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Microscopic theory for Doppler velocimetry of spin propagation in semiconductor quantum wells
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We provide a microscopic theory for the Doppler velocimetry of spin propagation in the presence of spatial
inhomogeneity, driving electric field, and the spin orbit coupling in semiconductor quantum wells in a wide range
of temperature regime based on the kinetic spin Bloch equation. It is analytically shown that under an applied
electric field, the spin density wave gains a time-dependent phase shift φ(t). Without the spin-orbit coupling, the
phase shift increases linearly with time and is equivalent to a normal Doppler shift in optical measurements. Due
to the joint effect of spin-orbit coupling and the applied electric field, the phase shift behaves differently at the
early and the later stages. At the early stage, the phase shifts are the same with or without the spin-orbit coupling.
While at the later stage, the phase shift deviates from the normal Doppler one when the spin-orbit coupling is
present. The crossover time from the early normal Doppler behavior to the anomalous one at the later stage is
inversely proportional to the spin diffusion coefficient, wave vector of the spin density wave, and the spin-orbit
coupling strength. In the high temperature regime, the crossover time becomes large as a result of the decreased
spin diffusion coefficient. The analytical results capture all the quantitative features of the experimental results,
while the full numerical calculations agree quantitatively well with the experimental data obtained from the
Doppler velocimetry of spin propagation [Nat. Phys. 8, 153 (2012).]. We further predict that the coherent spin
precession, originally thought to be broken down at high temperature, is robust up to the room temperature for
narrow quantum wells. We point out that one has to carry out the experiments longer to see the effect of the
coherent spin precession at higher temperature due to the larger crossover time.
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I. INTRODUCTION

Understanding the spin transport phenomena is one of
the most important issues in the fast-developing field of
spintronics1–6 since it is crucial to the realization of the
spintronic devices, such as spin-field-effect transistor.7–11 In
the proposed Datta-Das transistor,7 the “on” and “off” states,
distinguished by a π -phase difference in the spin precession
mode, are switched by the gate voltage, which controls the
coherent spin precession (CSP) of the passing carriers via
the Rashba spin-orbit coupling (SOC)12 acting as an effective
magnetic field. To implement such devices, it is required that
one is able to control and maintain spin polarization over a
long enough distance, preferably at room temperature.

Experimentally, the real space spin transport in semicon-
ductor is studied by using magneto-optic imaging,13,14 or
through conductance/current modulation.10,11 An important
development in the quantitative study of the spin transport is
carried out by using spin transient grating spectroscopy.15–20 In
these experiments, a spin density wave (SDW) with initial spin
polarization Sz(x,0) = S0 cos(qx) is created by two orthogonal
linear polarized light beams at time t = 0, where q is the wave
vector of the SDW and x is the position. Under the influence
of an applied in-plane electric field and the SOC, SDW
picks up a phase and evolves into Sz(x,t) = S0

z (q,t) cos[qx −
φ(t)]. By optically monitoring the temporal evolution of the
amplitude S0

z (q,t), one obtains the spin diffusion coefficient
and relaxation rate.15–21 Very recently, the spin drifting and
CSP were studied by the Doppler velocimetry, which monitors
the phase shift φ(t).15,22 For pure spin drift without spin
precession, the phase shift is simply φ(t) = qvdt , where vd

stands for the drift velocity. The linear increase of phase
shift with time is equivalent to a Doppler shift �ω = vdq.

When both the CSP and drifting are present, the phase shift
deviates from this simple relation and behaves anomalously.
In Ref. 15, Yang et al. reported that at low temperature
(T = 30 K), φ(t) deviates strongly from the simple relation
of qvdt and clearly shows the anomalous behavior caused
by the CSP. However, once the temperature rises to 150 K,
the anomalous behavior of the phase shift disappears in the
time frame of the observation. It was then concluded that CSP
breaks down at high temperature, although the mechanism of
the disappearance of CSP is not clear.15 The disappearance
of CSP at high temperature was claimed to be in consistence
with the previous experimental results in the prototypes of
Datta-Das transistors.10

