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Interacting one-dimensional electron systems are generally referred to as “Luttinger liquids,” after the effective
low-energy theory in which spin and charge behave as separate degrees of freedom with independent energy
scales. The “spin-incoherent Luttinger liquid” describes a finite-temperature regime that is realized when the
temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale. Similar
physics can take place in the ground state, when a Luttinger liquid is coupled to a spin bath, which effectively
introduces a “spin temperature” through its entanglement with the spin degree of freedom. We show that the
spin-incoherent state can be written as a factorized wave function, with a spin wave function that can be described
within a valence bond formalism. This enables us to calculate exact expressions for the momentum distribution
function and the entanglement entropy. This picture holds not only for two antiferromagnetically coupled t-J
chains, but also for the t-J -Kondo chain with strongly interacting conduction electrons. We argue that this theory
is quite universal and may describe a family of problems that could be dubbed “spin incoherent.”
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I. INTRODUCTION

The physics of correlated low dimensional systems is quite
different than their higher dimensional counterparts. In three
dimensions, the physics can be described within Fermi liquid
theory, that states that there is a one-to-one correspondence
between the excitations of a weakly interacting Fermi system,
so-called quasiparticles, and the excitations of a noninteracting
one. Quasiparticles preserve the same quantum numbers as
the original excitations in the original system. This scenario
breaks down in one dimension (1D): In this case, the Fermi
surface reduces to two points in momentum space, at k = ±kF ,
and the resulting nesting, pervasive at all densities, prevents
the application of perturbation theory. This leads to a new
paradigm: the Luttinger liquid.1–3 In a Luttinger liquid (LL),
the natural excitations are collective density fluctuations, that
carry either spin (“spinons”) or charge (“holons”). These
excitations have different dispersions, and obviously, do not
carry the same quantum numbers as the original fermions. This
leads to the spin-charge separation picture, in which a fermion
injected into the system breaks down into excitations carrying
different quantum numbers, each with a characteristic energy
scale and velocity (one for the charge, one for the spin).

Recently, a previously overlooked regime at finite temper-
ature has come to light: the “spin-incoherent Luttinger liquid”
(SILL).4–9 If the spinon bandwidth is much smaller than the
holon bandwidth, a small temperature relative to the Fermi
energy may actually be felt as a very large temperature by the
spins. In fact, the charge will remain very close to the charge
ground state, but the spins will become totally incoherent,
effectively at infinite temperature. This regime is characterized
by universal properties in the transport, tunneling density of
states, and the spectral functions.8

In Ref. 10, it was shown how this crossover from spin
coherent to spin incoherent is characterized by a transfer of
spectral weight. Remarkably, the photoemission spectrum of
the SILL can be understood by assuming that after the spin is
thermalized, the charge becomes spinless, with a shift of the
Fermi momentum from kF to 2kF . In a followup paper,11 it was

shown that a coupling to a spin bath can have a similar effect
as temperature, but in the ground state. The “spin-incoherent”
ground state will have the same qualitative features as the SILL
at finite temperature. In this work we formalize this conjecture
into a unified theory that describes the spin-incoherent ground
state for a variety of model Hamiltonians, such as the t-J -
Kondo chain and t-J ladders. The main ingredient for the
validity of this theory is to have a very flat spinon dispersion,
which corresponds to the limit in which spin and charge
completely decouple from each other. This formalism is exact
in this limit, and provides a new theoretical framework to
understand spin-incoherent physics, including the structure of
the Kondo lattice ground state and entanglement.

We start our study by considering an isolated chain of
strongly interacting fermions, described by a Hubbard Hamil-
tonian, or equivalently, by the t-J model in one dimension:

H = −t

L∑
i=1,σ

(c†iσ ci+1σ + H.c.) + J

L∑
i=1

(
�si · �si+1 − 1

4
nini+1

)
,

(1)

with the implicit constraint forbidding double occupancy.
Here, c

†
iσ creates an electron of spin σ on the ith site along a

chain of length L. The exchange energy is parametrized by J ,
and we take the interatomic distance as unity. We express all
energies in units of the hopping parameter t .

