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Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons
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Numerical calculations based on the recursive Green’s function method in the tight-binding approximation
are performed to calculate the dimensionless conductance g in disordered graphene nanoribbons with Gaussian
scatterers. The influence of the transition from short- to long-ranged disorder on g is studied as well as its effects
on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on
the perfectly conducting channel. We propose and calculate a backscattering estimate in order to establish the
connection between the perfectly conducting channel (with g = 1) and the amount of intervalley scattering.
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I. INTRODUCTION

The remarkable electronic transport properties of graphene
have motivated numerous experimental and theoretical
studies.1–3 Of particular interest is the possibility of fabricat-
ing narrow graphene samples, called graphene nanoribbons
(GNRs). By engineering the lateral confinement one can,
in principle, create an electronic energy gap leading to a
semiconductor behavior that allows for the development of
novel electronic nanodevices and applications.4

The observation of conductance quantization in GNRs
turned out to be more difficult than anticipated.5 The reason
is that the vast majority of GNR samples are produced by
lithographic patterning, characterized by rough edges at the
atomic scale.6–10 Already at low concentrations, such defects
can destroy conductance quantization.11 Edge roughness may
be largely suppressed in GNRs produced by unzipping single-
wall carbon nanotubes.12–14 However, the latter are not free of
bulk defects.

The way disorder affects electronic transport in GNRs
strongly depends on its spatial range. For long-ranged disorder
(LRD), corresponding to a ratio d/a0 � 1 between the poten-
tial range d and the lattice parameter a0, backscattering is sup-
pressed and the transmission is little affected. In contrast, short-
ranged disorder (SRD) favors scattering processes with large
momentum transfer such as backscattering. In this regime,
quantum interference can cause wave function localization.
In general, these simple arguments provide a qualitative
explanation for the observed behavior of the conductance
in current experiments. Edge roughness is essentially short
ranged, while substrate impurity charges and ionically bonded
adatoms are the typical sources of long-ranged disorder.11

In view of the unavoidable disorder, the natural question that
arises is whether one can indeed observe perfect transmission
or conductance quantization in GNRs. This question has
been theoretically investigated and partially answered by
Wakabayashi et al.15,16 They have found that zigzag edge
GNRs in the presence of long-range disorder exhibit a quite
robust perfectly conducting channel (PCC).

The dispersion relation for zigzag GNRs, Fig. 1, helps one
to understand the origin of the PCC. Figure 1 indicates two
possible transverse momentum states for electronic energies
such that, at low enough energies, only the first sub-band
is allowed. The state close to the K point corresponds to a
right-propagating channel whereas the other, close to K ′, is
related to a left-propagating channel.16 In this case, electrons
propagate through the system in a well-defined direction
leading to perfect transmission. Disorder can modify this
scenario, provided it can cause a momentum transfer �k ≈
|K − K ′| ≈ 1/a0 so that it mixes left- and right-propagating
channels. In other words, this backscattering process requires
a momentum transfer from states at the vicinity of the K

point (reminiscent of bulk graphene) to the K ′ point, and
vice versa. The correspondence between short-ranged defects
in rough-edged GNRs and intervalley scattering has been
established by analyzing the scattering processes in both
real and Fourier space.17 For LRD such correspondence is
more subtle and has been recently addressed by analyzing the
reflection probabilities of zigzag and armchair GNRs and their
symmetry properties.18 For disordered zigzag GNRs, elec-
tronic scattering should mix valleys, leading to the suppression
of transmission depending on d. We address this issue by estab-
lishing a connection between the PCC and the backscattering
mechanism, analyzing both the SRD and LRD regimes.

The purpose of this work is to determine the fundamental
mechanisms that lead to the PCC by directly analyzing the
conductance dependence on the range of disorder as the
scattering potential changes from short to long ranged. We
have found that the PCC is not as robust as previous studies
pointed out. In fact, we demonstrate that the emergence of the
PCC crucially depends not only on the disorder range but also
on the electronic energy.

