results in a different degree of trapping depending on the
choice of the initially occupied state.27
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FIG. 5. (Color online) Exciton occupation of a pair of techno-
logically realistic QDs. (a) Total exciton occupation for � = 1 meV,
V = −5 meV, �11 = 1 ns−1 and for a few values of �22. (b) The total
occupation and the occupations of the individual dots for the last
case shown in (a). (c) Exciton occupation for three sets of parameters
stabilizing the occupation trapping. Solid (red) line: � = 0.5 meV,
V = −4.47 meV, �11 = 0.8 ns−1, �22 = 1 ns−1. Dashed (green) line:
� = 0.5 meV, V = −9.99 meV, �11 = 0.95 ns−1, �22 = 1.05 ns−1.
Dotted (blue) line: � = 1 meV, V = −5 meV, �11 = 1 ns−1, �22 =
1.49 ns−1. (d) The total occupation and the occupations of the
individual dots corresponding to the solid (red) line in (c).

D. Interplay of energy mismatch, coupling between the dots,
and nonuniform dipoles

For technologically realistic DQDs and QDMs, the funda-
mental energy mismatch of the two QDs forming the system is
of the order of milli–electron volts, the dipole moments differ
slightly between the dots and the systems are coupled with one
another via Förster or tunneling coupling. The evolution of
such systems, for parallel dipole moments, is shown in Fig. 5.
In Fig. 5(a), the dynamics of a system strongly stabilized by
a coupling between the dots is presented for a few values
of the decay rates. As can be seen, the rate of occupation
decay depends on the choice of the two single-dot decay rate
parameters. In such a system, the coherent excitation transfer
between the dots takes place on time scales similar to those in
the previously discussed cases. However, the initial state is now
a superposition of nondegenerate system eigenstates, which
leads to fast oscillations of the exciton occupation between the
two dots [Fig. 5(b)].

In the present general case, the spontaneously formed
coherence and the trapped occupation can again be fully
stabilized by an appropriate choice of parameters in a system
with parallel dipoles. The single-exciton eigenstates of the
system Hamiltonian, (1), are

|�1〉 = cos

(
φ

2

)
|10〉 + sin

(
φ

2

)
|01〉, (8a)

|�2〉 = − sin

(
φ

2

)
|10〉 + cos

(
φ

2

)
|01〉, (8b)

where tg(φ) = V/� and −π/2 � φ < π/2. The correspond-
ing eigenenergies are denoted E1 and E2. If the coupling
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FIG. 6. (Color online) Exciton occupation of a pair of nonidenti-
cal (� = 1 meV, �11 	= �22) and coupled (V = −5 meV) QDs for a
few values of θ (a) and for two values of �22 (b).

between the single-exciton states satisfies the relation

V = −2�
√

�11�22

|�22 − �11| , (9)

then one of the eigenstates [Eqs. (8a) and (8b)] corresponds
to the dark state, (7). In this case, the evolution of a realistic
system also leads to occupation trapping in a decoherence-
resistant state [Fig. 5(c)] at the occupation �11/(�11 + �22). As
can be seen from Eq. (9), nonequal values of the spontaneous
decay rate for the two dots open the possibility of stabilizing
the evolution of the system for a wide range of parameters.
As for a system of identical dots, the occupations of single
dots also stabilize, but again, initial fast oscillations due to
the contributions from two energy eigenstates are observed
[Fig. 5(d)].

For the nonparallel dipole moments, i.e., for θ 	= 0, the
effect of occupation trapping is in principle destroyed, but
for strongly coupled dots, the decay is very weak. For the
interesting time scale of the order of nanoseconds, the impact
of nonparallel dipoles becomes visible only for the values of
θ that exceed the realistic ones by an order of magnitude41

(Fig. 6).

