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Generation of spin-polarized current using multiterminal quantum dot with spin-orbit interaction
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We theoretically examine generation of spin-polarized current using multiterminal quantum dot with spin-orbit
interaction. First, a two-level quantum dot is analyzed as a minimal model, which is connected to N (�2) external
leads via tunnel barriers. When an unpolarized current is injected to the quantum dot from a lead, a polarized
current is ejected to others, similarly to the spin Hall effect. In the absence of magnetic field, the generation of
spin-polarized current requires N � 3. The polarization is markedly enhanced by resonant tunneling when the
level spacing in the quantum dot is smaller than the level broadening due to the tunnel coupling to the leads. In a
weak magnetic field, the orbital magnetization creates a spin-polarized current even in the two-terminal geometry
(N = 2). The numerical study for generalized situations confirms our analytical result using the two-level model.
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I. INTRODUCTION

The spin-orbit (SO) interaction in semiconductors has
been studied extensively from viewpoints of its fundamen-
tal research and application to spin-based electronics, i.e.,
“spintronics.”1 For conduction electrons in direct-gap semi-
conductors, an external potential U (r) results in the Rashba
SO interaction2,3

HRSO = λ

h̄
σ · [ p × ∇U (r)], (1)

where p is the momentum operator and σ is the Pauli matrix
indicating the electron spin s = σ/2.4 The coupling constant
λ is markedly enhanced by the band effect, particularly in
narrow-gap semiconductors such as InAs and InSb.5,6 The bulk
inversion symmetry is broken in compound semiconductors,
which gives rise to another type of SO interaction, the
Dresselhaus SO interaction.7 It is given by

HDSO = λ′

h̄

[
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]
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In the presence of SO interaction, the spin Hall effect (SHE)
is one of the most important phenomena for the application
to the spintronics. It produces a spin current traverse to an
electric field applied by the bias voltage. There are two types
of SHE. One is an intrinsic SHE, which is induced by the drift
motion of carriers in the SO-split band structures. It creates
a dissipationless spin current.8–10 The other is an extrinsic
SHE caused by the spin-dependent scattering of electrons by
impurities.11 Kato et al. observed the spin accumulation at
sample edges traverse to the current,12 which is ascribable
to the extrinsic SHE with U (r) being the screened Coulomb
potential by charged impurities in Eq. (1).13 The extrinsic
SHE is usually understood semiclassically in terms of skew
scattering and side-jump effect.

In our previous studies,14,15 we theoretically examined the
extrinsic SHE in semiconductor heterostructures due to the
scattering by single artificial potential. The potential created
by antidots, STM tips, and others is electrically tunable.
We adopted the quantum mechanical scattering theory for
this problem. When the potential is axially symmetric in
two dimensions, U (r) with r =

√
x2 + y2 in the xy plane,

electrons feel the potential

Ueff = U (r) + U1(r)lzσz (3)

in the presence of Rashba SO interaction. U1(r) = −λU ′(r)/r

has the same sign as U (r) if |U (r)| is a monotonically
decreasing function of r and λ > 0. For electrons with σz =
1, Ueff = U (r) + U1(r)lz and as a result, the scattering for
components of lz > 0 (lz < 0) is enhanced (suppressed) by
the SO interaction. For electrons with σz = −1, the effect
is opposite. This is the origin of the extrinsic SHE in two-
dimensional electron systems. We showed that the SHE is
significantly enhanced by the resonant scattering when U (r)
is attractive and properly tuned. We proposed a three-terminal
spin filter including a single antidot.

In this study, we examine an enhancement of the “extrinsic
SHE” by resonant tunneling through a quantum dot (QD) in
multiterminal geometries. The QD is a well-known device
showing a Coulomb oscillation when the electrostatic potential
is tuned by a gate voltage.16 The number of electrons is almost
fixed by the Coulomb blockade between the current peaks
of the oscillation. At the current peaks, the resonant tunneling
takes place through discrete energy levels in the QD at low
temperatures of kBT � � with level broadening � due to the
tunnel coupling to the leads. Recently, the SO interaction in
QDs of narrow-gap semiconductors and related phenomena
have been investigated intensively.17–28 We consider a situation
in which a QD with SO interaction is connected to N (�2)
external leads via tunnel barriers. We use the term SHE in the
following meaning: When an unpolarized current is injected
to the QD from a lead (lead S), polarized currents are ejected
to the other leads [D1, . . . ,D(N − 1)]. In other words, the QD
works as a spin filter. We assume that the SO interaction is
present only in the QD and that the average of level spacing in
the QD is comparable to the level broadening � (∼1 meV), in
accordance with experimental situations.17 Thus, the transport
takes place through single or a few energy levels in the
QD around the Fermi level εF in the leads. The strength of
SO interaction �SO [absolute value of hSO in Eq. (6)] is
approximately 0.1 ∼ 0.2 meV for InAs QDs (Refs. 18–21)
and 0.23 meV for InSb QDs.28

Our purpose is to elucidate the mechanism of SHE at a QD
with discrete energy levels. Consider an electron with spin up
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or down injected to the QD from lead D1 (electric current flows
from the QD to lead (D1). The SO interaction in the QD mixes a
few energy levels around εF in a spin-dependent way [a rotation
in the pseudospin space of the levels; see Eq. (8)], whereas the
tunnel coupling to lead D2 mixes the levels differently in a
spin-independent way. The interference between the mixings
results in the spin-polarized electron going out to lead S.
To simply clarify the spin-dependent transport processes, we
neglect the electron-electron interaction. We focus on the
current peaks of the Coulomb oscillation where the interaction
is not qualitatively important.