The temporal evolution of the SDW contains all of the
important information of spin transport, such as spin diffusion
coefficient, spin mobility, and CSP. The transient spin grating
spectroscopy together with the Doppler velocimetry, therefore,
enable one to quantitatively study the spin transport in semi-
conductors. However, the dynamics of SDW is quite complex
when spatial inhomogeneity, applied electric field, as well
as the SOC are present. To correctly extract the information
from the experimental data, a thorough understanding of spin
transport is in demand. Without the electric field, the amplitude
S0

z (q,t) decays biexponentially when the SDW diffuses along
the [11̄0] crystal axis in (001) GaAs quantum wells (QWs)
as spin rotates along the net effective magnetic field due
to the SOC and diffusion.17,21,23 Based on the kinetic spin
Bloch equation (KSBE) approach,5,24 it is shown that the
information about spin diffusion coefficient, CSP, and spin
relaxation can be extracted from the wave-vector dependence
of the two decay rates.21 In this paper we will further extend the
theory to include the electric field and show, both analytically
and numerically, that the theoretical and experimental results
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agree well with each other. We will demonstrate that the CSP
is robust even in high temperature regime for narrow QWs
and point out that to observe the effect of the CSP at high
temperature, one has to carry out the observation for a longer
time than the case at low temperature.

II. ANALYTICAL RESULTS OF THE EVOLUTION
OF THE SDW

As will be shown later, the SDW transporting along the
[11̄0] crystal axis with the wave vector q in a (001) GaAs QW
evolves as

Sz(x,t) = Sz(q,0) exp[−(Dq2 + 1/τs)t]/2

×{e−2Dqq0t cos[qx − vd (q + q ′
0)t]

+ e2Dqq0t cos[qx − vd (q − q ′
0)t]}, (1)

when the SOC is weak enough. Here D, τs , and vd are the
spin diffusion coefficient, spin relaxation time of the SDW,
and the drift velocity under the electric field E, respectively.
q0 = m∗(β̂ + α) and q ′

0 = m∗(β̂ ′ + α), with m∗ representing
the effective mass, α being the Rashba coefficient,12 and β̂,
β̂ ′ both standing for the coefficients of the linear Dresselhaus
term25 with corrections from the cubic Dresselhaus terms.21

Without the applied electric field, vd = 0 and the amplitude
of the SDW decays biexponentially with fast and slow rates
Dq2 + 1/τs ± 2Dqq0.17,21 When there is an applied electric
field but without the CSP (q0 = q ′

0 = 0), the SDW decays
exponentially and gains a phase shift, which changes linearly
with time with a slope qvd , which is equivalent to a normal
Doppler shift in experiments. With the CSP, the situation is
more complex. For small time t � 1/(4D|qq0|), the fast and
the slow modes share the same weights. Therefore, the phase
shift of the SDW reads

φ(t) � [vd (q + q ′
0)t + vd (q − q ′

0)t]/2 = vdqt. (2)

Nevertheless, for large time t � 1/(4D|qq0|), the slow mode
dominates and the phase shift becomes

φ(t) � vd (q − q ′
0)t. (3)

That is, in the presence of the CSP, the phase shift first changes
linearly with a slope qvd , same as the normal Doppler one
without the CSP. After some time, the slope deviates from
the normal one and reduces to vd (q − q ′

0). The sign of the
slope reverses when q < q ′

0. In the special case of q = q ′
0,

the phase approaches a stationary value at large time. The
crossover time of φ(t) from the normal Doppler behavior in
the early stage to the anomalous one at the later stage is about
tc ∼ 1/(4D|qq0|). In the case of small diffusion coefficient,
wave vector of SDW or the SOC, this crossover time can be
larger.

Equation (1) captures all of the qualitative features of the
experimental results15 at low temperature, from the two modes
in the temporal evolution of SDW when E = 0 (hence vd = 0)
to the details of how the phase changes with time and wave
vector when E �= 0. Specifically, the temporal evolution of
the phase can be divided into two stages. In the early stage,
the phase increases with time with a steeper slope. The slope
becomes flatter in the later stage, or even reverses its sign for
small wave vectors. The larger the wave vector is, the quicker

the phase behavior changes from the early stage to the later
stage. All these features qualitatively agree with Eq. (1).