This paper is organized as follows. In Sec. II we describe
the tight-binding model with on-site energy disorder, the
appearance of the PCC, and the recursive Green’s function
method. The numerical results are shown in Sec. III, where we
discuss the effect of the transition from short- to long-ranged
disorder on the conductance g (and also on the PCC). We also
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FIG. 1. (Color online) Electronic band structure of a zigzag GNR
with M = 10 sites across the width (see text). K and K ′ are the two
inequivalent points of the first Brillouin zone of graphene. The left
(right) arrows indicate positive (negative) group velocity and forward
(backward) electronic propagation.

propose an analytical estimate for the degree of backscattering
to elucidate the physical origin of the PCC, which is compared
to the conductance numerical results. Finally, Sec. IV is
devoted to the conclusions.

II. MODEL AND THEORY

In this section we present the model and the theory used
to address the single-particle transport properties in GNRs.
We first obtain analytical solutions for the band structure and
wave functions of the tight-binding Hamiltonian that describes
the electronic properties of pristine zigzag GNRs. Next, we
introduce the local disorder model used to numerically study
the conductance in GNRs. We close the section with a brief
description of the numerical method employed to calculate the
transport properties, namely, the recursive Green’s function
method.

A. Tight-binding model

Close to half filling, the electrons in graphene are assumed
to move by hopping through the pz orbitals of the carbon
atoms. Using the labels introduced in Fig. 2, the first-neighbor
tight-binding Hamiltonian for graphene reads

H = −t
∑

n,m∈A

(a†
n,mbn,m+1 + a†

n,mbn−1,m + a†
n,mbn+1,m + H.c.),

(1)

where the hopping parameter is t = 2.7 eV,1 and the sum
is related to the sublattice A sites only. The operators
a
†
n,m (b†n′,m′ ) create and an,m (bn′,m′) annihilate an electron at

the site (n,m) of the sublattice A (B). The integers n = 1,2
and m = 1, . . . ,M label the atomic sites in the GNR unit
cell according to the notation established in Fig. 2. M is
related to the nanoribbon width by W = Ma0

√
3/2. The lattice

parameter a0 = 2.46 Å (Ref. 1) relates to the carbon-carbon
distance a through a0 = a

√
3.

The zigzag edge boundary conditions are19

a
†
n,0|0〉 = 0, (2)

b
†
n,M+1|0〉 = 0, (3)

FIG. 2. (Color online) Zigzag graphene ribbon geometry. n and
m label the atomic sites on the sublattices A (yellow dots) and B

(blue dots). The atoms labeled n = 1, . . . ,N belong to the ribbon
region and the atoms n = 0 and n = N + 1 belong to the left and
right contacts, respectively.

where |0〉 is the vacuum state. Notice that we require the states
of each sublattice to vanish at opposite edges.

The GNR eigenvalue problem reads

H |α,kx〉 = Eα(kx)|α,kx〉, (4)

where kx is the longitudinal wave number and α the band
(or channel) index. Using the on-site probability amplitudes
cA
α;n,m(kx) = 〈0|an,m|α,kx〉 and cB

α;n,m(kx) = 〈0|bn,m|α,kx〉 we
write

|α,kx〉=
∑

n,m∈A

(
cA
α;n,m(kx)a†

α;n,m + cB
n−1,m(kx)b†n−1,m

)|0〉. (5)

By inserting the eigenstate expansion (5) into Eq. (1), one
obtains20

cA
α;n,m(kx) = Nα(kx)eina0kx/2 sin[mνα(kx)], (6)

cB
α;n,m(kx) = ∓Nα(kx)eina0kx/2 sin[(m − M − 1)να(kx)], (7)

where the minus and plus signs denote states with positive and
negative energies, respectively. The normalization factor

Nα(kx) = 1

/√√√√N

M∑
m=1

sin2[mνα(kx)] (8)

is obtained by imposing 〈α,kx |α,kx〉 = 1. The momentum
function να(kx) is introduced to satisfy the boundary condition
(3). να(kx) is given by the multiple solutions of the transcen-
dental equation19,20

2 cos(a0kx/2) = − sin(Mνα)

sin[(M + 1)να]
. (9)

These analytical solutions will be used in the calculation of
the backscattering matrix elements. Finally, the zigzag GNR
eigenergies read

Eα(kx)/t = ±
∣∣∣∣ sin[να(kx)]

sin[(M + 1)να(kx)]

∣∣∣∣. (10)
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B. Bulk disorder in GNRs