First, we examine a two-level QD as a minimal model
and present an analytical expression for the spin-dependent
conductance. We assume a single conduction channel in each
of the N leads. In the absence of magnetic field, we show
that three or more leads (N � 3) are required to generate the
spin-polarized current. We observe a large spin polarization by
the resonant tunneling at the current peak when the spacing �

between the two levels in the QD is smaller than �. Although
the SHE at a QD seems quite different from the SHE by an
impurity potential, the condition of � < � would correspond
to the degeneracy for the virtual bound states with ±lz [see
Eq. (3)].29 The preliminary results of this part in this paper
were published in our previous paper.30

Second, we analyze the transport through the two-level
QD in a weak magnetic field. The orbital magnetization is
taken into account to the first order of magnetic field, whereas
the Zeeman effect is neglected. We find the creation of spin-
polarized current in a conventional geometry of two-terminal
QD (N = 2) with finite magnetization b [see Eq. (7); b ∼ h̄ωc

with cyclotron frequency ωc = |e|B/m∗] and enhancement
of the polarization when |b| is comparable to the strength of
the SO interaction �SO (magnetic field of B ∼ 40 mT). This
is ascribable to the interference between the spin-dependent
mixing of energy levels in the QD by the SO interaction and
spin-independent one by the orbital magnetization.

Finally, our analytical results for the two-level QD are
confirmed by numerical study on the QD with several energy
levels. A QD with tunnel barriers to N leads is modeled
on a two-dimensional tight-binding model. We observe spin-
polarized currents for N = 3 (N = 2) in the absence (pres-
ence) of magnetic field. The spin polarization is markedly
enhanced at the current peaks when a few energy levels are
close to each other around εF. The polarized current is large
enough to observe in experiments. We propose its detection by
measuring the electric current through an “inverse SHE,” if a
QD is connected to a ferromagnetic lead.

We make some comments here. (i) Previous theoretical
papers31–34 concerned the spin-current generation in a meso-
scopic region, or an open QD with no tunnel barriers, in which
many energy levels in the QD participate in the transport.
Since we are interested in the resonant tunneling through one
or two discrete levels in the QD, our situation is different from
that in the papers. (ii) This work indicates a QD spin filter
in multiterminal (two-terminal) geometries without (with)
magnetic field although we emphasize the fundamental aspect
of the mechanism for the SHE at a QD. Note that our spin filter
works only at low temperatures since the SHE stems from the
coherent transport processes through the QD. Other spin filters
were proposed using semiconductor nanostructures with SO

interaction, e.g., three- or four-terminal devices related to the
SHE,14,15,35–40 a triple-barrier tunnel diode,41 quantum point
contact,42,43 and a three-terminal device for the Stern-Gerlach
experiment using a nonuniform SO interaction.44 (iii) We do
not consider the electron-electron interaction in this paper,
focusing on the current peaks of the Coulomb oscillation. In
the Coulomb blockade regimes between the current peaks, the
electron-electron interaction plays a crucial role. We examined
the many-body resonance induced by the Kondo effect in
the blockade regime with spin-1/2 in the multiterminal QD.
We showed the generation of largely polarized current in the
presence of the SU(4) Kondo effect when the level spacing
is less than the Kondo temperature.30 We also mention that
an enhancement of SHE by the resonant scattering or Kondo
resonance was examined for metallic systems with magnetic
impurities.45–47

The organization of this paper is as follows. In Sec. II, we
explain a model of two-level QD connected to N external leads.
Section III presents the analytical expressions for the spin-
dependent conductance using the two-level model. In Sec. IV,
we study a generalized situation in which a QD with many
energy levels is connected to N leads through tunnel barriers.
We make a two-dimensional tight-binding model to describe
the situation and perform a numerical study. The last section
(Sec. V) is devoted to the conclusions and discussion.

II. MODEL OF TWO-LEVEL QUANTUM DOT

In this section, we explain our model depicted in Fig. 1(a),
in which a two-level QD is connected to N external leads.
We start from a QD with SO interaction and magnetic field B
in general. The electronic state in the QD is described by the
Hamiltonian

H
(0)
dot = ( p − eA)2

2m∗ + U (r) + HSO(B) (4)

� p2

2m∗ + U (r) + |e|h̄
2m∗ B · l + HSO, (5)

where U (r) is the confining potential of the QD, m∗ is the
effective mass of conduction electrons (m∗/m0 = 0.024 in
InAs with m0 being the electron mass in the vacuum), and A =
(B × r)/2 is the vector potential. Assuming a weak magnetic
field, we neglect the term of A2 and Zeeman effect. For the
SO interaction, HSO can be the Rashba and/or Dresselhaus
interactions in Eqs. (1) and (2). Although p in HSO should be
replaced by ( p − eA) in the presence of magnetic field, the
terms of A in HSO(B) can be disregarded in the case of weak
magnetic field (see Appendix A).

The eigenenergies of p2/(2m∗) + U (r) form a set of
discrete energy levels {εi}. We examine the situation in which
two energy levels ε1 and ε2 are relevant to the transport. The
other levels are located so far from the two levels that the
mixing by HSO or |e|h̄B · l/(2m∗) can be neglected.

The wave functions of the states 〈r|1〉 and 〈r|2〉 can be real
since they are eigenstates of real operator p2/(2m∗) + U (r).
Since the orbital part in HSO is a pure imaginary operator, it
has off-diagonal elements only:

〈2|HSO|1〉 = ihSO · σ/2 (6)
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FIG. 1. Models for a quantum dot (QD) connected to N (�2)
leads. When an unpolarized current is injected to the QD from lead
S, polarized currents are ejected to leads D1 to D(N − 1). (a) A QD
with two energy levels. The tunnel coupling between level j (=1,2)
in the QD and lead α is denoted by Vα,j . (b) A QD (shaded square
region of W × W in area) connected to three leads (quantum wires of
W in width) via quantum point contacts. (c) A QD connected to two
leads via quantum point contacts in the presence of magnetic field.
Models in (b) and (c) are represented on a tight-binding model by
discretizing the two-dimensional space (xy plane).