As a result of the increasing electron-phonon scattering
and spin Coulomb drag,17,26–28 the spin diffusion coefficient
D decreases with the increase of temperature. It is, therefore,
expected that at high temperature the crossover time is larger
than that at low temperature. With the correction of the cubic
Dresselhaus term, q0 also reduces as the temperature rises and
the crossover time is further prolonged. If the contribution from
the cubic Dresselhaus term is so large that q0 approaches zero,
then the CSP breaks down completely at high temperature. In
the recent experiments, the CSP is thought to be broken down
at high temperature based on the lack of the clear anomalous
behavior in the phase shift from the observation in a limited
time regime. The cubic Dresselhaus term is speculated to be
the main cause for the breaking down.15 However, this is highly
unlikely because q0 at low temperature only differs by a few
percents from the one at high temperature for the narrow QW
used in the experiments. It should be pointed out that, since
the behaviors of phase in the early stage are the same with or
without the CSP, one should be cautious in determining the
existence of such CSP from the experimental data in limited
time regime, especially when the crossover time tc is large.
In our opinion, purely from the existing experiments, it is
inconclusive to determine whether the CSP survives or not at
high temperature.

To derive the solution [Eq. (1)] and to determine if the CSP
is stable at high temperature, we turn to the full KSBEs for the
spin transport in a (001) GaAs QW grown along the z axis5,6,24

∂ρk(x,t)

∂t
= −eE(x)

∂ρk(x,t)

∂kx

+ kx

m∗
∂ρk(x,t)

∂x

+ i[(htot(k)) · σ/2,ρk(x,t)] + ∂ρk(x,t)

∂t

∣∣∣∣
s

. (4)

Here we assume that the transport direction is along the
x axis. ρk(x,t) are the density matrices of electron with
momentum k = (kx,ky) = (k cos φ,k sin φ) at position x. The
right-hand side of Eq. (4) describes the drift of electrons driven
by the electric field E(x), diffusion caused by the spatial
inhomogeneity, spin precession around the total magnetic field
htot(k) and all the scattering, respectively. The total magnetic
field is composed of the external magnetic field B in the Voigt
configuration, the effective magnetic field h(k) due to the
SOC, as well as the one from the Hartree-Fock term of the
electron-electron Coulomb interaction. The expressions for
the Hartree-Fock and the scattering terms are given in detail in
Refs. 5 and 29. h(k) contains the Dresselhaus and the Rashba
terms:12,25

h(k) = β(−kx cos 2θ + ky sin 2θ,kx sin 2θ + ky cos 2θ,0)

+ γ

(
k2
x − k2

y

2
sin 2θ + kxky cos 2θ

)
(ky, − kx,0)

+α(ky, − kx,0), (5)

where θ is the angle between x axis (the spin injec-
tion/diffusion direction) and the (100) crystal axis.21,30 β =
γπ2/a2 with γ being the Dresselhaus coefficient.25 α rep-
resents the Rashba parameter, which depends on the electric
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field along the growth direction of the QW. Note that we have
included the corrections from the cubic Dresselhaus term.

By expanding the density matrix ρk(x,t) =∑
l ρl(x,k,t)eilφ , the KSBEs can be written as a series

of coupled equations for ρl(x,k,t). By neglecting the
Hatree-Fock term38 and the inelastic scattering and using
the fact that the spin density is S(x,t) = ∑

k Tr{σρk(x,t)} =∫ ∞
0 Tr[σρ0(x,k,t)]kdk/2π , one finds that, to the leading

order, under a uniform applied electric field E, the spin
density obeys the following equation:

∂S
∂t

= D
∂2S
∂x2

+ vd

∂S
∂x

− R · S + 2Dh̄ × ∂S
∂x

+ vd h̄′ × S,

(6)

in which the diffusion coefficient is D = 〈k2τ1/(2m∗2)〉 and
the drift velocity reads vd = 〈eEτ1/m∗〉. The first three terms
of the right-hand side of Eq. (6) describe the diffusion caused
by the spatial inhomogeneity, drift driven by the electric field
as well as the relaxation of the spin polarization, respectively.
The fourth term stands for the spin precession around the net
effective magnetic field (propotional to h̄) due to the joint
effect of the SOC and the diffusion, whereas the last term
is the precession around another net effective magnetic field
(propotional to h̄′) due to the joint effect of the SOC and the
drift, with

h̄ = m∗(−β̂ cos 2θ,β̂ sin 2θ − α,0) (7)

and

h̄′ = m∗(−β̂ ′ cos 2θ,β̂ ′ sin 2θ − α,0). (8)

Here, β̂ = β − γ 〈k2〉/4 and β̂ ′ = β − γ 〈k2〉/2.
As noted in Ref. 21, the solution to this equation is

quite complex in general situation. For transport along the
[110] or [11̄0] crystal axes, or in the case that only the
Dresselhaus or Rashba term is important, the solution is
simpler. To understand the existing experimental results,
here we focus on the transport along the [11̄0] crystal axes
(x axis). In this case, θ = −π/4, Eqs. (7) and (8) can
be further simplified as h̄ = −q0ey and h̄′ = −q ′