We calculate the conductance of disordered GNRs of
length L = Na0/2 (Fig. 2). To treat disorder, with employ the
Gaussian disorder model, defined as follows. We randomly
choose Nimp sites as the centers of Gaussian potentials
with range d. Nimp is expressed in terms of the impurity
concentration nimp = Nimp/Ntot, where the total number of
atoms in the scattering region is Ntot = NM . Hence, the
disorder potential V at the position r reads

V (r) =
Nimp∑
i=1

Ui e
−|r−R(ni ,mi )|2/d2

, (11)

where R(ni,mi) is the center of the ith Gaussian disorder
potential. The on-site lattice representation of V is

V =
∑

n,m∈A

(Vn,ma†
n,man,m + Vn−1,mb

†
n−1,mbn−1,m), (12)

where Vn,m corresponds to V (r) evaluated at R(n,m) corre-
sponding to the position of the lattice site (n,m).

The potential amplitude Ui is randomly chosen from a
uniform distribution in the interval |Ui | � Umax, where

Umax = 2√
3
U0

/ (full space∑
R

e−R2/d2

)
. (13)

The dimensionless parameter U0/t defines the maximum
disorder potential energy at each impurity site.

C. Recursive Green’s function technique

The conductance is obtained by using the recursive Green’s
function method.21,22 This method provides a computationally
efficient way to calculate the total Green’s function of a GNR
connected to pristine semi-infinite graphene leads at both ends.
Using a decimation method we compute the surface Green’s
functions and the decay width functions of the left �0 and
right �N+1 leads. Next, we split the GNR “central” region (of
width W and length L) into N slices containing M transverse
sites (see Fig. 2) and iteratively calculate the total retarded
Green’s function Gr

1,N that contains information about electron
propagation from slice 1 to N . Finally, the dimensionless
conductance g is obtained from the Caroli formula,23 namely,
g = Tr[�0G

r
1,N�N+1G

a
1,N ]. The linear electronic conductance

is G = (2e2/h)g, where the factor 2 is due to the spin
degeneracy.

III. RESULTS

In this section we study the robustness of the PCC
in disordered zigzag GNRs. This is done by numerically
computing the dimensionless conductance g and interpreting
the results in terms of the analytical tools presented in the
previous section.

We compute the dimensionless conductance averaged over
a large number of disorder realizations 〈g〉 (typically 103) by
means of the recursive Green’s function method. The impurity
potential strength is U0/t = 1. As in Ref. 15, we consider
GNRs with M = 10. For a zigzag GNR of this width, there is
a single propagating channel for E < E2 ≡ 0.406t , where we

FIG. 3. (Color online) Average dimensionless conductance 〈g〉 as
a function of the potential range d for a ribbon of length L = 500a0

and width W = 5
√

3a0 for the impurity concentrations (a) nimp =
0.10 and (b) nimp = 0.01.

denote the threshold energy necessary to open the αth channel
by Eα .

We start by numerically investigating the behavior of the
PCC in the crossover from the SRD to the LRD regime as a
function of the energy E. Figure 3 shows our results for 〈g〉 as a
function of the potential range d/a0 for two values of impurity
concentration, namely, nimp = 0.10 and 0.01. The simulations
show that for sufficiently large values of d/a0, irrespective
of E and nimp, the PCC always occurs, as 〈g〉 = 1 within
the numerical precision. Moreover, we find that the potential
range dc, defined as the potential range above which the PCC
appears, depends strongly and nonmonotonically on energy
E: (i) dc decreases for increasing energy E starting from the
charge neutrality point, and (ii) dc increases with increasing
energy as E approaches E2. This is in contrast to Ref. 16, which
suggests the emergence of the PCC for all energies E < E2

at d/a0 = 1.5 and nimp = 0.10. The same qualitative trend is
found for both the low (nimp = 0.01) and high (nimp = 0.10)
impurity concentrations we analyze, as shown in Figs. 3(b)
and 3(a), respectively.

The overall values of the average conductance 〈g〉 are larger
in the case of more diluted impurities, as expected. For both
impurity concentrations, Fig. 3 shows conductance plateaus
for short scattering potential ranges, typically d/a0 � 0.3.
These plateaus have a simple interpretation. Let us consider
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FIG. 4. (Color online) Disorder range above which the PCC
appears, dc/a0, as a function of the electron energy E. Inset: Scaled
average conductance (〈g〉 − g0)/(1 − g0) as a function of d/dc for
different energies E/t .

a single Gaussian disorder scattering center, placed at a site
i. For d smaller than roughly half the interatomic distance
a/2 = a0/(2

√
3) = 0.29a0, the neighboring sites of i are

hardly affected by the scattering center placed at i. Further
reduction in the potential range does not change the system
Hamiltonian.