In the J = 0 limit, the ground state of this Hamiltonian
can be described by the Ogata and Shiba’s factorized wave
function,12 which is the product of a fermionic wave function
|φ〉, and a spin wave function |χ〉:

|g.s.〉 = |φ〉 ⊗ |χ〉. (2)

The first piece, |φ〉, describes the charge degrees of freedom,
and is simply the ground state of a one-dimensional tight-
binding chain of N noninteracting spinless fermions. The spin
wave function |χ〉 corresponds to a “squeezed” chain of N

spins, where all the unoccupied sites have been removed. In
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this limit, the charge and the spin are governed by independent
Hamiltonians. Since the spin energy scale is determined by J ,
and for the rest of this work we take J = 0, the spin states
are degenerate, and the charge dispersion becomes that of
a noninteracting band ε(k) = −2t cos(k). However, any finite
value of J will lift this degeneracy and give the spin excitations
a finite bandwidth. Notice that in finite systems, the spin degree
of freedom affects the charge through an effective magnetic
flux, which in the examples shown here is always identically
zero.13–15

Let us assume that we antiferromagnetically couple our
chain to a bath of spins. Regardless of the internal structure and
dynamics of the bath, it is easy to realize that the charge will be
in principle unaffected by it, while the spin degree of freedom
will get entangled into a many-body state with the spins from
the bath. If we trace over the bath, we expect the spins of
the chain to be at an effective finite temperature, parametrized
by the magnitude of the system-bath coupling (even though
the entire chain plus bath are in a pure state: the ground state
of the Hamiltonian). Therefore, the spins of the chain can be
driven incoherent by this interaction, while the charge remains
in the ground state. This physics is completely analogous to
the SILL physics at finite temperature. We should point out
that the coupling with the bath may introduce a gap in the
excitation spectrum, but it is to be expected that in the regime
of interest the gap would remain exponentially small, with the
aforementioned picture basically unchanged (whether there is
a gap, and/or a critical value of couplings to open a gap, is
beyond the scope of this work). In Ref. 11 it was numerically
shown that this physics is indeed realized in the t-J -Kondo
chain with strongly correlated conduction electrons, where the
Kondo impurities act as an effective spin bath. In this paper we
calculate the exact ground state of this system in this limit, and
also coupled t-J chains, and we show that the structure of the
ground state is quite universal, and indicates the path toward a
unified formalism to describe spin-incoherent behavior at zero
and finite temperatures.

II. COUPLED t- J CHAINS

Let us assume two chains governed by the Hamiltonian
(1), and we take the J → 0. In the limit in which the chains
are independent, the exact ground state will be that of two
decoupled factorized wave functions of the form (2):

|g.s.〉 = |g.s.〉1 ⊗ |g.s.〉2 = |φ〉1 ⊗ |φ〉2 ⊗ |χ〉1 ⊗ |χ〉2, (3)

where the subindex λ = 1,2 refers to the chain index. Now
we introduce a small but finite antiferromagnetic interaction
between the chains of the form

H ′ = J ′
L∑

i=1

�si,1 · �si,2, (4)

where J ′ parametrizes the interaction perpendicular to the
direction of the chains, along the rungs of a ladder. This
is equivalent to a t-J ladder without interchain hopping.
We acknowledge that this is a very idealized scenario, since
the presence of exchange always implies the existence of a
hopping, since J ′ ∼ t ′2. Still, this could be considered a model
for a two band problem with a Hund coupling, as studied in

Ref. 16. It is to be expected that this interaction will couple
the spin pieces of the wave function |χ〉1 and |χ〉2, leaving the
charge unaltered:

|g.s.〉 = |φ〉1 ⊗ |φ〉2 ⊗ |S〉, (5)

where |S〉 represents the many body state of the spins for the
two coupled chains, once they become entangled by action of
the Hamiltonian H ′. It is also to be expected that this state |S〉
will be a singlet. However, the exact structure of this singlet is
not necessarily trivial.

