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Compactons and bistability in exciton-polariton condensates
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We address stationary patterns in exciton-polariton condensates supported by a narrow external pump beam,
and we discover that even in the absence of trapping potentials, such condensates may support stable localized
stationary dissipative solutions (quasicompactons), whose field decays faster than exponentially or even vanishes
everywhere outside the pump spot. More general conditions lead to dissipative solitons which may display
bistability. The bistability in exciton-polariton condensates, which manifests itself in the simultaneous existence
of two stable and one unstable localized solitons with different amplitudes, widths, and exciton-photon fractions
under the same physical conditions, strongly depends on the width of the pump beam and is found to disappear
for sufficiently narrow pump beams.
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I. INTRODUCTION

Triggered by a series of remarkable experiments,1–4 during
the last decade one observes a rapidly growing interest in
the study of highly populated (macroscopic) exciton-polariton
states, which are also identified as quasiparticle Bose-Einstein
condensates (BECs).5,6 Unlike the atomic BECs, the conden-
sates emerging from the interaction of light and matter are
nonconservative and exist due to the intense energy exchange
with the laser pump beam, balanced by relatively strong
losses of excitons and photons arising, for example, due to
material and cavity imperfections. The interplay between gain
and losses makes such systems an ideal test bed for many
fundamental phenomena in open quantum systems and in
nonlinear science (in addition to the well-appreciated practical
relevance of physics of microcavities5,6).

The formation of nonlinear dissipative patterns in semicon-
ductor microcavities may be accompanied by the bistability7,8

that arises due to Kerr-like nonlinearity induced by the exciton-
exciton interactions and that was observed for extended
pump beams in various setups.8–13 The theory of this effect
was developed within the framework of different mean-field
models based either on equations for the polariton occupation
number,9 where the fractions of excitons and cavity photons are
connected through the Hopfield coefficients,14 or on coupled
equations for excitons and photons.15 The bistability of coher-
ent spin ensembles described in the two-mode approximation
by the spinor Gross-Pitaevskii equation with an external pump
has been reported too.11 Under appropriate conditions bright
solitons may form in semiconductor microcavities as predicted
in Ref. 16 and observed in Ref. 17. All such solitons reported
so far were detected only on a broad constant background
due to the use of very extended pump beams, whose width is
comparable with the cavity size17 or considerably exceeds
a width of localized excitation propagating on a broad
background.3 However, in experiment the pump beam may be
inhomogeneous and strongly localized in space, which leads
to a highly nontrivial collective dynamics of polaritons within
the pump spot18 which can be used for observation of rich

dynamical phenomena, such as direct visualization of quantum
field patterns19 or switching in polaritonic transistors.20

The possibility of formation of strongly localized nonlinear
excitations in condensates supported by a narrow pump beam
and the impact of the pump beam width on the localization
degree of stationary states have not been explored, so far. In
particular, the existence of highly localized dissipative quasi-
compactons, i.e., stationary compact waves which decay faster
than exponentially, or in some approximation are exactly equal
to zero everywhere except the pump spot, remains an open
issue. Notice that the concept of compactons was first intro-
duced for continuous systems obeying nonlinear dispersion.21

Later on compactons have been found in discrete22 and
continuous23 nonlinear conservative lattices. To the best of
our knowledge, dissipative compactons (representing stable
attractors excitable from a broad range of initial conditions)
were not detected before not only in polariton condensates, but
in any dissipative system.

This work is devoted to the investigation of dissipative
solitons in microcavities with a localized pump. We detected
the possibility of the coexistence of several stable solitons with
various fractions of excitons and photons in the condensate
for a certain range of frequencies of pump beams, i.e., the
existence of bistability, which, however, completely vanishes
when the width of the pump beam becomes sufficiently small.
Moreover, we obtained strongly localized quasicompactons in
dissipative exciton-polariton condensates.

II. THE MODEL

We restrict the consideration to a quasi-one-dimensional
condensate of strongly coupled excitons and photons (des-
ignated by the subindexes x and c, respectively), which
can be described by the Hamiltonian3,15 H = Hx + Hc +
Hnl + Hint + Hp, where Hx,c are the Hamiltonians of the
excitons and cavity photons given by Hx,c = ∫

dx�
†
x[h̄ωx,c −

(h̄2/2mx,c)∂2/∂x2]�x, Hnl = (h̄g/2)
∫

dx�
†
x�

†
x�x�x de-

scribes the interaction between excitons characterized by the
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strength g > 0, Hint = h̄�R

∫
dx �

†
x�c + H.c. describes the

interaction between light and matter which is quantified by
the Rabi frequency �R , and Hp = h̄

∫
dxF (x)eiωpt�

†
x + H.c.

describes pump of the photons by an external source, which
is considered monochromatic and normal to the surface, i.e.,
F (x) is considered real.

