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Integer particle preference during charge transfer in Kohn-Sham theory

D. Hofmann and S. Kümmel
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We investigate the static and dynamic charge transfer that is triggered by external electric fields in model
molecular wires. A self-interaction correction in Kohn-Sham density functional theory leads to the desired
integer electron transfers that do not occur with standard functionals which miss Coulomb blockade effects.
Analysis of the multiplicative exchange-correlation potential in stationary cases and during real-time propagation
shows how the local exchange-correlation potential builds up step and reverse-step structures that enforce the
integer particle preference. The role of spin-symmetry breaking is discussed.
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The large error that “standard density functionals” such as
(semi)local functionals and regular hybrids show for long-
range charge-transfer (CT) problems has been one of the
most serious deficiencies of (time-dependent) density func-
tional theory [(TD)DFT]. That standard functionals seriously
overestimate CT has long been known,1–5 and the CT problem
shows up in many guises. Yet, the various manifestations of
TDDFT’s CT problem typically fall into one of two important
areas. The first one is the calculation of CT excitations that
are part of linear response absorption spectra. Great progress
has been made in this field in recent years.6 The second is
the area of quantum transport and molecular electronics. In
the latter field the performance of (TD)DFT in practice is still
debated. DFT has frequently been combined with nonequi-
librium Green’s function theory for calculating transport
characteristics. However, there are fundamental limitations
when these two approaches are combined.7 Very early, Ref. 8
pointed out the importance of dynamical exchange-correlation
(xc) corrections to the conductance, and the influence of
self-interaction errors3–5,9 and the derivative discontinuity10–12

has been discussed.
Therefore, alternative schemes have been proposed that aim

at exploiting the power of real-time propagation methods.13–15

These works have shown the conceptual strengths of ap-
proaching the conductance CT problem in real time. With
the open system quantum problem set up in such a way
that real-time propagation in the central molecular region
has a solid theoretical basis, the molecular conductance
problem of TDDFT has been reduced to finding xc functional
approximations that incorporate the physics that is decisive for
this type of CT.

This is still a very considerable challenge, as there is a huge
and even qualitative gap between the transport characteristics
that standard functionals deliver, and the characteristics that
are found in reality. With the present work we take a step
towards closing this gap. We demonstrate that a Kohn-Sham
(KS) self-interaction correction (SIC) not only remedies the
large overestimation of the response that is obtained with
(semi)local functionals, but can also enforce the principle of
integer preference in CT. Integer preference can be seen in
relation to Coulomb blockade16 and has long been considered
a correlation phenomenon that would be beyond the abilities of
readily applicable functionals. Our approach is fully consistent
and goes beyond previous implementations of the SIC that just

corrected the eigenvalues. By analyzing the local KS potential,
we can pinpoint step and reverse-step structures in the xc
potential that are crucial for enforcing the integer preference.
The results not only encourage the use of KS SIC. They stress
the important role of spin-symmetry breaking and provide
guiding insights for the further development of functionals
that should yield reliable transport characteristics.

Due to the decisive role that self-interaction and the
derivative discontinuity play in the conductance problem, it is
a close lying idea to employ the SIC of Ref. 1 for studying the
CT question. By its definition ESIC

xc [n↑,n↓] = E
app
xc [n↑,n↓] −

∑
σ=↑,↓

∑Nσ

j=1[EH[njσ ] + E
app
xc [njσ ,0]], i.e., by subtracting

Hartree energy EH and xc energy E
app
xc contributions for all

occupied orbital densities njσ (r) = |ϕjσ (r)|2 from a given xc
approximation, the SIC energy is one-electron self-interaction
free and incorporates a derivative discontinuity. Using recently
developed ground-state17 and TD KS SIC schemes18 we can
employ the SIC as a KS functional with one multiplicative
potential. Thus, we can study the potential structure that
develops during electron transfers in real space and real time,
allowing to gain insight into the functioning of KS theory.