with hSO = hRSO + hDSO. ihRSO = (2λ/h̄)〈2|( p × ∇U )|1〉
in the case of Rashba interaction, whereas ihDSO,x =
(2λ′/h̄)〈2|px(p2

y − p2
z )|1〉, etc., in the case of Dresselhaus

interaction. For the same reason, 〈1|B · l|1〉 = 〈2|B · l|2〉 = 0
and

|e|h̄
m∗ 〈2|B · l|1〉 = ib/2. (7)

We estimate the value of |b| to be |e|h̄B/m∗ = h̄ωc, where
ωc = |e|B/m∗ is the cyclotron frequency. When h̄ωc =
0.2 meV (��SO), the corresponding magnetic field is B =
40 mT in the case of InAs. If the quantization axis of spin is
taken in the direction of hSO, the Hamiltonian in the QD reads
as

Hdot =
∑
σ=±

(d†
1,σ , d

†
2,σ )

(
ε̄ − �

2
τz + b + σ�SO

2
τy

)(
d1,σ

d2,σ

)
,

(8)

where d
†
j,σ and dj,σ are the creation and annihilation operators

of an electron with orbital j and spin σ , respectively. ε̄ = (ε1 +
ε2)/2, � = ε2 − ε1, and �SO = |hSO|. The Pauli matrices τy

and τz are introduced for the pseudospin representing levels 1
or 2 in the QD. Note that the Hamiltonian in Eq. (8) yields the
energy levels of ε̄ ±

√
�2 + (b + σ�SO)2/2 for σ = + or − in

an isolated QD; the Kramers degeneracy holds only with b =
0. Although the average of level spacing in a QD is assumed to
be δ ∼ 1 meV, the spacing � between a specific pair of levels
fluctuates around δ. � is fixed while the electrostatic potential,
and hence the mean energy level ε̄, is changed by tuning the
gate voltage.

The state |j 〉 in the QD is connected to lead α by
tunnel coupling Vα,j (j = 1,2), which is real. The tunnel
Hamiltonian is

HT =
(leads)∑

α

∑
k,σ

2∑
j=1

(Vα,j d
†
j,σ aαk,σ + H.c.)

=
(leads)∑

α

∑
k,σ

Vα[(eα,1d
†
1,σ + eα,2d

†
2,σ )aαk,σ + H.c.], (9)

where aαk,σ annihilates an electron with state k and spin σ

in lead α. Vα = √
(Vα,1)2 + (Vα,2)2 and eα,j = Vα,j /Vα . We

introduce a unit vector eα = (eα,1,eα,2)T. Vα is controllable by
electrically tuning the tunnel barrier, whereas eα is determined
by the wave functions 〈r|1〉 and 〈r|2〉 in the QD and hardly
controllable for a given current peak. It should be mentioned
that {eα} and � vary from peak to peak in the Coulomb
oscillation. We can choose a peak with appropriate parameters
for the SHE in experiments.

We assume a single channel of conduction electrons in the
leads. The total Hamiltonian is

H =
(leads)∑

α

∑
k,σ

εkc
†
αk,σ cαk,σ + Hdot + HT. (10)

The strength of tunnel coupling to lead α is characterized by
the level broadening �α = πνα(Vα)2, where να is the density
of states in the lead. We also introduce a matrix of �̂ = ∑

α �̂α

with

�̂α = �α

(
(eα,1)2 eα,1eα,2

eα,1eα,2 (eα,2)2

)
. (11)

An unpolarized current is injected into the QD from a
source lead (α = S) and output to other leads [Dn; n =
1, . . . ,(N − 1)]. The electrochemical potential for electrons
in lead S is lower than that in the other leads by |e|Vbias. The
transport through a QD in the multiterminal geometry can be
formulated following the paper by Meir and Wingreen,48 just
as in the two-terminal geometry. The current with spin σ = ±
from lead α to the QD is written as

Iα,σ = ie

πh̄

∫
dε Tr

{
�̂α

[
fα(ε)

(
Ĝr

σ − Ĝa
σ

) + Ĝ<
σ

]}
, (12)

where Ĝr
σ , Ĝa

σ , and Ĝ<
σ are the retarded, advanced, and lesser

Green’s functions in the QD, respectively, in 2 × 2 matrix
form in the pseudospin space. fα(ε) is the Fermi distribution
function in lead α.

Although the current formula in Eq. (12) is applicable in
the presence of electron-electron interaction in the QD, it is
simplified in its absence. Then, Ĝr

σ − Ĝa
σ = −2iĜr

σ �̂Ĝa
σ and

Ĝ<
σ = 2iĜr

σ (
∑

α �̂αfα)Ĝa
σ . The substitution of these relations
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into Eq. (12) yields

IDn,σ = 4e

h

∫
dε[fD(ε) − fS(ε)]Tr

(
Ĝa

σ �̂DnĜ
r
σ �̂S

)
,

where fDn(ε) ≡ fD(ε). At T = 0, the conductance into lead
Dn with spin σ is given by

Gn,σ = −dIDn,σ

dVbias

∣∣∣∣
Vbias=0

= 4e2

h
Tr

[
Ĝa

σ (εF)�̂DnĜ
r
σ (εF)�̂S

]
,

(13)

where the QD Green’s function is

Ĝr
±(ε) =

[(
ε − εd + �

2 i b±�SO
2

−i b±�SO
2 ε − εd − �

2

)
+ i�̂

]−1

. (14)

III. ANALYTICAL RESULTS

We analyze the model of two-level QD, introduced in
the previous section. We show analytical expressions for the
spin-dependent conductance in the absence and presence of
magnetic field, respectively.