We adopt the mean-field description where the field
operators �x,c are replaced by the respective order parameters,
which we represent in the form φx,c(x,t)eiωpt . Then the system
of the mean-field equations can be written in the form3,15,24

i
∂φx

∂τ
= −εφx − κ

2

∂2φx

∂η2
− iγxφx + �φc + |φx |2φx, (1a)

i
∂φc

∂τ
= φc − 1

2

∂2φc

∂η2
− iγcφc + �φx + f (η). (1b)

Here we introduced the dimensionless independent vari-
ables τ = |�c|t and η = √

mc|�c|/h̄x, where �c = ωp − ωc

is the pump frequency detuning from the photon frequency at
k‖ = 0, and we have limited the consideration to the negative
detuning �c < 0. We also defined the normalized pump
detuning from the exciton frequency ε = (ωp − ωx)/|�c|,
dimensionless Rabi frequency � = �R/|�c|, and the relation
between the masses of cavity photons and excitons κ =
mc/mx ∼ 10−4. In (1) the normalized cavity losses of photons
and the exciton decay rates are determined, respectively,
by γc and γx and the pump shape is now described by
f (η) = F (x)/h̄|�c|.

The dynamics of the condensate is determined by sev-
eral experimentally controllable parameters. Below as con-
trol parameters we use the amplitude a and width w

of the Gaussian pump beam f (η) = a exp(−η2/w2), as well
as the normalized detuning of the pump frequency ωp from
the exciton resonance, i.e., ε (experimentally ε can be varied
by applying mechanical stress to the cavity that affects exciton
states without changing the energy of photons2).

Due to smallness of the cavity photon mass, and thus of
the coefficient κ , the kinetic energy of excitons is usually
neglected.16 While we do not use this approximation in
numerical simulations, it is useful for qualitative discussion of
the results. Indeed, by neglecting the kinetic energy of excitons
in (1a) one obtains the relations between the exciton and
photon linear densities nx,c = |ψx,c|2 and the phase difference
θ = θc − θx :

�2nc = nx

[
γ 2

x + (nx − ε)2
]
, tan θ = γx

nx − ε
. (2)

These relations imply that for ε >
√

3γx one can find several
solutions for exciton densities for a given photon density, while
for ε <

√
3γx for each photon density there exists a unique

density of excitons. Equations (2) identify important (real)
physical parameters δ and ϕ, which we define by δeiϕ = ε −
iγx . Indeed, far from the pump spot (formally in the limit
|η| → ∞) where nx,c → 0, we obtain from (2) that the relation
between the densities of excitons and photons is determined
by δ: nx/nc → δ, while the phase difference is fixed by ϕ:
θ → ϕ.

For inhomogeneous polariton condensates supported by a
localized pump, it is convenient to pass from the local densities
nx,c to the total number of excitons and photons Ux,c =

FIG. 1. (Color online) Total number of excitons vs (a) the
amplitude of pump beam at ε = −1 and γx,c = 0.1 (the points
correspond to solitons shown in Fig. 2 below), (b) the detuning ε at
a = 0.7 and γx,c = 0.1 (the curves from top to bottom correspond
to pump widths w = 5,3,2,1), and (c) the exciton losses γx at
ε = −1, w = 5, and γc = 0.1. (d) The ratio Ux/Uc vs frequency
detuning at a = 0.7, w = 5, and γc,x = 0.1 correspond to the soliton
solution (curve 1) and the ratio Ux/Uc calculated using the Hopfield
coefficients (curve 2). In all cases we used � = 2. The red segments
correspond to the unstable branches of solutions, while the black
segments to stable branches.

∫ |φx,c|2dx. In Fig. 1 we show the numerically calculated
number of excitons in stationary solution as a function of
different parameters of the system. While for relatively wide
Gaussian pump beams in a certain parameter range we do
observe several soliton solutions for the same value of control
parameter [Fig. 1(a)], the first important result of this work
is that only one solution remains when the width of the
pump beam decreases. This phenomenon is observed in the
dependencies of the number of excitons on the pump beam
amplitude [Fig. 1(a)] and on the detuning ε [Fig. 1(b)]. Thus,
for wide pump beams the dependence Ux(a) is “S”-shaped,
while for narrow beams Ux(a) is a monotonically growing
function. Linear stability analysis of the obtained solutions
predicts that only the upper and lower branches of solitons
in Ux(a) dependence may be stable, while the middle branch
where dUx/da < 0 is always unstable (stable branches are
shown black, while unstable branches are shown red in Fig. 1).
Therefore, in a certain parameter range two stable solitons
coexist with one unstable soliton.