Without attempting to deduce the exact effective Hamilto-
nian for the spin sector, we shall propose a variational ansatz
for the wave function, that we later prove to be exact by
numerical means. We argue that every time two spins interact
on a rung via H ′, they will become entangled forming a
singlet. Since the interaction along the chain is set to J = 0,
these spins will remain entangled as they move apart from
each other by action of the hopping term. Therefore, this
entanglement persists at infinite distance. If we consider a
system with periodic boundary conditions, it is to be expected
that eventually all spins from one chain will interact with all
the spins on the second chain. In a one dimensional system,
they cannot hop past each other, but in a chain with periodic
boundary conditions, they can wind around the boundaries
and come from the other side. Therefore, we will have a
superposition of singlets that connect all possible pairs of spins
on both chains, and at all distances, with the same amplitude.
In order to describe this wave function it is useful to resort
to a valence bond (VB) picture.17–20 Let us assume that each
chain corresponds to a sublattice. Then, our wave function is
the equal superposition of all possible valence-bond coverings
connecting the two sublattices, as shown in Fig. 1 for the
particular case of three electrons per chain.

In order to prove that our guess accurately describes the
physics, we have numerically computed the overlap between
the exact ground state and the variational ansatz on small
systems with periodic boundary conditions. We assumed
Sz

Total = 0 and took the number of particles not a multiple
of two, to avoid degeneracies. We show the results in Fig. 2(a),
for different values of J ′. The overlap is 1 within numerical
precision for a range of small values of J ′. As J ′ increases, we
observe how this overlap becomes smaller, but still remains
higher than 0.9 for J ′ < 0.1. This range depends only on the
number of conduction electrons N , and tends to get smaller as
N increases.

Having shown that the ansatz is a good description of
the spin-incoherent regime for J ′ → 0, we proceed to derive

FIG. 1. (Color online) Possible singlet coverings for two sublat-
tices, and three spins per sublattice.
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FIG. 2. (Color online) Exact diagonalization
results for small ladders of length L, and N

electrons per chain: (a) overlap with variational
wave function, and (b) entanglement entropy
between chains, normalized by the exact value
for J ′ → 0.

some straight-forward exact results that can be obtained using
the variational form of the wave function. For a start, the
entanglement between chains originates from the spin, and the
charge does not contribute to it. One might feel inclined to
think that spins are in a maximally entangled state. However,
we should not forget that the VB basis is overcomplete, and
in fact, the entanglement entropy is not S = N log 2, as one
might expect for a state with N singlets. Using the exact wave
function it is relatively easy to obtain a closed expression for
S, as shown in the Appendix:

S = log(N + 1).

Looking at this expression more closely, one realizes that this
is equivalent to two spins S = N/2 in a maximally entangled
state, instead of N spins 1/2 in a maximally entangled state
(see Appendix). In Fig. 2(b) we show the entanglement
entropy, normalized by the exact value for J ′ = 0. Same as

the overlap, the expression holds for a range of J ′, and S

increases as the charge becomes also entangled with the spin.
It is enlightening to calculate the momentum distribution

function (MDF) for the fermions:

n(k) = (1/L)
∑
l,σ

exp(ikl)〈c†1,σ cl,σ 〉. (6)

In order to estimate this quantity, we follow Ref. 13 and break
the fermionic operators c

†
i,σ and ci,σ into a spinless fermionic

operators f
†
i ,fi acting on the (spinless) charge part of the wave

function, and new operators Z
†
i,σ and Zi,σ acting on the spin

part of the wave function. These spin operators have a very
peculiar behavior: Z

†
i,σ inserts a spin σ to the spin chain after

skipping the first i − 1 spins and makes it N + 1 sites long,
while Zi,σ has the opposite effect, shortening the chain. For
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FIG. 3. (Color online) Momentum distribu-
tion function for (a) coupled t-J chains as
a function of the interchain coupling J ′, and
(b)–(d) the Kondo lattice, as a function of the
Kondo coupling JK . The two lower panels show
the results for different spin orientations. Calcu-
lations were done with DMRG for a system of
size L = 30 and N = 15 conduction electrons,
and periodic boundary conditions.
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FIG. 4. (Color online) Possible singlet coverings for two sublat-
tices with unequal number of sites, and an excess up-spin.

instance, for the first site of the chain, we have

c
†
1,σ = Z

†
1σ f

†
1 . (7)

The generic expression for the operators can become more
complicated, since to act with the Z operators on the spin
chain, we need to count the number of charges on the spinless
fermion chain. We refer the reader to Refs. 13 and 21–23 for
details. The action of the operators c