We use real-valued ground-state KS orbitals, but for the
reasons explained in Refs. 18 and 19, the energy minimizing
orbitals, TD KS orbitals, and orbital transformations are
complex and we use SIC only in combination with the local
spin density approximation (LSDA). All calculations were
done with the Bayreuth version20 of the PARSEC real-space
program package,21 with parameters chosen in analogy to
Ref. 18. Our SIC studies use the generalized optimized
effective potential (GOEP) and the generalized Krieger-Li-
Iafrate (GKLI) approximation (GKLI-SIC)17,18 to the GOEP.

Hydrogen chains have frequently served as model systems
that provide tough challenges in terms of a correct description
of the CT physics while being technically transparent. Here we
use the setup4 that is depicted in the upper part of Fig. 1. Two
hydrogen chains, both containing eight H atoms separated by
1 Å, are aligned along the x axis with a separation of 8 Å.
We apply an electric field along the x axis and monitor how
charge is transferred from the right H chain (donor, D) to the
left H chain (acceptor, A) depending on the field strength.
As the distance between the H chains is large, the interchain
coupling is small and physical electron transfer occurs by
integer electron jumps.4 Thus, up to a certain field strength,
no charge flow should take place. As soon as the field exceeds
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FIG. 1. (Color online) Upper panel: Charge on the left (acceptor,
A) hydrogen chain as a function of an external electric field that is
applied to the system of H atoms depicted in the inset. Triangles
represent LSDA, and crosses GKLI-SIC results. The charge on A is
obtained by integration of the density in the left half space of our
real-space grid. The two lower panels show the up-spin vxc of GKLI-
SIC along the x axis for three field strengths before (left) and after
(right) the first electron jump. The six field strengths are indicated
by vertical lines in the upper panel. vxc first builds a pronounced step
that works against the electron transfer to A, and then a reverse step
that ensures that the electron stays on A.

a specific strength, one electron, i.e., one (integer) unit of
e, should jump from D to A and remain there unless the field
strength is reduced. Increasing the field strength further, further
integer electron jumps should occur.

However, the CT that one obtains from standard functionals
as exemplified by LSDA (triangles in the upper panel of Fig. 1)
is completely different and qualitatively wrong.4 In LSDA,
fractional CT occurs from a field strength of 1.5 × 109 V/m
on. With increasing field strength there is a gradual transfer
of charge to A until one unit of e has been transferred at a
field strength of 4.0 × 109 V/m. Further increasing the field
strength leads to further gradual CT until the electron number
on A reaches a short plateau at a field strength of about 6.5 ×
109 V/m, which indicates the second transferred unit of e.
Using a hybrid functional, the plateaus are broader, but overall
one obtains a similarly wrong CT picture.4

The picture changes completely as one goes from LSDA
to SIC. Straightforward SIC of the LSDA functional within
the KS framework is sufficient to recover the decisive physical
principle of integer preference in CT. In the GKLI-SIC data
(crosses in the upper panel of Fig. 1) one observes only integer
numbers of electrons on the H chains with electron jumps
occurring at field strengths of about 2.5 × 109 and 5.7 ×
109 V/m. We also performed full GOEP calculations up to
3.5 × 109 V/m. They yield the same results as GKLI, i.e., the
GKLI approximation is well justified. The electron jumps in
GKLI-SIC occur at about the same field strengths at which
half of an electron is transferred from D to A in LSDA.

Further insight into how the different xc approximations
realize the CT can be gained by analyzing the calculations in

detail. Restricting the occupation numbers of the KS scheme
to integers leads to nonconvergent calculations for LSDA. The
self-consistent LSDA iterations converged only when frac-
tional occupation numbers were allowed, and the converged
calculations then showed fractional charges on each of the
H8 subunits. In the generalized SIC scheme, however, integer
occupation numbers are natural as the unitary transformation
that connects KS orbitals and energy minimizing orbitals is
intrinsically defined only for integer occupations,22 and the
integer occupation calculations converge.