While the bistability in the dependence on pump beam
amplitude a resembles, when it exists, the behavior of a
homogeneous condensate,15,16 in our setting it can also appear
in the dependence on detuning ε.25 Indeed, as one can observe
in Fig. 1(b), the exciton density is not a monotonic function
of this control parameter anymore, but in the bistable region
Ux grows (decays) with ε on the upper (lower) branch. Here
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it is relevant to address the real physical scales at which
the bistable behavior disappears. Assuming the frequency
detuning h̄�c ∼ 1 meV and observing that the change in the
behavior occurs between w = 2 and w = 3, we estimate that
bistability disappears for pump spot sizes between 3 and 5 μm.
The threshold spot size can obviously be increased by increase
of the detuning.

The phenomenon of bistability is also obvious in the
dependence Ux(γx) [Fig. 1(c)], which indicates that the upper
and middle branches merge when losses reach critical level
and only one stable lower branch remains (the dependence on
γc is qualitatively similar).

In Fig. 1(d) we present the ratio of the number of excitons
and photons in condensate as a function of detuning ε.
Comparing with Fig. 1(b), we observe that the bistability of
localized polaritons is related to different exciton and photon
fractions Ux and Uc. In order to clarify the relevance of
this observation, we recall the fact that the exciton-polariton
condensate is a mixed state of excitons and photons whose
relative fractions determine the condensate properties. By
affecting transmitted or reflected light the relative fraction
of the quasiparticles is also relevant for interpretation of
the experimental measurement.5 Since the seminal work
of Hopfield,14 practically for all estimates involving these
fractions the Hopfield coefficients are used. In notations of
the present work, for the relative fractions of excitons |X|2
and photons |C|2 of the homogeneous condensate one has

|X|2
|C|2 =

√
(ε − 1)2 + 4�2 + ε − 1√
(ε − 1)2 + 4�2 − ε + 1

. (3)

This formula does not display bistability. [For comparison
with the numerically obtained value Ux/Uc in Fig. 1(d),
we show the relative fraction |X|2/|C|2 determined by (3).]
Since the Hopfield coefficients were used in previous studies
of bistability in homogeneous exciton-polariton BECs (see,
e.g., Refs. 7 and 15), as well as in the justification of the
mean-field models written for the polariton order parameter
(like in the models used, e.g., in Ref. 18), obviously the
respective mean-field models cannot capture the effects related
to variations of the relative fractions of the quasiparticles.
Remarkably, Fig. 1(d) shows that the branch of solutions at
negative ε values is very well reproduced by formula (3),
while strong qualitative differences appear at larger detunings;
there the exciton fraction grows significantly stronger than that
predicted by the Hopfield coefficients.

The bistable behavior of exciton and photon fractions
becomes particularly evident from typical density distributions
in stationary solutions shown in Fig. 2 for three branches
of the bistable curve from Fig. 1(a) (see points marked by
circles). The figure reveals several interesting features. First,
the fraction of photons is larger (smaller) than the fraction of
excitons on the upper (lower) branch in Fig. 1(a). [Notice that
the lower (upper) branches in panels (a), (b), and (c) of Fig. 1
correspond to the upper (lower) branch on panel (d).] Despite
significant differences in fractions of photons and excitons,
both components occupy nearly the same spatial domain and
the widths of both components exceed the characteristic size of
the pump beam. Moreover, the soliton from the lower branch
(panel a) is substantially narrower than soliton from the upper

FIG. 2. (Color online) The density distributions at a = 0.7, w =
5, ε = −1, and γx,c = 0.1 for lower (a), middle (b), and upper
(c) soliton branches corresponding to circles in Fig. 1(a).

branch (panel c), which is reflected in the respective spatial
spectra shown in Fig. 3. Notice the appearance of oscillations
on shapes and spectra of solitons from the middle, i.e., unstable
branch (panel b). The existence of three spectral maxima in
Fig. 3 indicate the possibility of resonant mode interactions,
which can be triggered by any small perturbation, which is
likely to be the physical reason for the instability of the modes
from the middle branch.