†
1,σ cl,σ is to move a fermion

from site l to site 1. If there are no particles in between, the spin
wave function will remain unchanged. If there is one or more
particles in between, it is quite easy to realize that since the spin
wave function is the equal sum of all singlet coverings, it will
also remain so after moving one of the ends of a singlet across
any number of sites. Therefore, the momentum distribution
function reduces to

n(k) = (1/L)
∑
l,σ

exp(ikl)〈f †
1 fl〉, (8)

which is nothing else but the MDF for spinless fermions. Since
the charge wave function is that of noninteracting particles,
we find that the excitations are free spinless fermions with
quasiparticle weight z = 1, and Fermi momentum 2kF . In
Fig. 3(a) we show the MDF calculated for large systems
using the density matrix renormalization group (DMRG)
method,24,25 indicating that the quasiparticle weight may
remain finite for a range of J ′. We have to concede that since
the calculations are on finite systems with L = 30 sites and
N = 15 electrons per chain, we cannot argue with full certainty

that the discontinuity at k = 2kF is not actually a singularity,
and this remains an interesting problem to pursue.

III. THE t- J KONDO CHAIN

We consider a Kondo chain in which the conduction
electrons strongly interact, and are described by Hamiltonian
(1). At the same time, the electrons are antiferromagnetically
coupled to localized impurities via an exchange JK :

HK = JK

L∑
i=1

�si · �Si, (9)

where �si describes the conduction spins and �Si the localized
spins. It is easy to see that this is equivalent to the two
coupled chains, in which one of them is at half-filling.
Curiously, this model has not received much attention in the
literature. It has been shown that in the limit of J → 0, any
infinitesimal JK will yield a ferromagnetic ground state,26

in which the localized impurities are underscreened: The
N conduction spins will screen N impurity spins, and the
remaining “unpaired” impurities will be in a ferromagnetic
state with maximum spin STotal = (L − N )/2. Notice that this
means that the paramagnetic state with a large Fermi surface
is totally suppressed in this regime.

This state will be a multiplet, and for convenience we focus
on the configuration with projection Sz

Total = STotal. Following
a similar reasoning as in the previous section, we argue that
the N conduction electrons will form the same VB state as the
one described before, while the unpaired impurities will all
point in the same direction. The polarized spins can sit on any
site of the lattice with equal probability. Therefore, our ansatz
can be written as

|g.s.〉 = |φ〉 ⊗ |S〉 ⊗ |σ 〉, (10)

where |S〉 is the VB wave function, and |σ 〉 indicates the
positions of the unpaired polarized spins:

|σ 〉 =
∑

x

|x〉,

This wave function is the sum with equal amplitude of all
the configurations |x〉 of L-N particles in L sites. Figure 5(a)
shows the overlap between the exact and variational ground
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FIG. 5. (Color online) Exact diagonalization
results for small t-J Kondo chains of length L,
and N conduction electrons: (a) overlap with
variational wave function, and (b) entanglement
entropy between chains, normalized by the exact
value for JK → 0.
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states, and we again observe identical behavior as the t-J
ladder. The VB basis for this problem is overcomplete, and
we also have to account for the unpaired polarized spins, as
shown schematically in Fig. 4. This generalization can be
easily carried out,27 and it is still straightforward to obtain
a closed expression for the entropy, which is slightly more
complicated than the one for the coupled chains. We show
results in Fig. 5(b), which have strong resemblance with those
for the ladder.

The calculation of the MDF is strictly the same as before
and the results are identical for JK = J ′ = 0. Notice however,
that unlike the t-J ladder, the MDF for up and down spins will
be different, and only the sum of the two will be the same.
This is shown in Figs. 3(b), 3(c), and 3(d). In particular, there
is a striking difference between the MDF for the majority
up and minority down electrons. The up electrons present
a clear discontinuity at the Fermi level, while the down
electrons display the behavior of a Luttinger liquid with zero
quasiparticle weight. The sum of the two, shown in Fig. 3(b),
of course hides these interesting features. This resembles
the behavior of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
polarized paired state in one dimension.28–34 However, the
physics of our problem is quite different, since only the spin
entangles, and not the charge. We would rather call this state a
“half-Fermi-liquid,” or “half-Luttinger-liquid.” Whether these
are finite-size artifacts or not, undoubtedly it is a problem that
requires further study. We point out again that the shift to a
larger momentum in the MDF should not be confused with
a large Fermi surface; that is a feature of the paramagnetic
phase of the Kondo lattice.