Looking at the situation in which the electrons are initially
equally distributed over D and A and in which spin is treated
explicitly, there are in principle four possibilities for realizing
a single integer electron jump: (i) One D spin-up (↑) electron
jumps to A ↑, (ii) one D spin-down (↓) electron jumps to A
↓, (iii) one D ↑ electron transfers to the ↓ channel of A, and
(iv) one D ↓ electron transfers to the ↑ channel of A. Out of
these four possible realizations, (i) and (ii) are analogous with
respect to vxc features and so are (iii) and (iv). Therefore, it
suffices to discuss explicitly only one of each class. One may
argue that cases (iii) and (iv) are unphysical as the transferring
electric field can hardly induce a spin flip. Yet, we deliberately
discuss this situation because it contributes to revealing how
the SIC describes CT.

Our calculations show that all four realizations in GKLI-
SIC give the same total energy, and the electron jumps occur at
the same field strengths. Also, the two different CT scenarios
both lead to a weak Aufbau principle violation:23 Although
the Aufbau principle is guaranteed within both spin channels
separately, one electron should be transferred between the spin
channels to fulfill the Aufbau principle in the entire system. In
other words, there is an unoccupied KS eigenstate in one of the
spin channels that is lower in energy than the highest occupied
orbital of the other spin channel. In this way, one type of
realization “points back” to the other one, and vice versa. This
reflects that physically the transfer of one ↑ electron is as likely
as the one of one ↓ electron. The situation is thus reminiscent of
the “static correlation” situations that are notoriously difficult
for DFT. Yet, GKLI-SIC successfully realizes a one-electron
CT by breaking the spin symmetry. The important observation
is that the spin-symmetry breaking here occurs in a system
with a considerable number of electrons (not just two) and that
it is systematic: When we average over (i) and (ii), or (iii) and
(iv), or all four possible realizations—which are energetically
degenerate—-then there remains no spin polarization. Thus,
KS SIC yields the physically correct picture. We therefore
argue that spin-symmetry breaking24,25 can be seen as a
positive feature of KS theory.

How exactly KS theory with its multiplicative, local
potential realizes the integer CT is an important question. The
two lower panels of Fig. 1 depict the GKLI-SIC xc potential
of the spin-up channel in which the electron jump occurs [i.e.,
realization (i)] for three external fields of increasing strength
before (left) and after (right) the electron jump. As the field
increases, a step structure of increasing height builds up in
between the two H chains, together with a relative shift of
the potential between D and A sides (lower left panel). With
these features the SIC xc potential works against a spurious
fractional CT. After the field has become so strong that an
electron transfers from D to A, another important feature
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FIG. 2. (Color online) (a) depicts the GKLI-SIC xc potential
along the x axis for external fields of strengths from 2.0 × 109 to
7.0 × 109 V/m. The up-spin vxc is shown in the left two figures
and the down-spin one in the right two figures. Both spin channels
contain eight electrons. Step structures develop in vxc of different
spin channels and at different field strengths (see discussion in the
main text). (b) depicts xc potentials similar to (a), but for the situation
that after the first electron jump nine electrons are in the spin-down
and seven in the spin-up channel. (c) shows vxc of LSDA, which is
identical for both spin channels and shows no step structures.

manifests: A reverse step and potential shift appear, keeping
the newly arrived electron on A (lower right panel). With a
further increase of the external field these features become less
pronounced, “making room” for the next electron transfer.

Figure 2 extends the picture by comparing both spin
channels for a larger range of external fields and for the
different realizations that were discussed above. Figure 2(a)
shows the realization in which both spin channels contain
eight electrons throughout, i.e., this is the type of situation that
we just looked at in the lower half of Fig. 1. As just discussed,
with increasing external field the potential on the A side is
shifted upwards with respect to the potential on the D side
and a step appears in vxc. As long as no electron transfer has
occurred, both spin channels are the same. But as the external
field goes beyond 2.5 × 109 V/m, spin symmetry breaks as
one electron transfers in one of the spin channels. For the sake
of this discussion and consistent with Fig. 1 we assume that the
transferred electron has up spin. Then, the up-spin xc potential
[left part of Fig. 2(a)] builds up the reverse step that we already
discussed in the lower right panel of Fig. 1, and the right part of

Fig. 2(a) shows that the step simply vanishes in the down-spin
potential. As the external field is further increased, the step in
the up-spin vxc decreases, as discussed in Fig. 1, but a new step
rises in the spin-down channel. This new step counteracts the
second electron transfer, until finally a spin-down electron is
transferred to A. After this second transfer, we observe a step
in both spin channels that supports both electrons to stay on A.