E. The role of lattice dynamics

Spontaneous emission from a system of QDs is affected by
phonon dynamics.31,42 Coupling between the QDs and lattice
vibrations induces excitation transfer between the two single-
exciton eigenstates [Eq. (8a) and (8b)]. For a pair of identical
QDs (φ = ±π/2), these eigenstates exactly coincide with the
bright (super-radiant) and dark (subradiant) states |+〉 and |−〉
defined in Sec. IV A. If the dots are nonidentical, there is no
perfect correspondence between these two pairs of states, but
for nonzero coupling, one of them still is brighter and the
other is darker. As we have shown previously,42 the phonon-
induced redistribution of single-exciton occupations among
these two states strongly affects spontaneous emission in a
temperature-dependent way. For a system of vertically stacked
dots analyzed in this paper, the amplitudes of both tunneling
and Förster couplings are negative, so that φ < 0. In this case,
the darker eigenstate has a higher energy and will be affected
by relaxation even at low temperatures. As we show below,
phonon dynamics indeed breaks the relative stability of the
darker state and leads to considerably accelerated decay of the
excitonic occupation, except for special parameter choices.
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FIG. 7. (Color online) The phonon spectral density for D = 8 nm.

While, in general, non-Markovian effects may be important
in the carrier-phonon dynamics that affects spontaneous
emission,42 the phonon-related effects discussed below can
be understood within a Markovian picture of transitions
between energy eigenstates. The corresponding rate for a
transition between the eigenstates |�i〉 and |�j 〉 is γi→j =
2π sin2 θJ (|ωij |)|n(ωij ) + 1|, where i,j = 1,2, ωij = (Ej −
Ei)/h̄ and the spectral density is defined as

J (ω) =
∑

q

|fq |2 sin2 kzD

2
δ(ω − ωq).

The spectral density for the interdot spacing D = 8 nm is
plotted in Fig. 7. Apart from the usual cutoff at frequencies
higher than l/c due to the restriction on the momentum
nonconservation, �(h̄q) � h̄/l, where l is the average dot
size, it is characterized by oscillations with period �ω =
2πc/D, which result from the double-dot structure of the
system.42

The phonon-related effect on the spontaneous buildup of
coherence is shown in Fig. 8. There we keep the mixing
angle φ constant (that is, a constant ratio V/�) and use the
energy splitting h̄� = E1 − E2 = 2

√
�2 + V 2 as a parameter.

In Fig. 8(a) we plot the evolution of the total exciton occupation
for h̄� = 4.0 meV, where the spectral density is relatively
high, corresponding to phonon transition rates of the order
of 1 ps−1. One can see there that indeed the phonon-induced
relaxation suppresses the VIC, which is manifested by the
rapid decay of the excitonic occupation. The role of phonons
in this strong change in the occupation dynamics is clear in
Fig. 8(b), where we show the first 100 ps of the same evolution.
A very fast phonon-induced redistribution of occupations of
the two dots [shown by dashed (green) and dash-dotted (blue)
lines] takes place, on a picosecond time scale, after which the
radiative effects are completely dominated by phonon-induced
thermalization, which, at low temperatures, forces the system
to stay in the bright state |�2〉. The detrimental effect of carrier-
phonon coupling can only be avoided if the phonon-induced
occupation dynamics is made to be slow compared to the
spontaneous emission. This can be achieved by using the
oscillating form of the phonon spectral density (see Fig. 7).
As can be seen in Figs. 8(c) and 8(d), if choosing the energy
splitting h̄� such that it corresponds to the third minimum
of the spectral density has little positive effect except for
h̄� in the fifth minimum, the phonon effects become very
weak and the long-living tail of the excitonic occupation is
restored.
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FIG. 8. (Color online) Phonon impact on vacuum-induced co-
herence in a pair of QDs with a fixed V/� ratio (corresponding to
φ = −1.4): comparison of the total exciton occupation in a system
coupled to phonons and without phonons. (a) � = 4.0 meV; (b)
short-time section of (a), with the solid (red) line representing the
total exciton occupation, the dotted (magenta) line corresponding to
the total occupation without phonons, and the dashed (green) and
dash-dotted (blue) lines showing the occupations of the two dots; (c)
� = 8.07 meV (corresponding to the third minimum of the spectral
density); (d) � = 13.36 meV (fifth minimum of the spectral density).