A. In absence of magnetic field

We begin with the case of b = 0, or in the absence of
magnetic field. From Eqs. (13) and (14), we obtain

Gn,σ = e2

h

4�S�Dn

|D|2
[
g(1)

n + g(2)
n,σ

]
, (15)

g(1)
n =

[(
εF − ε̄ − �

2

)
eDn,1eS,1 +

(
εF − ε̄ + �

2

)
eDn,2eS,2

]2

,

(16)

g
(2)
n,± =

[
± �SO

2
(eS × eDn)z

+
(leads)∑

α

�α(eDn × eα)z(eS × eα)z

]2

, (17)

where D is the determinant of [Ĝr
σ (εF)]−1 in Eq. (14), which

is independent of σ . (a × b)z = a1b2 − a2b1.
Let us consider two simple cases. (1) When � 
 �α and

�SO, Gn,σ consists of two Lorentzian peaks as a function of
ε̄, reflecting the resonant tunneling through one of the energy
levels ε1,2 = ε̄ ∓ �/2:

Gn,σ ≈ 4e2

h
�S�Dn

∑
j=1,2

(eDn,j eS,j )2

(εj − εF)2 + (�jj )2
. (18)

Here, �jj = ∑
α πνα(Vα,j )2 is the broadening of level j (jj

component of matrix �̂). In this case, the spin-polarized current
[∝ (Gn,+ − Gn,−)] is very small. � should be comparable to
or smaller than the level broadening to observe a considerable
spin current. (2) In a two-terminal QD (N = 2), the term of

∑
α

vanishes in g
(2)
n,±. Since g

(2)
n,+ = g

(2)
n,−, no spin-polarized current

is generated.49 Three or more leads are required to generate a
spin-polarized current, as pointed out by other groups.31,33,50

We examine G1,± in the three-terminal system (N = 3) in
the rest of this section. Then, g(2)

1,± = [±(�SO/2)(eS × eD1)z +
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FIG. 2. Spin-dependent conductance G1,± in the model of two-
level quantum dot in the three-terminal geometry, as a function of
mean energy level ε̄ = (ε1 + ε2)/2. No magnetic field is applied.
Solid (broken) lines indicate the conductance G1,+ (G1,−) for spin
σ = +1 (−1) in the direction of hSO (see Sec. II). The level spacing
in the quantum dot is � = ε2 − ε1 = 0.2� (left panels) and � (right
panels). The level broadening by the tunnel coupling to leads S and D1
is �S = �D1 ≡ � (eS,1/eS,2 = 1, eD1,1/eD1,2 = −2/3), whereas that to
lead D2 is (a) �D2 = 0.1�, (b) 0.5�, (c) �, and (d) 2� (eD2,1/eD2,2 =
2). The strength of spin-orbit interaction is fixed at �SO = 0.2�.

�D2(eD1 × eD2)z(eS × eD2)z]2. We exclude specific situations
in which two out of eS, eD1, and eD2 are parallel to each
other. The conditions for a largely spin-polarized current are
as follows: (i) � � (level broadening), as mentioned above.
Two levels in the QD should participate in the transport.
(ii) The Fermi level in the leads is close to the energy levels in
the QD, εF ≈ ε̄ (resonant condition). (iii) The level broadening
by the tunnel coupling to lead D2, �D2, is comparable to the
strength of SO interaction �SO.

Figures 2 and 4 show two typical results of the conductance
G1,± as a function of ε̄. In g

(1)
1 , eD1,1eS,1 and eD1,2eS,2 have

different (same) signs in Fig. 2 (Fig. 4). Therefore, g(1)
1 = 0 has

no solution (a solution) in −�/2 < ε̄ − εF < �/2. In Fig. 2,
the conductance shows a single peak. We set �S = �D1 ≡ �

and change �D2 from Fig. 2(a) 0.1� to Fig. 2(d) 2�. When � =
0.2� (left panels), we observe a large spin polarization around
the current peak, which clearly indicates an enhancement of
the SHE by the resonant tunneling [conditions (i) and (ii)].
With increasing �D2, the spin current increases first, takes a
maximum in Fig. 2(c), and then decreases [condition (iii)]. This
means that the SHE is tunable by changing the tunnel coupling.
When � = � (right panels), the SHE is less effective; spin
polarization of P = (G1,+ − G1,−)/(G1,+ + G1,−) around the
current peak is smaller than in the case of � = 0.2�. However,
a value of spin-polarized conductance Gn,+ − Gn,− is still
large, as depicted in Fig. 3.

In Fig. 4, the conductance G1,± shows a dip at ε̄ ≈
εF for small �D2. The conductance dip is caused by the
destructive interference between propagating waves through
two orbitals in the QD. In the two-terminal QD without SO
interaction (�D2 = �SO = 0), the conductance G1,σ ∝ g

(1)
1
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FIG. 3. Spin-polarized conductance G1,+ − G1,− in the model of
two-level quantum dot in the three-terminal geometry, as a function
of ε̄. The level spacing in the quantum dot is (a) � = ε2 − ε1 = 0.2�

and (b) �. �D2 = 0.1� (solid line), � (broken line), and 2� (dotted
line). The other parameters are the same as in Fig. 2.

would completely vanish at the dip, where the “phase lapse”
of the transmission phase takes place.51 As seen in Fig. 4,
the conductance dip changes to a peak with increasing �D2

in the three-terminal QD. The SO interaction makes a large
difference between G1,+ and G1,− around the dip or peak,
similarly to the case in Fig. 2. The spin-polarized conductance
G1,+ − G1,− shows a large peak there, as seen in the inset in
Fig. 4. In Fig. 4(a) with �D2 = 0.1�, we find that the spin
polarization of P = (G1,+ − G1,−)/(G1,+ + G1,−) is close to
unity around the dip since G1,− is almost zero.
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FIG. 4. Spin-dependent conductance G1,± in the model of two-
level quantum dot in the three-terminal geometry, as a function of
mean energy level ε̄ = (ε1 + ε2)/2. No magnetic field is applied.
Solid (broken) lines indicate the conductance G1,+ (G1,−) for spin
σ = +1 (−1) in the direction of hSO (see Sec. II). The level spacing
in the quantum dot is � = ε2 − ε1 = 0.5�. The level broadening by
the tunnel coupling to leads S and D1 is �S = �D1 ≡ � (eS,1/eS,2 =
1, eD1,1/eD1,2 = 2/3), whereas that to lead D2 is (a) �D2 = 0.1�,
(b) 0.5�, (c) �, and (d) 2� (eD2,1/eD2,2 = 2). The strength of spin-orbit
interaction is fixed at �SO = 0.2�. Inset: Spin-polarized conductance
(G+ − G−) in units of e2/h, as a function of ε̄. �D2 = 0.1� (solid
line), 0.5� (broken line), and 2� (dotted line).