FIG. 3. (Color online) Spatial spectra �x,c(k) = 1√
2π

∫ ∞
−∞ φx,c

(x)e−ikxdx corresponding to the profiles shown in Fig. 2.
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FIG. 4. (Color online) Hysteresis of the dissipative solitons.
(a) Switching from the lower to upper branch at a = 0.839 (slightly
exceeding the amplitude at which the lower branch ceases to exist).
(b) Switching from the upper to lower branch at a = 0.613 (that is
slightly below the pump amplitude at which the upper branch ceases
to exist). In both cases w = 5, ε = −1, γx,c = 0.1, and � = 2. Only
the modulus of the exciton component is shown.

The existence of more than one stable state in a system with
experimentally adjustable parameters implies the possibility of
hysteresis. Previous theoretical considerations8,9,13 dealt with
hysteresis of condensates supported by a nearly homogeneous
pump (which corresponds to sufficiently wide pump spots in
the experiment). In Fig. 4 we show the hysteresis of a localized
dissipative soliton in the polariton condensate. In particular,
Fig. 4(a) shows the jump from the lower to upper soliton
branch stimulated by a small increase of pump beam amplitude
beyond the amplitude at which the lower branch ceases to exist
[the input soliton corresponds to the right outermost point in
Ux(a) dependence]. Analogously, Fig. 4(b) shows the jump
from the upper to lower branch when the pump beam amplitude
was decreased below the threshold for the existence of the
upper branch.

III. QUASICOMPACTONS

Localized soliton solutions presented here are dissipa-
tive solitons with decaying density distributions, which are
supported by the localized pump beam. Somewhat similar
excitations may be obtained in nonlinear optics.26 However,
the drastic difference between the case of the exciton-polariton
condensate considered here and optical settings is that in the
case of condensate the pump is external, rather than parametric.
In this case the decay law of solitons outside the pump
domain may be completely different from the decay law in
the free space, which opens the possibilities for formation of
compactons (or quasicompactons), i.e., solutions which are
zero (or displaying faster than exponential decay) outside
the spot domain. In order to explain this phenomenon, we
again turn to the case κ = 0. From Eq. (2) it follows that at
η → ∞ the phase and amplitude of the exciton and photon
components are uniquely related by the parameters δ and ϕ.
Hence, at η → ∞ there exist only two free parameters defining
the solution. Indeed, by neglecting the nonlinear term (which
decays much faster than the linear ones) in Eqs. (1) with κ = 0
one can obtain the asymptotics of the solution at η → ∞:

φc ∼ Ce(ik−μ)η − 2
∫ ∞

η

f (x)
sinh ((ik − μ)|η − x|)

ik − μ
dx (4)

FIG. 5. (Color online) The wave-function modulus for exciton
and photon components for the soliton solution from the upper branch
at ε = 0 (a) and ε = 1 (b) for a = 0.9, w = 5, γx,c = 0.1, and � = 2.

where

k2δ2 =
√

(δ2 + �2ε)2 + (δ2γc + �2γx)2 − δ2 − �2ε, (5)

and μ = (γc + �2γx/δ
2)/|k| is the decay exponent. The con-

stant C is complex. Its amplitude and phase are two constants
parametrizing the solution. In order to find the particular value
of C one has to employ the additional constraints (see, e.g.,
Ref. 27). For example, for even solitons φx,c(η) = φx,c(−η)
the requirement of zero derivative of φx,c(η) at η = 0 gives
two conditions for definition of complex constant C via the
system parameters. If f (η) is nonzero and decays faster than
exponentially (as in the present work), two situations are
possible: if system parameters are such that C �= 0, the decay
of solution is exponential, but if C = 0 the solution is still
nonzero, but it decays in accordance with the law determined
by the shape of the pump beam f (η), i.e., faster than
exponentially. Such solutions are dissipative quasicompactons,
and their shapes obtained from Eqs. (1) are presented in Fig. 5
for the case of κ = 10−4. Quasicompactons appear only on
the upper and middle soliton branches in the region of positive
detuning, when ε > 0 (i.e., when ωp > ωx). Typically, the
larger the value of ε the faster is the decay of tails of solution.
From Fig. 1(b) one can see that the upper soliton branches, and
hence quasicompacton solutions, can be found in the region
with positive detuning only for sufficiently large pump width
w. Quasicompactons can be stable.