An interesting additional effect can be seen if one compares
Figs. 8(a) and 8(d): If the phonon effects are strong, then
increasing the temperature slows down the occupation decay.
However, for a weak phonon influence the temperature
dependence is the opposite. This can be explained by noting
that in the presence of fast phonon-induced redistribution of
single-exciton occupations, the occupation of these two states
remains in quasiequilibrium, which means that the occupation
of the higher energy, darker state increases as the temperature
rises. On the contrary, if the phonon-induced dynamics is
slow, the system state is almost unperturbed and close to the
spontaneously formed dark superposition. Phonons lead to
transitions out of this stable state, with the intensity growing
with the temperature.

V. CONCLUSIONS

We have studied the formation of VIC and the associated
long-living trapped excitonic population in a pair of vertically
stacked semiconductor QDs. We have focused on the features
that distinguish QD systems from natural atoms: the mismatch
of transition energies, coupling, possibly nonidentical dipole
moments for the optical transition, and strong interactions with
the phonon environment.

We have shown that the VIC effect is very sensitive to
the inhomogeneity of the QDs. Already for a fundamental
transition energy mismatch of the order of the emission line
width, the exciton occupation is quenched. However, the
destructive effect of the energy inhomogeneity can be strongly
reduced by coupling between the dots. While for dots with
identical magnitudes of the interband dipole moments, full
stabilization of the spontaneously formed coherence can only

be achieved in the limit of infinite coupling, in pairs of QDs
with different interband dipoles it is possible to adjust the
energy mismatch, the coupling between the QDs, and the
dipole moments in such a way that a perfectly stable state
forms in the spontaneous emission process and a fraction of the
initial excitonic population attains a formally infinite lifetime.
A nonparallel orientation of the interband dipoles, which may
be caused by heavy-light hole mixing, leads to negligibly weak
effects in realistic structures. While carrier-phonon coupling
typically destroys VIC on picosecond time scales, it can
be overcome by appropriately selecting the energy splitting
between the single-exciton states.

These results show that the VIC effect can be observed in
realistic systems with energy splitting of the order of milli–
electron volts provided that the system parameters (interband
dipoles, coupling, and energy mismatch) can be controlled
with sufficient flexibility. This seems to be possible by
appropriately designing the system on the manufacturing stage
and then employing the dependence of various parameters on
external fields (e.g., via the Stark effect or modification of the
electron-hole wave function overlap).

Let us note, finally, that the major experimentally detectable
consequence of the appearance of VIC in a double-dot system
is the long-living tail in the exciton occupation (or in the
luminescence intensity). Since this effect is of considerable
amplitude and evolves on long, nanosecond time scales,
it should be relatively easily detectable with time-resolved
luminescence or pump probe spectroscopy.
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APPENDIX: INTERBAND DIPOLE MOMENTS AND
SUB-BAND MIXING

In this Appendix, we discuss the effect of light-hole
admixture on the nonparallel alignment of interband dipoles
for (nominally) heavy-hole transitions. Within the four-band
Luttinger model,43 the electron and hole wave functions are

�
(α)
h (r,s) =

∑
λ

uλ(r,s)ϕ(α)
hλ (r),

�(α)
e (r,s) = uc 1

2
(r,s)ϕ(α)

e (r),

where α = 1,2 refers to a higher or lower QD, respectively, uλ

is a Bloch function for the valence sub-band λ (heavy holes,
λ = ±3/2; light holes, λ = ±1/2), r is the space coordinate,
s denotes spin, uc 1

2
is an electron Bloch function with a fixed

spin s = 1/2 (for definiteness), and ϕ
(α)
e/h refer to the electron

and hole envelope functions, respectively.
The matrix element of the interband dipole moment for the

αth QD is

dα =
∑

s

∫
d3r�

(α)
h (r,s)er�(α)

e (r,s).
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To calculate the above integral we sum over unit cells (labeled
R) and integrate over one unit cell (ξ labels the position within
the cell). The envelope functions vary slowly, which allows us
to assume that they are constant over one unit cell, ϕe/h(R +
ξ ) ≈ ϕe/h(R). The Bloch functions are periodic, u(R + ξ ,s) =
u(R,s), and orthogonal for different bands. As a result, we can
write44

dα = 1

v

∑
s,λ

∫
d3R

∫
u.c.

d3ξ

× uλ(ξ ,s)ϕ(α)
hλ (R)e (R + ξ ) uc 1

2
(ξ ,s)ϕ(α)

e (R)

=
∑

λ

a
(α)
λ dλ, 1

2
.