Figure 2(b) depicts the GKLI-SIC xc potential for the
situation that after the first electron jump nine electrons are in
the spin-down and seven in the spin-up channel, i.e., number
(iii) of the four realizations that were discussed above. In this
case, the electron changes spin assignment when it hops from
D to A and one more electron of each spin channel is on A
than on D after the first electron jump. Therefore, the reverse
step discussed in the previous situation builds up in both spin
channels to counteract back transfer of the electron, but is
less pronounced. These steps decrease as the field strength
increases further, and new steps counteracting the second
electron jump gradually emerge in vxc of spin up and down.
With the second electron jump, the symmetric distribution of
eight electrons per spin channel is recovered and steps in both
spin channels keep the electrons on A.

Figure 2(c) demonstrates that the step structures are missing
completely in vxc of the LSDA functional. This explains why
the LSDA leads to a gradual transfer of charge instead of
realistic integer electron jumps.

Finally, we investigate the CT behavior of our model system
time dependently. To this end, we apply an external field in
dipole approximation along the x axis (grid spacing 0.4 bohr)

FIG. 3. (Color online) (a) Change of charge �Q of the acceptor
(A), the donor (D), and the sum of A and D during time propagation
using the GKLI-SIC and LSDA potentials and an external field of
8.0 × 109 V/m (see text). (b) Snapshots of the TD vxc taken at
different times. Left: GKLI-SIC. Right: LSDA. The insets in each
case enlarge the xc potential in between the two chains. With time the
potential barrier between A and D decreases for LSDA, but increases
for GKLI-SIC.
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and increase the field strength linearly within the first two
fs of the propagation from zero to 8.0 × 109 V/m and then
keep it constant. As part of the density may be accelerated
to the boundary of our grid, we use an absorbing boundary to
prevent this density from being spuriously reflected back to the
system. Figure 3(a) reveals notable differences between LSDA
and GKLI-SIC already at the early stages of the time evolution:
In LSDA, almost from the start, a notable fraction of charge
transfers from D to A. In addition, we observe ionization of
the system at later times as fractions of the density arrive
at the left boundary. GKLI-SIC shows a different behavior,
as the integrated charges differ only slightly from their initial
values.26 This behavior may again be understood in terms of vxc

structures. Figure 3(b) shows snapshots of the TD xc potential.
In analogy to the previously discussed static step structures, for
GKLI-SIC a TD feature that counteracts spurious CT emerges
between the chains. Due to the slowness of the tunneling
process the buildup of the step occurs slowly and it is thus
less pronounced here than in the static case. Steps also occur
at the outer system boundaries and prevent the system from
being ionized. The LSDA vxc misses such structures. Instead,

the potential barrier decreases when charge moves so that CT
is too easy and spurious ionization occurs. Observing transfer
of an integer charge is not possible with the present setup in
either case, as the absorbing boundary changes the norm of the
density and we thus observe not only effects of the transfer,
but also effects of the boundary. Schemes such as the one of
Ref. 14 can overcome this hurdle. Yet, our setup here already
shows that also in a truly TD simulation the KS SIC approach
cures deficiencies that standard functionals have with respect
to the type of CT that is relevant for transport scenarios.

In conclusion, we showed that KS SIC enforces the
important principle of integer preference in CT via an interplay
of step structures and reverse-step structures appearing in
turn in the different spin channels. KS SIC appears as
a readily applicable, parameter-free functional that cures
decisive transport deficiencies and may provide guiding lines
for the further development of functionals that are useful for a
real-time, first-principles description of transport.
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