0ey with
ey being the unit vector along the y axis ([110] crystal
axis), q0 = m∗(β̂ + α), and q ′

0 = m∗(β̂ ′ + α). Furthermore,
the relaxation matrix R = diag{1/τx,1/τy,1/τz} is diagonal,
with 1/τx = 〈(β̂ + α)2k2τ1/2〉 + 〈γ 2k6τ3/32〉, 1/τy = 〈(β̂ −
α)2k2τ1/2〉 + 〈γ 2k6τ3/32〉, and 1/τz = 1/τx + 1/τy being
spin relaxation rates of spin components along the x, y, and
z direction, respectively. 1/τl = ∫ 2π

0
1

τ (k,θ) cos(lθ )dθ/2π with
τ (k,θ ) standing for the momentum relaxation time due to
the electron-impurity scattering. For a system near the equi-
librium, 〈· · ·〉 = ∫ · · · ∂f (εk)/∂εkd

2k/
∫

∂f (εk)/∂εkd
2k with

f (ε) being the Fermi distribution function.
The right-hand side of Eq. (6) describes the spin diffusion,

drifting, and spin precession around the net effective magnetic
field as well as the spin relaxation. It is noted that a similar
equation is derived by linear response theory,31 kinetic
theory,13,32–35 random walk model,20 and Monte Carlo
simulation.36 Comparing to these approaches, instead of using
phenomenological parameters, we obtain all the transport
parameters fully microscopically. Moreover, we also correctly
take the correction from the cubic Dresselhaus term into
account.

For initially z-polarized SDW with wave vector q, the
solution to Eq. (6) reads

Sz(q,t) = Sz(q,0)[λ+(q)e−�+(q)t + λ−(q)e−�−(q)t ], (9)

with Sz(q,t) being the Fourier component of SDW and Sz(q,0)
standing for the initial spin density,

�±(q) = Dq2 − ivdq + 1/τs ± �/2τy, (10)

λ±(q) = [1 ± 1/�]/2, where 1/τs = (1/τx + 1/τz)/2 and
� = √

1 + 4τ 2
y (2Dqq0 − ivdq

′
0)2. The result is similar to the

one without the applied electric field: the temporal evolution
of Sz(q,t) is composed of two modes, with decay rates
being {�+(q)}, respectively.21 For small electric field, the
difference between the decay rates is quadratic in the field.
Therefore, the electric field has only marginal effect on the
decay rates. However, the electric field introduces additional
spin precession, causing Sz(q,t) to oscillate with frequency
|�{�±(q)}|, which is linear to the electric field for small field.
In the case with |�| � 1, such as in the system with weak
SOC or in the special case when β � α (in these cases, τy

becomes very large), the solution can be further simplified to
λ± � 1/2 and

�±(q) = Dq2 ± 2Dqq0 − ivd (q ± q ′
0) + 1/τs, (11)

one then gets time evolution of the SDW as Eq. (1). It is noted
that by using their dependencies on the SOC and momentum
relaxation time, one can prove that 1/τs = (1/τx + 1/τz)/2 =
1/τx + 1/(2τy) � 1/τx � 〈[m∗(β̂ + α)]2k2τ1/2m∗2〉 �
〈k2τ1/2m∗2〉〈[m∗(β̂ + α)]2〉 = Dq2

0 . Therefore, the real parts
of the decay rates {�±(q)} = Dq2 ± 2Dqq0 + 1/τs �
Dq2 ± 2Dqq0 + Dq2

0 = D(q ± q0)2 are always nonnegative.
This indicates that the amplitude of the SDW does not
increase with time. For the special SDW with q = q0, �−(q)
is purely imaginary, corresponding to the so-called persistent
spin helix19,31,32 when α = β and the cubic Dresselhaus terms
are neglected.