IV. SUMMARY AND CONCLUSIONS

We have presented a ground-state ansatz for antiferromag-
netically coupled t-J chains, and the t-J -Kondo chain that
is numerically exact in the limit of J = 0 (corresponding
to infinite-U Hubbard chains), and coupling to the bath
J ′,JK → 0, as tested on small systems. Moreover, our DMRG
results indicate that the variational wave functions describe the
physics of the problem in a range of J ′ and JK . In this regime,
the charge and the spin can be considered to a good extent as
separate degrees of freedom with independent dynamics: The
charge can be described as noninteracting spinless fermions
in the ground state, while the spin is entangled into a VB-like
state where all valence bond coverings have the same weight.
The interchain coupling J ′ and the Kondo interaction JK

parametrize an effective spin temperature. If we trace over
the bath, the spins of an isolated chain will be in equilibrium
at a certain “quasispin temperature”. This spin temperature
is not infinite, since we have proven that the spin is not
maximally entangled. However, this state seems to correspond
to a fine-tuned point in which excitations can be described as
free spinless fermions. The momentum distribution functions
show a discontinuity at 2kF indicating that the system is
no longer a Luttinger liquid. However, it is noteworthy to
point out the peculiar behavior of the t-J -Kondo chain. Since
it has a polarized ferromagnetic ground state, the up and
down fermions behave notoriously different: At finite JK , the
minority spins show a Luttinger liquid-like behavior, while the
majority fermions appear as almost free particles. Notice that

the ground state of the t-J -Kondo chain is a spin multiplet, and
this “half-Luttinger-liquid” behavior in the t-J -Kondo chain
may be an artifact of working on the maximally polarized
state. However, we believe that this physics deserves further
investigation.

In the ferromagnetic phase of the conventional Kondo
chain, the natural excitations are spin polarons formed by
a conduction electron and impurities forming a bound state
that propagates coherently.35–37 In our scenario, charges and
impurities cannot form a bound state because the charge
decouples completely from the spin. However, the spin of the
electrons remains entangled with the impurities at all distances,
but this does not imply an effective potential acting on the
charges that can still move freely. An interesting observation
is that even though the Hamiltonians are local and the charge
degree of freedom is totally uncorrelated, the spins remain
correlated at infinite distance, and the spin-spin correlations
between chains are constant at all distances (see Appendix).

The introduced wave functions establish a framework to
study spin-incoherent behavior in systems with spin-charge
separation. Normally considered a finite-temperature scenario,
this physics can also be realized at zero temperature, once the
system is coupled to external spin degrees of freedom. It is
not restricted to the models used in this work for illustration,
but the theory can be easily extended and generalized to other
cases, such as an arbitrary number of coupled t-J chains, for
instance.38,39

We point out that even though our study applies to systems
with periodic boundary conditions, the same ideas apply to
problems with open boundary conditions. In that case, we
expect the VB wave function to be quite different, with only the
first kind of configurations shown in Fig. 1 carrying most of the
weight, and a consequent entanglement entropy S = N log 2
corresponding to infinite effective spin temperature.11

Contrary to other problems studied with VB-type varia-
tional wave functions,40 the accuracy of our ansatz seems to
depend primarily on the number of particles N , and not the
size of the chains L, which may suggest that our description
will still be valid for large systems, as long as the density
is sufficiently small. Yet, our DMRG results at quarter-filling
still display the same physics. In any case, one has to keep
in mind that our considerations are strictly valid in the limit
J ′,JK → 0.

An important issue that we have not addressed in this paper
is the nature of the actual spin Hamiltonian governing the
dynamics of the spins. This is an interesting problem, and for
the moment it remains open.
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APPENDIX: ENTANGLEMENT ENTROPY AND
CORRELATIONS

In this section we calculate the entanglement entropy
between the conduction electrons in one chain, and the bath. In
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the t-J ladder, the bath is modeled by a second chain, while in
the t-J Kondo model, by localized impurities. As illustrated
in Figs. 1 and 4, we squeeze the chain by removing all the
unoccupied sites, reducing the configuration space to a spin
problem with no charge. In these cartoons, the black dots and
white dots will be referred to as A and B sublattices. Each
sublattice will have N sites, instead of L, where N is the
number of electrons in the chain.