Here dλ, 1
2

is the bulk interband dipole moment,

dλ, 1
2

= 1

v

∑
s

∫
u.c.

d3ξuλ(ξ ,s)eξuc 1
2
(ξ ,s),

v is the unit cell volume,

a
(α)
λ =

∫
d3Rϕ

(α)
hλ (R)ϕ(α)

e (R)

is the envelope function overlap integral, and we have replaced
the summation over unit cells with integration over R.

We are investigating bright heavy-hole excitons, hence
a

(α)
−3/2 ∼ 1 and the other coefficients a

(α)
λ are much smaller. The

nonvanishing bulk dipole moment matrix elements involving
the spin-1/2 electron state are44,45

d− 3
2 , 1

2
= −

√
3d∗

− 1
2 , 1

2
= 1√

2
d0

⎛
⎝−1

i

0

⎞
⎠ ,

d 1
2 , 1

2
=

√
2

3
d0

⎛
⎝ 0

0
1

⎞
⎠ .

Because the wave functions differ for the two QDs, the
values of the heavy-hole overlap integrals a

(α)
− 3

2
may vary. Since,

to the leading order,

|dα| = |d0|
(∣∣∣a(α)

− 3
2

∣∣∣2
+ 2

3

∣∣∣a(α)
− 1

2

∣∣∣2
+ 1

3

∣∣∣a(α)
1
2

∣∣∣2
) 1

2

≈
∣∣∣a(α)

− 3
2
d0

∣∣∣
⎛
⎜⎝1 +

2
∣∣∣a(α)

− 1
2

∣∣∣2
+

∣∣∣a(α)
1
2

∣∣∣2

6
∣∣∣a(α)

− 3
2

∣∣∣2

⎞
⎟⎠ ,

the difference in the overlap integrals leads to different
magnitudes of the dipole moments |dα|, α = 1,2. Moreover,
one has

d1 · d∗
2 = a

(1)
− 3

2
a

(2)∗
− 3

2
|d0|2

⎛
⎝1 + 2

3

a
(1)
− 1

2
a

(2)∗
− 1

2

a
(1)
− 3

2
a

(2)∗
− 3

2

+ 1

3

a
(1)
1
2

a
(2)∗
1
2

a
(1)
− 3

2
a

(2)∗
− 3

2

⎞
⎠ .

Hence,∣∣∣d̂1 · d̂
∗
2

∣∣∣ = |d1 · d∗
2|

|d1||d2|

≈ 1 − 1

3

∣∣∣∣∣∣
a

(1)
− 1

2

a
(1)
− 3

2

−
a

(2)
− 1

2

a
(2)
− 3

2

∣∣∣∣∣∣
2

− 1

6

∣∣∣∣∣∣
a

(1)
1
2

a
(1)
− 3

2

−
a

(2)
1
2

a
(2)
− 3

2

∣∣∣∣∣∣
2

. (A1)

Thus, if the light-hole admixture is different for the two dots,

a
(1)
± 1

2

a
(1)
− 3

2

	=
a

(2)
± 1

2

a
(2)
− 3

2

,

then d̂1 · d̂
∗
2 	= 1; that is, the dipoles are nonparallel.

As the sub-band mixing is typically small in self-assembled
structures, the angle θ between the dipole moments is small.
Therefore, one can write

d̂1 · d̂
∗
2 = eiη cos θ ≈ eiη

(
1 − 1

2θ2
)
, (A2)

where η is an irrelevant phase. Comparing Eqs. (A1) and (A2)
one gets

θ =

⎛
⎜⎝2

3

∣∣∣∣∣∣
a

(1)
− 1

2

a
(1)
− 3

2

−
a

(2)
− 1

2

a
(2)
− 3

2

∣∣∣∣∣∣
2

+ 1

3

∣∣∣∣∣∣
a

(1)
1
2

a
(1)
− 3

2

−
a

(2)
1
2

a
(2)
− 3

2

∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

.
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