B. In presence of magnetic field

Now, we discuss the case with magnetic field: b �= 0. The
conductance into lead Dn with spin σ is

Gn,σ = e2

h

4�S�Dn

|Dσ |2
[
g(1)

n + g(2)
n,σ

]
, (19)

where g(1)
n is the same as that in Eq. (16), whereas

g
(2)
n,± =

[
b ± �SO

2
(eS × eDn)z

+
(leads)∑

α

�α(eDn × eα)z(eS × eα)z

]2

. (20)

The determinant of [Ĝr
σ (εF)]−1, Dσ , depends on σ in this case.

In contrast to the case of b = 0, we observe the
spin-dependent transport in a conventional geometry of
two-terminal QD (N = 2). Then, g

(2)
1,± = (b ± �SO)2(eS ×

eD1)2
z/4. We expect a large spin polarization when (iii′) b and

�SO are comparable to each other, besides conditions (i) and
(ii) in the previous section are satisfied.

We focus on the two-terminal QD (N = 2) in this section.
Figures 5 and 7 exhibit the spin-dependent conductance G1,±
as a function of ε̄. eD1,1eS,1 and eD1,2eS,2 have different (same)
signs in Fig. 5 (Fig. 7). We set �S = �D1 ≡ �, whereas the
orbital magnetization is gradually increased from (a) to (d)
in Fig. 5, or from (a) to (c) in Fig. 7. In Fig. 5, the level
spacing in the QD is � = 0.2� in the left panels and � = � in
the right panels. In the absence of magnetic field (b = 0), we
do not observe the spin-polarized current in the two-terminal

-3-2-1 0 1 2 3
 0

 0.6

 0.1

G
1,

+ −
(e

2 /h
)

(a)

(b)

(c)

(d)
 0

 0

 0

 0.3

 0.1

-3-2-1 0 1 2 3

 0.8

 0.6 (a′)

(b′)

(c′)

(d′)

 0.6

 0.6

 0

 0

 0

 0

FIG. 5. Spin-dependent conductance G1,± in the model of two-
level quantum dot in the two-terminal geometry, as a function of
mean energy level ε̄ = (ε1 + ε2)/2, in the presence of magnetic field.
Solid (broken) lines indicate the conductance G1,+ (G1,−) for spin
σ = +1 (−1) in the direction of hSO (see Sec. II). The level spacing
in the quantum dot is � = ε2 − ε1 = 0.2� (left panels) and � (right
panels). The level broadening by the tunnel coupling to leads S and
D1 is �S = �D1 ≡ � (eS,1/eS,2 = 1, eD1,1/eD1,2 = −2/3). The orbital
magnetization is (a) b = 0.02�, (b) 0.1�, (c) 0.5�, and (d) �. The
strength of spin-orbit interaction is fixed at �SO = 0.2�.
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FIG. 6. Spin-polarized conductance G1,+ − G1,− in the model of
two-level quantum dot in the two-terminal geometry, as a function of
ε̄, in the presence of magnetic field. The level spacing in the quantum
dot is (a) � = ε2 − ε1 = 0.2� and (b) �. The orbital magnetization b

is b = 0.02� (solid line), 0.1� (broken line), and 0.5� (dotted line).
The other parameters are the same as in Fig. 5.

geometry, as discussed in the previous section. With an
increase in b, the difference between G1,+ and G1,− increases,
becomes maximal at b ∼ �SO, and decreases [condition (iii′)].
The SHE is more prominent for � = 0.2� than for � = �;
the polarization P is larger in the former. Figure 6 shows the
spin-polarized conductance G1,+ − G1,− as a function of ε̄.
We observe a large value even in the case of � = � if both the
magnetic field and ε̄ are properly tuned.

In Fig. 7, we observe a dip of conductance at ε̄ ≈ εF. Around
the dip, the spin-polarized current is largely enhanced as shown
in the inset. In Fig. 7(a), with b = 0.1�, the spin polarization of
P = (G1,+ − G1,−)/(G1,+ + G1,−) is close to unity because
G1,− almost vanishes.

IV. NUMERICAL STUDY

In the previous section, we have presented the analytical
expressions for the spin-dependent conductance for the model
of two-level QD. We have illustrated the generation of spin-
polarized current in three- and two-terminal geometries in the
absence and presence of magnetic field, respectively. In this
section, we perform numerical studies for the QD with many
energy levels to confirm our analytical results. A QD with
tunnel barriers to N leads (N = 2,3) in Figs. 1(b) and 1(c) is
modeled on the tight-binding model in the xy plane.