III. NUMERICAL SOLUTION TO THE FULL
KSBE’S FOR THE SDW

To clarify whether the CSP survives at high temperature,
one has to calculate the temporal evolution of the SDW
by numerically solving the full KSBEs. In the calculation,
we include all the relevant scattering, such as the electron-
impurity, electron-AC phonon, electron-LO phonon, as well
as electron-electron Coulomb scattering.39 The material and
structural parameters are chosen from the available experimen-
tal data directly or by fitting the corresponding experimental
data: QW width a = 9 nm, and the electron density Ne =
1.9 × 1011 cm−2. The effective impurity density Ni is set to
be 0.12Ne by fitting the mobility under the laser intensity
of 0.25 μJ · cm−2.40 The Rashba coefficient α = 0 since the
QW is symmetric. The Dresselhaus coefficient γ is set to be
12 meV·Å−3 by fitting the spin relaxation time at T = 30 K.
The KSBEs used here are valid unless the higher subbands of
QW are significantly occupied by electrons. For the parameters
used here, this does not happen until T ∼ 800 K, well above the
room temperature. For wave vector-dependent spin relaxation
times at T = 30 K, shown in the inset of Fig. 1(a), the
theoretical and experimental results are also in very good
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FIG. 1. (Color online) Phase shifts of drifting spin grating under
an applied electric field of E = 2 V/cm for different wave vector at
(a) T = 30 K and (b) T = 150 K. Blue curve/triangle: q =
1.07 cm−1; green curve/square: q = 0.81 cm−1; red curve/diamond:
q = 0.59 cm−1; purple curve/circle: q = 0.34 cm−1, respectively.
Inset of (a): fitting of spin relaxation times τ+ (red curve/circle) and
τ− (blue curve/triangle) at T = 30 K. The dashed purple curve in
(b) is the phase shift for q = 0.34 cm−1 at T = 300 K. All the curves
in the figures are from theoretical calculation, whereas the symbols
are the experimental data from Ref. 15.

agreement. To see the effect of the CSP, we plot the phase
shifts φ(t) of the SDW under the influence of an applied electric
field of E = 2 V/cm at different gratings as function of time in
Fig. 1 for T = 30 and 150 K. For comparison, we also plot the
experimental data in the figure. It can be seen that theoretical
and experimental results agree well with each other. More
importantly, at T = 150 K, both theoretical and experimental
results show influence of the CSP on φ near t = 150 ps, where
the slopes of φ become flat. In the theoretical calculation,
the effect is revealed more clearly for SDW with q = 0.34 ×
104 cm−2 after about 200 ps when the crossover from positive
slope to the negative one is completed. The calculations at

room temperature are also carried out and CSP is found to be
robust even at room temperature. But the crossover from the
early to later stage is further delayed, e.g., for q = 0.34 × 104

cm−1 the crossover from positive slope to the negative one
finishes at around 250 ps, as shown in Fig. 1(b). From these
calculations, one concludes that CSP indeed survives at room
temperature for the narrow QWs studied here, but one has
to carry out the observation for a longer time to observe its
effect on the phase experimentally. This result is consistent
with our previous study on spin transport in GaAs QWs24

and the Datta-Das transistor,37 in which it is shown that
the high-temperature spin precession still exists, although the
amplitude is much weaker than those at low temperatures.

IV. CONCLUSION

In conclusion, we provide a microscopic theory for the
Doppler velocimetry of spin propagation in the presence of
spatial inhomogeneity, driving electric field, and the CSP
due to the joint effect of the SOC and transport in a wide
range of temperature regime. Applying this theory to study
the transport of SDW, we analytically show that in the presence
of the electric field the SDW gains a time-dependent phase
shift φ(t). Without the CSP, φ(t) grows linearly with time
with slope qvd for the SDW with wave vector q, which is
equivalent to a normal Doppler shift in optical measurements.
Due to the CSP caused by the net effective magnetic field
from the joint effect of the SOC and transport, the short time
and the long time behaviors of phase shift are different. At
the early stage, φ(t) grows with time in the same way as
that without the CSP, i.e., with a normal Doppler slope qvd .
At the later stage, the slope reduces to (q − q0)vd , deviating
from the normal Doppler one. For small q the slope at the
later stage even reverses its sign. The crossover time from
the early to the later stages is inversely proportional to the
spin diffusion coefficient D, the wave vector of the SDW q,
and the SOC strength. Since D decreases with the increase
of temperature, the crossover from the early to the later
stage at high temperature would be prolonged. Our numerical
calculations, which include all the relevant scattering such
as the electron-impurity, electron-AC phonon, electron-LO
phonon, and electron-electron Coulomb scattering, agree
quantitatively well with the existing experimental results.
By extending the calculation time beyond the experimental
regime, we predict that the CSP, originally thought to be
broken at high temperature, is robust and stable up to room
temperature. We further point out that to observe the effect
of the CSP on the phase shift, a longer measurement time is
required at higher temperature.
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