To investigate the role of the disorder potential range
on the emergence of the PCC, in Fig. 4 we show dc/a0,
defined above, as a function of energy E/t for nimp = 0.10.
Figure 4 shows that dc/a0 ≈ 1, except for low energies and
energies at the threshold of the n = 2 channel opening. The
inset of Fig. 4 indicates that the behavior of the function
〈g(d/a0)〉 does not show, in general, a simple single-parameter
scaling behavior. The numerical results suggests that a single-
parameter scaling for (〈g〉 − g0)/(1 − g0) as a function of d/dc

holds approximately true only for 0.15 � E/t � 0.37, where
g0 is the average conductance minimum for a fixed energy
E/t .

To understand the numerical results presented above
we investigate the backscattering mechanisms induced by
the disorder potential. These mechanisms can be quanti-
fied by studying the backscattering matrix elements con-
necting forward- to backward-moving states with α = 1,
namely,

〈1, − kx | V |1, + kx〉
=

∑
n,m∈A

{[
cA

1;n,m(−kx)
]∗

cA
1;n,m(kx)Vn,m

+ [
cB

1;n−1,m(−kx)
]∗

cB
1;n−1,m(kx)Vn−1,m

}
, (14)

where the symbols are defined in Sec. II. The expression for
the backscattering matrix element (14) becomes very simple
in the SRD regime: For the case of a single impurity placed at
Rn0,m0 , it reads

〈1, − kx(E)|V |1, + kx(E)〉 = [
c�
n0,m0

(−kx)
]∗

c�
n0,m0

(kx)Vn0,m0 ,

(15)

where � = A or B.

FIG. 5. (Color online) Backscattering matrix element Vback cal-
culated as a function of the scattering range d/a0 for different values
of the energy E for a single Gaussian impurity center placed (a)
at the center of the GNR (n0 = 100,m0 = 5) and (b) at its edge
vicinity (n0 = 100,m0 = 9). The GNR has the dimensions N = 200
and M = 10. For this value of GNR width, the edge state appears for
E < 0.1t (Refs. 16 and 19).

Let us examine the backscattering matrix elements in
a number of representative situations. We first consider
the single-impurity scattering case. Figure 5 shows the
backscattering matrix, Eq. (15), as a function of the energy
for two different configurations: The Gaussian scattering
potential is placed at the center or at the edge of the GNR.
As for narrow zigzag GNRs and small values of E the
electronic states are typically concentrated at the edges of
the ribbon, we expect a distinct behavior in these two limiting
cases.

Figure 5(a) shows Vback(E) ≡ 〈1, − kx(E)|V |1, + kx(E)〉
as a function of d/a0 for a single Gaussian potential placed at
the center of the GNR. Due to the SRD to LRD crossover, the
backscattering matrix element decreases very fast as d/a0 � 1.
As expected from Eq. (15) and the previous discussion,
Vback(E) hardly changes for d/a0 � 0.25. For M = 10, the
states |1, ± kx〉 become localized at the GNR edges when
E/t � 0.1.19 In this situation, impurities located at the GNR
center result in weak backscattering so that the plateaus quickly
drop to Vback(E) ≈ 0. Figure 5(b) shows |Vback(E)| for the case
of edge impurities. For E/t > 0.1, corresponding to ordinary
states, the behavior is similar to that in Fig. 5(a). However, for
edge states the situation changes dramatically: Here Vback(E)
decreases surprisingly slowly with increasing d/a0 � 1. This
indicates that, in the presence of edge states, intervalley
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FIG. 6. (Color online) Average backscattering matrix element
〈|Vback|2〉 as a function of the disorder range d/a0 for a number of
energies E. The average is taken over 103 disorder configurations
for an impurity concentration of (a) nimp = 0.01 and (b) nimp = 0.10.
The GNR has the dimensions L = 500a0 and W = 10(

√
3/2)a0. This

ribbon presents an edge state for E < 0.1t .

scattering is highly sensitive to the impurity position, even
in the LRD case.