A. Model

In Figs. 1(b) and 1(c), N leads connect to a QD via
tunnel barriers. The N leads are represented by quantum
wires of width W with hard-wall potential at the edges. The
electrostatic potential in the QD (shaded square region of
W × W ) is changed by eVg. The tunnel barriers are described
by quantum point contacts (QPCs). Along a quantum wire in
the x direction, the QPC is described by the potential52

U (x,y; U0) =
{

U0

2

[
1 + cos

(
πx

LQPC

)]

+ εF

∑
±

(
y − y±(x)

WQPC

)2

θ (y2 − y±(x)2)

}
(21)

-1 0 1
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(b)
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−

 0

 0.2

-0.2

FIG. 7. Spin-dependent conductance G1,± in the model of two-
level quantum dot in the two-terminal geometry, as a function of mean
energy level ε̄ = (ε1 + ε2)/2, in the presence of magnetic field. Solid
(broken) lines indicate the conductance G1,+ (G1,−) for spin σ = +1
(−1) in the direction of hSO (see Sec. II). The level spacing in the
quantum dot is � = ε2 − ε1 = 0.5�. The level broadening by the
tunnel coupling to leads S and D1 is �S = �D1 ≡ � (eS,1/eS,2 =
1, eD1,1/eD1,2 = 2/3). The orbital magnetization is (a) b = 0.1�,
(b) 0.5�, and (c) �. The strength of spin-orbit interaction is fixed at
�SO = 0.2�. Inset: Spin-polarized conductance (G+ − G−) in units
of e2/h, as a function of ε̄. b = 0.1� (solid line), 0.5� (broken line),
and � (dotted line).

at −LQPC < x < LQPC, where

y±(x) = ±W

4

[
1 − cos

(
πx

LQPC

)]
(22)

and θ (t) is a step function [θ = 1 for t > 0, θ = 0 for t < 0].
U0 is the potential height of the saddle point of QPC, whereas
LQPC and WQPC characterize the thickness and width of the
QPC, respectively. In the QD (shaded square region), the QPC
potential is modified to U (x,y; U0 − eVg) + eVg. In Fig. 1(b),
we cut off the QPC potential at the diagonal lines of the square
to avoid the overlap of two QPC potentials.

As for the SO interaction, we consider the Rashba interac-
tion caused by the QPC potential in Eq. (21), that is,

HSO = λ

h̄
σz

[
px

∂U

∂y
− py

∂U

∂x

]
. (23)

We choose the z direction for the spin axis (hSO ‖ z direction).
In the two-terminal geometry of Fig. 1(c), we consider a
magnetic field perpendicular to the xy plane only in the
region surrounded by dotted line. We adopt the vector potential
of A = (−By,0,0) for the orbital magnetization and neglect
the Zeeman effect. We discretize the two-dimensional space
with QPC potentials and obtain the tight-binding model. We
numerically evaluate the spin-dependent conductance, using
the calculation method in Appendix B.

We consider the following situation. The width of quantum
wires is W = 100 nm. The lattice constant of the tight-binding
model is a = W/30 (number of sites is M = 29 in width
of the wires). For the SO interaction, the dimensionless
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coupling constant is λ̃ = λ/(2a2) = 0.05, which corresponds
to λ = 1.171 nm2 in InAs.5 The Fermi wavelength and
Fermi energy in the leads are fixed at λF = W/3 and
εF/t = 2 − 2 cos(2πa/λF) � 0.382, respectively. (There are
six conduction channels in each lead. However, the single
channel is effectively coupled to the QD owing to the QPC
potential between the QD and the lead.) For the QPC potential,
LQPC = WQPC = λF. U0 = 0.8εF at the connection to leads S
and D1, whereas U0 at the connection to lead D2 is changed
from U0/εF = 1.1 to 0.6 to tune the tunnel coupling �D2 in the
three-terminal geometry of Fig. 1(b). In Fig. 1(c), the magnetic
field is applied up to h̄ωc/εF = 30 × 10−4, which corresponds
to B � 34 mT.

B. Numerical results

Figure 8 presents the spin-dependent conductance G1,σ in
Fig. 1(b) of three-terminal QD, in the absence of magnetic
field. σ = ±1 indicates the z component of electron spin.
The conductance shows a peak structure as a function of
electrostatic potential in the QD, eVg, reflecting the resonant
tunneling through discrete energy levels in the QD. Although
this is similar to the Coulomb oscillation, the peak-peak
distance is underestimated because we neglect the electron-
electron interaction.

The average of the level spacing is larger than the level
broadening in Fig. 8. Therefore, the difference between G1,+
and G1,− is usually small. We observe a large spin-polarized
conductance G1,+ − G1,− around some conductance peaks
where a few levels should be close to each other around εF.

 0.5

 0

 0.5

 0

 0.5

 0.3

 0
 0.6  0.1

 0

 0.5

G
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+ −
(e

2 /h
)

(a)

(b)

(c)

(d)

 0.3 0.4  0.2

FIG. 8. Numerical results of spin-dependent conductance G1,±
in model of Fig. 1(b), as a function of electrostatic potential in the
quantum dot, eVg. No magnetic field is applied. Solid (broken) lines
indicate the conductance G1,+ (G1,−) for spin σ = +1 (−1) in the z

direction. The height of QPC potential is U0 = 0.8εF at the connection
to leads S and D1, whereas (a) U0/εF = 1.1, (b) 0.9, (c) 0.8, and
(d) 0.6 at the connection to lead D2.

-0.2

 0

 0.26 0.28  0.24  0.22

 0.2

G
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−
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2 /h
)

FIG. 9. Spin-polarized conductance G1,+ − G1,− as a function
of eVg in model of Fig. 1(b). The height of QPC potential at the
connection to lead D2 is U0/εF = 1.1 (solid line), 0.9 (broken line),
0.8 (dotted line), and 0.6 (dotted broken line). The other parameters
are the same as in Fig. 8.

Look at the conductance around eVg/εF = 0.25. With increas-
ing the tunnel coupling to lead D2 by decreasing the height of
QPC potential U0, the spin-polarized conductance increases,
becomes maximal, and decreases. This is in accordance with
the analytical result in Sec. III A although it is hard to evaluate
the level spacing and signs of tunnel coupling around εF.
Figure 9 plots G1,+ − G1,− as a function of eVg, which seems
complicated probably due to the interference among three
levels in the QD.