We start by considering the t-J ladder, in which both
sublattices have the same number of sites, and the ground
state is represented by all possible VB coverings connecting
the two. Instead of using the overcomplete VB basis for the
calculation, we will work in the space of spin configurations.
In this basis, the states can be classified by the number N↓
of down spins in sublattice A. Since the total spins projection
Sz is conserved, this also fixes the number of down spins on
sublattice B. The coefficient in front of each configuration is
then given by

g(N,N↓) = N↓!(N − N↓)! × (−1)N↓ , (A1)

which counts the number of times each of them is repeated
in the ground state, times a sign arising from the singlets (we
have ignored the normalization for the time being).

The Von Neumann entanglement entropy S is defined as

SA = −Tr (ρA log ρA) , (A2)

where ρA is the reduced density matrix for sublattice A,
obtained by tracing over the states on sublattice B. It is easy
to see that ρA can be separated into blocks, each labeled by
N↓. Since N↓ can assume values N↓ = 0, · · · ,N , the number
of such blocks is N + 1. The linear dimension for each block
is given by the number of possible arrangements of N↓ spins
in N sites:

d(N,N↓) = N !

N↓!(N − N↓)!
.

It is easy to see that, since all configurations with fixed N↓
will appear with the same coefficient, each block will have all
matrix elements equal to ρA(N,N↓)i,j = d(N,N↓)g2(N,N↓):

ρA(N,N↓) = d(N,N↓)g2(N,N↓)

⎛
⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞
⎟⎟⎠ . (A3)

This matrix has only a single nonzero eigenvalue w(N,N↓) =
d2(N,N↓)g2(N,N↓) = (N !)2, the same for all blocks. Finally,
the full matrix has to be normalized such that Tr(ρA) = 1.
Therefore, we obtain N + 1 blocks, each with a single nonzero
eigenvalue w = 1/(N + 1). Hence, the entanglement entropy
(A2) is given by:

SA = log (N + 1),

which is our final result.

This expression is equivalent to two spins S = N/2 in a
maximally entangled state, where each spin is obtained by the
addition of the N spins 1/2 of each sublattice. This analogy
can be made rigorous by observing that the spin wave function
is the ground state of the Hamiltonian:

HAB =
∑
i,j

�si,A · �sj,B = �SA · �SB,

with �SA = ∑
i �si,A, and a similar expression for sublattice

B. The ground state is a singlet of two spins S = N/2, a
maximally entangled state. Notice that this is not the actual
spin Hamiltonian for the coupled t-J chains, since the spectra
are different. Now we can make use of this solution to calculate
the spin-spin correlations. The Hamiltonian can be rewritten
as

HAB = 1
2

[
(�SA + �SB)2 − �S2

A − �S2
B

]
.

From this expression, we obtain the ground-state energy

〈HAB〉 =
∑
i,j

〈�si,A · �sj,B〉 = −N

2

(
N

2
+ 1

)
.

Since all the correlators should be equal, we find

〈�si,A · �sj,B〉 = 1

N2
〈HAB〉 = −1

4
− 1

2N
.

In order to calculate the correlations in the actual t-J ladder
we need to include the charge contribution

〈�si,1 · �sj,2〉 =
(

−1

4
− 1

2N

)
〈ni,1nj,2〉

=
(

−1

4
− 1

2N

)(
N

L

)2

,

which indicates that the correlations saturate in the thermody-
namic limit.

The calculation for the t-J -Kondo lattice follows identical
steps, except that since the B sublattice has L sites, the
degeneracy for each sector acquires a slightly more elaborate
form:

g(L,N,N↓) = (N − N↓)!(L − N + N↓)!

(L − N )!
× (−1)N↓ .

In this case, the single nonzero eigenvalues for each sector
are given by

w(L,N,N↓) = d(L,N,N↓)g2(L,N,N↓)dB(L,N,N↓),

where

dB(L,N,N↓) = L!

(L − N + N↓)!(N − N↓)!

is the number of configurations in the B sublattice, for each
configuration of the A sublattice. Since the eigenvalues are
different for each sector, the normalization and the entropy are
obtained by adding numerically over the N + 1 blocks.
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