Remarkably, not only quasicompacton, but also exact
dissipative compacton solutions can be obtained by choosing
proper pump beam shapes in the limit κ = 0. To illustrate this,
let us withdraw the requirement for the pump f (η) to be real
and choose

f (η) = −f0δe
−iϕ + f0[(3 − iγc)δe−iϕ + �2] cos2 η

+�2f 3
0 cos4 η[15 − (19 − iγc) cos2 η], (6)

for |η| < π/2 and f = 0 otherwise (f0 is a free parameter,
also recall that δeiϕ = ε − iγx). Then, the exact compacton
solution of Eqs. (1) with κ = 0 reads

φx = −f0� cos2 η, φc = f0 cos2 η
(
f 2

0 �2 cos4 η − δe−iϕ
)
(7)

for |η| < π/2 and φx ≡ φc ≡ 0 otherwise. We confirmed
numerically that this compacton solution is structurally (i.e.,
at κ = 10−4) and dynamically stable. We also notice that the
suggested solution is not unique. As a matter of fact, a large
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diversity of the dissipative modes with compact support (i.e.,
equal exactly zero beyond a give region) can be constructed,
although by using even more sophisticated gain profiles.

An explicit analytical solution of a dissipative compacton
allows a more important issue to be addressed, which is the
dissipative nature of the obtained solutions. To this end, let us
first set γc = γx = 0. Then Eqs. (6) and (7) still hold valid and
represent a Hamiltonian system subjected to an external force
f (η). Such a system can be viewed as a composed quasipar-
ticle, with one component (excitonic) having an infinite mass
(since κ = 0) affected by the inhomogeneous force applied to
the photonic component. This force is balanced by the force
of interaction between the components (determined by �),
giving origin to the stationary state described by (7) with
γc = γx = 0. It turns out, however, that stationary localized
solutions of Eqs. (1) can be found only when at least one of
the parameters γx,c is nonzero. In this case one can obtain
one or three soliton solutions, depending on the particular
value of pump amplitude, as shown in Fig. 1(a). When both
γx = γc = 0, stationary states are unstable and one observes
considerable radiation from the pump region.

IV. CONCLUSION

Summarizing, we showed that spatially localized pump
supports strongly localized dissipative solitons in exciton-
polariton condensates. The width of the pump beam deter-
mines whether the system possesses or is free from bistability.
We found that in the bistability regimes the relative fractions
of excitons and photons may significantly differ from the
predictions for the homogeneous condensate, where they are
determined by the Hopfield coefficients.

Although bistability is considered to be a common feature
for externally driven systems (it occurs not only in exciton-

polariton condensates, but also in lasers, as well as in various
systems described by a driven nonlinear Schrödinger equation
[30]), in real experiments it is usually manifested in the abrupt
jump of the norm (or power) of the output state with increase
of the pump amplitude, so that observation of localized states
from a certain power range usually cannot be performed due
to their instability. In this respect, the fact obtained herein that
by simple change of the size of the pump spot the states from
the above-mentioned power range can be stabilized is rather
interesting.

We presented dissipative compactons, or more precisely,
quasicompactons, i.e., solutions which decay faster than
exponentially. Thus further study of quasicompactons is of
interest from the point of view of driving such modes by
laser beams, their interactions, their use for switches, and
observation of the hysteresis phenomenon, as well as many
other problems typical of nonlinear physics.

Finally, it should be stressed that the consideration in this
work was based on the mean-field model consisting of the
coupled equations for the excitons and photons, thus leaving
a series of open questions. Among them we mention the
extension of the theory for the spinor model of the conden-
sate; analysis of possible excitations of the condensation in
excited states and associated energy relaxation;28 extension
to two-dimensional geometry; dynamical properties; and the
possibility of managing localized excitations, etc.
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Semicond. Sci. Technol. 22, R1 (2007); H. Deng, H. Haug, and
Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).

6S. A. Moskalenko and D. W. Snoke, Bose-Eistein Condensation of
Excitons and Biexcitons (Cambridge University Press, Cambridge,
England, 2000); A. V. Kavokin, J. J. Baumberg, G. Malpuech, and

F. P. Laussy, Microcavities (Oxford University Press, Oxford,
2007).

7A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, and F. Bassani,
Phys. Rev. A 54, 3493 (1996).

8A. Baas, J.-Ph. Karr, M. Romanelli, A. Bramati, and E. Giacobino,
Phys. Rev. B 70, 161307 (2004).

9A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69,
023809 (2004).

10I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and
A. Kavokin, Phys. Rev. Lett. 97, 066402 (2006).

11T. K. Paraı̈so, M. Wouters, Y. Léger, F. Morier-Genoud, and
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