Figure 10 shows the spin-dependent conductance G1,σ in
Fig. 1(c) of two-terminal QD, in the presence of magnetic
field. A large spin-polarized conductance is obtained around
eVg/εF = −0.21. The difference of G1,+ − G1,− is changed
with increasing magnetic field perpendicular to the QD.
As shown in Fig. 11, the absolute value of spin-polarized

-0.22-0.20-0.18

(a)

(b)

(c)

 0

 1

G
1,

+ −
(e

2 /h
)

 0

 1

 0

 1

FIG. 10. Numerical results of spin-dependent conductance G1,±
in model of Fig. 1(c), as a function of electrostatic potential in the
quantum dot eVg in the presence of magnetic field. Solid (broken)
lines indicate the conductance G1,+ (G1,−) for spin σ = +1 (−1)
in the z direction. The magnetic field is (a) h̄ωc/εF = 2 × 10−4,
(b) 10 × 10−4, and (c) 30 × 10−4.
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FIG. 11. Spin-polarized conductance G1,+ − G1,− as a function
of eVg in model of Fig. 1(c) in the presence of magnetic field. The
magnetic field is h̄ωc/εF = 2 × 10−4 (solid line), 10 × 10−4 (broken
line), and 30 × 10−4 (dotted line). The other parameters are the same
as in Fig. 10.

conductance increases, becomes maximal, and decreases, in
accordance with the analytical result in Sec. III B.

V. CONCLUSIONS AND DISCUSSION

We have studied the mechanism of SHE at a QD with
discrete energy levels in multiterminal geometries. We have
considered a QD with SO interaction connected to N external
leads via tunnel barriers. When an unpolarized current is
injected to the QD from a lead, a polarized current is ejected to
others. N � 3 (N � 2) is required in the absence (presence)
of magnetic field for the generation of spin-polarized current.

First, we have obtained the analytical expressions for
the spin-dependent conductance using a minimal model of
two-level QD. The SHE is markedly enhanced by the resonant
tunneling when the level spacing in the QD is smaller than the
level broadening due to the tunnel coupling to the leads. In the
absence of magnetic field, the spin polarization can be tuned by
changing the tunnel coupling to the lead other than source and
drain leads in a three-terminal geometry. A weak magnetic field
can tune the spin polarization in a two-terminal geometry. Sec-
ond, we have performed numerical studies on the tight-binding
model representing a QD with tunnel barriers to N leads.
We have observed a large spin-polarized conductance at some
current peaks when a few energy levels in the QD are close to
each other around εF. The numerical results are in accordance
with our analysis of the minimal model of two-level QD.

In our calculation, we have neglected the electron-electron
interaction. Therefore, our theory is applicable only around the
current peaks of the Coulomb oscillation, where the interaction
is not qualitatively important. We have also neglected the
Zeeman effect. In spite of a large g factor in InAs (|g| ∼
10),20–23,26,27 the Zeeman effect is smaller than the orbital
magnetization by one order of magnitude for B ∼ 40 mT,
as estimated in Appendix A. In the absence of SO interaction,
the Zeeman effect would split a spin-degenerate level in the
QD, which could result in the spin-polarized current by the
resonant tunneling through one of the spin-split levels. In our
situation, however, the spin splitting is much smaller than
the level broadening, and hence the spin polarization by the
Zeeman effect is negligibly small.

We discuss a possible observation of the SHE at a
QD. Since the measurement of a spin-polarized current is
usually difficult, an alternative method is desirable. Hamaya
et al. fabricated InAs QDs connected to ferromagnets.53 If a
ferromagnet is used only for lead S and a normal metal or
semiconductor is used for the other leads, an “inverse SHE”
takes place. The electric current to lead D1 is proportional
to (1 + p cos θ )G1,+ + (1 − p cos θ )G1,−, where p is the
polarization in the ferromagnet and θ is the angle between
the magnetization and hSO. Thus, G1,+ and G1,− can be
evaluated by measuring the electric current with rotating the
magnetization of the ferromagnet. The QDs are highly tunable
systems. We believe that the detailed study of the generation
of spin-polarized current at the QDs would contribute to the
deeper understanding of the SHE.
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APPENDIX A: APPROXIMATION IN WEAK
MAGNETIC FIELD

In the presence of magnetic field and SO interaction, the
Hamiltonian in Eq. (4) is approximated to that in Eq. (5) for
the following reasons. We consider the situation in which the
average of level spacing in the QD is δ ∼ h̄2/(m∗d2) � 1 meV,
the strength of SO interaction is �SO � 0.2 meV, and magnetic
field of h̄ωc ∼ �SO or smaller. Here, d is the one-dimensional
size of the QD, effective mass m∗/m0 � 0.024 in InAs, and
ωc = |e|B/m∗ is the cyclotron frequency.

We choose the gauge of A = (B × r)/2 in the model of
two-level QD. The first order in A in Hamiltonian (4) gives
rise to the matrix element in Eq. (7). |b| ∼ h̄ωc, as denoted
in Sec. II. The second order in A yields e2/(8m∗)〈i|(B ×
r)2|j 〉 ∼ (eBd)2/m∗ = (h̄ωc)2/δ, which is smaller than the
first-order term by h̄ωc/δ � 1. We also neglect the Zee-
man effect HZ = gμB B · σ/2, where μB = |e|h̄/(2m0) is the
Bohr magneton. We estimate the effect to be |g|μBB/2 =
(|g|/4)(m∗/m0)h̄ωc. Since |g| ∼ 10 in InAs,20–23,26,27 the
Zeeman term is smaller than the orbital magnetization |b| by
one order of magnitude.