We now consider the situations of low (nimp = 0.01) and
high (nimp = 0.10) impurity concentrations, the same values
used in the conductance numerical calculations (Fig. 3). We
compute the backscattering matrix element using Eq. (14) and
their average over different configurations of disorder. The
results are shown in Fig. 6 and are contrasted with the average
conductance 〈g〉. Like 〈g〉, the average backscattering matrix
elements 〈|Vback(E)|2〉 also display a plateaulike behavior
for d/a0 < 0.3. For |E| > 0.15t , 〈|Vback(E)|2〉 exhibits a fast
decay with increasing d/a0, independent of the energy E.
On the other hand, for |E| < 0.15t the backscattering matrix
elements decay nearly exponentially for 1.0 � d/a0 � 2.0,
reaching minimum values depending on nimp. For energies near
the Dirac point (E = 0), backscattering is maximal, persisting
even in the LRD regime. In summary, in the SRD regime
the averaged backscattering reaches its maximum value,
causing a conductance suppression. In distinction, in general
〈|Vback(E)|2〉 is suppressed in the LRD regime, favoring the
appearance of the PCC provided d/a0 � 1.

The small-energy regime is an exception to this picture:
The enhanced backscattering near the charge neutrality point

can be understood in simple terms. Qualitatively, one expects
that a scattering potential with a characteristic length scale
d can effectively backscatter only electron states with initial
momentum k to final momentum −k provided 1/d ≈ |− 2k +
G|, where G is a reciprocal lattice vector. Nonzero G vectors
describe umklapp scattering processes. As one approaches the
charge neutrality point, scattering between k ≈ π/a and −k ≈
−π/a mediated by a G = 2π/a umklapp process becomes
dominant, so that |− 2k + G| approaches zero and even a very
smooth potential (large d) is able to scatter the electron states
and destroys the PCC. That is the reason for the sharp increase
of dc near E = 0, shown in Fig. 4.

We discuss now the robustness of the PCC for energies
E approaching E2. As discussed, for such energies Vback ≈ 0
as long as d/a0 � 1. To explain deviations from the PCC,
first-order perturbation theory is not sufficient since LRD
cannot account for the large momentum transfer necessary
for backscattering, as already discussed. LRD can account for
backscattering processes only in the vicinities of the energy
E2, where left- and right-propagating modes (Fig. 1) are
not far apart in momentum space. For a sufficiently smooth
long-range disorder, one can account for disorder effects by
introducing a local chemical potential as μ[V (r)]. In this
scenario, LRD can suppress the PCC at energies E2 − δE �
E � E2 + δE, where δE is the typical disorder potential
fluctuation.

We have also carried out numerical simulations for higher
energies (up to E/t = 0.9), corresponding to the multichannel
case. However, in this case we have not found any qualitative
difference between our results and the ones reported in Ref. 16.
More precisely, we have found deviations from the PCC for
incident energies at the vicinity of energies corresponding
to the crossover between g = 2n − 1 and 2n + 1 for clean
ribbons (n being the number of channels). This behavior
corroborates the results of Ref. 16.

IV. CONCLUSIONS

In summary, the electronic conductance of disordered
GNRs in general, and the emergence of the PCC in par-
ticular, present a richer behavior than expected from pre-
vious studies. Specifically, the critical impurity potential dc

for PCC emergence shows a strong and clear dependence
on the electronic energy. This result, obtained numerically
from recursive Green’s function calculations, is explained on
simple physical grounds by calculations of the energy and
potential range dependences of electron intervalley scattering
probabilities, which follow the opposite qualitative trends to
the conductance. This occurs for sufficiently low energies such
that the Fermi level crosses just one band (single-channel
conductance). This behavior confirms and justifies the simple
picture of an electron undergoing intervalley scattering only
if the impurity potential has substantial Fourier components
at large momenta, thus being able to provide a momentum
transfer �k ≈ 1/a0 to the electron. In other words, for a single
channel, backscattering occurs only if intervalley scattering
does. This picture not only explains the conductance behavior
for low energies, but it also provides us with guidelines to
explain the more complicated cases in which the Fermi level
crosses many channels. In that case, as shown in Fig. 1,
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backscattering (i.e., group velocity reversal) can occur even for
small momentum transfers (intravalley scattering), therefore
explaining the disappearance of the PCC as the Fermi level
approaches the threshold for opening the second transmission
channel.
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