In the presence of magnetic field, p in HSO is replaced by
( p − eA). In the case of Rashba interaction,

HRSO(B) = λ

h̄
[( p − eA) × ∇U ]

= λ

h̄
( p × ∇U ) − eλ

2h̄
[(B × r) × ∇U ]. (A1)

The matrix element of the first term in Eq. (A1) is esti-
mated to be (λ/h̄)|〈2| p × ∇U |1〉| ∼ (λ/d2)δ, whereas that
of the second term is to be |e|λ/(2h̄)|〈i|(B × r) × ∇U |j 〉| ∼
(|e|λB/h̄)δ. The latter is smaller than the former by a factor
of h̄ωc/δ � 1, and thus it is safely disregarded. In the case of
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Dresselhaus interaction,

HDSO(B) = λ′

h̄
[(πyπxπy − πzπxπz)σx

+ (πzπyπz − πxπyπx)σy

+ (πxπzπx − πyπzπy)σz], (A2)

where π = p − eA. The matrix element of the terms without
A [Eq. (2)] is estimated to be (λ′h̄2/d3) and that of the first
order in A is to be (λ′h̄/d)|e|B. Again, the latter is smaller
than the former by a factor of h̄ωc/δ � 1.

APPENDIX B: NUMERICAL CALCULATION OF
TIGHT-BINDING MODEL

In the model of Figs. 1(b) and 1(c), we discretize the xy

plane with QPC potentials and obtain the two-dimensional
tight-binding model of square lattice.54 The lattice constant is
denoted by a. For the region surrounded by the dotted line, the
Hamiltonian is given by

H = t
∑
j,l,σ

(4 + Ũj,l)c
†
j,l;σ cj,l;σ − t

∑
j,l,σ

(Tj,l;j+1,l;σ c
†
j,l;σ cj+1,l;σ

+ Tj,l;j,l+1;σ c
†
j,l;σ cj,l+1;σ + H. c.), (B1)

where c
†
j,l;σ and cj,l;σ are creation and annihilation operators

of an electron at site (j,l) with z component of spin σ =
±1, respectively. The transfer integral is t = h̄2/(2m∗a2).
Ũj,l represents the QPC potential and electrostatic potential
in the QD, at site (j,l) in units of t . The transfer term in the x

direction is given by

Tj,l;j+1,l;± = {1 ± iλ̃(Ũj+1/2,l+1/2 − Ũj+1/2,l−1/2)}ei2πB̃l,

(B2)

where λ̃ = λ/(2a2) is a dimensionless strength of SO inter-
action and Ũj+1/2,l+1/2 is the potential at the middle point
between the sites (j,l) and (j + 1,l + 1). The magnetic field
in the QD is taken into account by the Peierls phase factor ei2πB̃l

with B̃ = |e|Ba2/h. B̃ is related to the cyclotron frequency
by B̃ = h̄ωc/(4πt). The transfer term in the y direction is
given by

Tj,l;j,l+1;± = 1 ∓ iλ̃(Ũj+1/2,l+1/2 − Ũj−1/2,l+1/2). (B3)

To randomize the discrete energy levels in the QD, we
introduce a uniformly distributed onsite energy wi,j in the
range of −Wran/2 � wi,j � Wran/2. We choose Wran = 0.2εF.
We disregard the SO interaction induced by the random
potential.

The spin-dependent conductance is numerically evaluated
in the following way. First, we define the channels in the

leads outside of the dotted line, which are represented by
the quantum wires of width W = (M + 1)a. Consider a
quantum wire in the x direction. There are M channels,
Mcond of which are conduction modes and (M − Mcond) are
evanescent modes. The wave function of conduction mode μ

(μ = 1,2, . . . ,Mcond) is written as

ψμ(j,l) = exp(ikμaj )uμ(l), (B4)

uμ(l) =
√

2

M + 1
sin

(
πμl

M + 1

)
, (B5)

with l = 0,1,2, . . . ,M . The wave number kμ satisfies εμ(kμ) =
εF, where the dispersion relation is given by

εμ(k) = 4t − 2t cos

(
πμ

M + 1

)
− 2t cos(ka). (B6)

The band edge εμ(k = 0) is located below εF for the conduction
modes. The wave function of evanescent mode μ (μ =
Mcond + 1, . . . ,M) is written as

ψμ(j,l) = exp(−κμaj )uμ(l), (B7)

where aj is the distance from the end of lead. The band edge
is located above εF and κμ is determined from εμ(iκμ) = εF.

Next, we introduce the retarded Green’s function Ĝσ (ε) for
the inside region of the dotted line in Figs. 1(b) and 1(c). Here,
σ = ±1 represents the z component of spin, which is a good
quantum number in Hamiltonian (B1). It is defined by

Ĝσ (ε) =
[
εI − Hσ −

∑
α=S,Dn

�α

]−1

, (B8)

where Hσ is the matrix of Hamiltonian with spin σ = ±. �α is
the self-energy due to the tunnel coupling to lead α(= S,Dn)
and given by

�α = −t τ †
αU�U−1τα. (B9)

U = (u1,u2, . . . ,uM ) is a unitary matrix, with
uμ = [uμ(1),uμ(2), . . . ,uμ(M)]T in Eq. (B5). � =
diag(λ1,λ2, . . . ,λM ), where λμ = exp(ikμa) for conduction
modes and λμ = exp(−κμa) for evanescent modes. τα is a
coupling matrix to lead α; τα(l,αl) = 1 if site αl is connected
to the site l (= 1,2, . . . ,M) at the end of the lead τα(l,αl) = 0
otherwise.54 The conductance from lead S to D1 can be
evaluated separately for σ = ±1 of the z component of
spin. The spin-dependent conductance is calculated using the
formula

G1,± = 4e2

h
Tr[�D1Ĝ±(εF)�SĜ

†
±(εF)] (B10)

at T = 0, where �α = i[�α − �†
α]/2.54
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P. Šeba, Phys. Rev. Lett. 83, 376 (1999).
36A. A. Kiselev and K. W. Kim, Appl. Phys. Lett. 78, 775 (2001).
37A. A. Kiselev and K. W. Kim, J. Appl. Phys. 94, 4001 (2003).
38T. P. Pareek, Phys. Rev. Lett. 92, 076601 (2004).
39M. Yamamoto and B. Kramer, J. Appl. Phys. 103, 123703 (2008).
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