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Efficient calculation of unbiased expectation values in diffusion quantum Monte Carlo
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Despite the proven utility of quantum Monte Carlo methods in addressing the quantum many-body problem,
many important observables are difficult to calculate due to the presence of large, and sometimes divergent,
statistical errors. The present state of the art allows the construction of renormalized estimators which result in
finite variances, but which invariably include some systematic bias. We present a simple method for calculating
unbiased expectation values of local operators in the diffusion quantum Monte Carlo method which is applicable
to both bare and renormalized estimators, allowing the accurate calculation of important properties such as forces.

DOI: 10.1103/PhysRevB.86.201107 PACS number(s): 05.10.Ln, 02.70.Ss, 03.65.−w

The diffusion quantum Monte Carlo (DMC) method is a
powerful approach to solving the quantum many-body prob-
lem. It can be used to calculate numerically exact ground-state
energies for bosonic systems, and highly accurate fermionic
energies using the fixed-node approximation.1 Calculating
accurate expectation values for general observables is more
difficult than for total energies due to the presence of system-
atic bias and large statistical variance. Indeed, a number of
important estimators have formally infinite variance, the most
well-known example being forces.2,3 Individually, solutions
to these two problems of bias and variance exist. Forward-
walking4 and reptation Monte Carlo5 (although strictly a
different approach to DMC) can be used to remove the
systematic bias, while the renormalized estimator approach
introduced by Assaraf and Caffarel6,7 can be used to reduce
the statistical variance. Unfortunately, these approaches are
incompatible. The forward-walking and reptation approaches
work by sampling the pure distribution �2

0 rather than the
usual DMC mixed distribution �0�T , where �T is a user-
defined trial wave function. In contrast, calculating unbiased
expectation values of renormalized estimators requires a very
different quantity, namely, the derivative of the mixed distri-
bution ∂λ(�0�T ). As a result, calculations using renormalized
estimators always contain some systematic bias.

In this Rapid Communication we present a simple method
which enables the calculation of unbiased expectation values
of renormalized estimators, and is also applicable to bare (i.e.,
nonrenormalized) estimators. Our approach is based on the fact
that expectation values can be written as derivatives of the total
energy. The expectation value of a bare local operator Ô can
be evaluated by perturbing the Hamiltonian Ĥ → Ĥ + λÔ,
and calculating the derivative of the total energy with respect
to λ at λ = 0. Applying this approach to the total DMC energy
we can write the unbiased expectation value as

〈Ô〉�2
0

= ∂λEDMC =
∫

�0�T ∂λELdr∫
�0�T dr

+
∫

∂λ (�0�T ) (EL − EDMC) dr∫
�0�T dr

, (1)

where the local energy is EL = Ĥ�T /�T . This expression
can be used to define low variance “renormalized” estimators
through a suitable choice of the trial first-order wave function

∂λ�T .2,8,9 The problem with using Eq. (1) is that the exact
first-order wave function ∂λ�0, which appears in the second
integral, is not available in standard DMC calculations. In
practice the approximation �T ∂λ�0 ≈ �0∂λ�T is often used,
resulting in a systematic bias. Here we show that the second
integral in Eq. (1), referred to as the zero-bias (ZB) integral, can
be evaluated exactly (within the fixed-node approximation) by
extending the DMC method itself to first order in perturbation
theory to obtain the derivative of the mixed distribution
directly. This results in a true zero-bias DMC (ZBDMC)
method, in which expectation values are independent of �T .

We begin by reviewing some relevant aspects of DMC. The
DMC method can be written as an integral evolution equation,

f (r′,t + τ ) =
∫

G̃(r,r′; τ )f (r,t)dr, (2)

which describes the evolution of an initial probability dis-
tribution f (r,t) from time t to time t + τ under the action
of an importance-sampled Green’s function G̃. In the long-
time limit, as τ → ∞, the distribution evolves to become
proportional to the mixed distribution,

lim
τ→∞ f (r′,t + τ ) = lim

τ→∞ �T (r′)�0(r′)e−τ (E0−ET )〈�0|φ〉, (3)

where φ(r) = f (r,t)/�T (r) and ET is a trial energy used to
stabilize the calculation.

A suitable approximation to the Green’s function, which
is exact in the limit τ → 0, is given by the short-time
approximation

G̃st(r,r′; τ ) = C exp

(
− [r′ − r − τv(r)]2

2τ

)

× exp

(
−τ

2
[EL(r′) + EL(r) − 2ET ]

)
, (4)

where C is a normalization constant, and v = ∇�T /�T . The
first exponential is a stochastic kernel which is interpreted as a
drift-diffusion term. The second exponential is a non-negative
weight, usually referred to as the branching term.

In order to reach the long-time limit, the short-time Green’s
function G̃st is repeatedly applied using a small value of τ . For
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M steps the evolution is written

f (rM,t + Mτ )=
∫

G̃st(r1,r2; τ ) · · · G̃st(rM−1,rM ; τ )

× f (r1,t)dr1 · · · drM−1

=
∫ M−1∏

i=1

G̃st(ri ,ri+1; τ )f (r1,t)dr1 · · · drM−1.

(5)

The distribution f , which is asymptotically proportional to
the mixed distribution �0�T , is represented by an ensemble
of weighted random walkers whose motion is directed by the
drift-diffusion kernel. As a result of the repeated application
of the short-time Green’s function, the weight associated with
a walker labeled i at time step M is the product of the weights
from all previous steps,

W
(0)
Mi =

M−1∏
j=1

exp

(
− τ

2
[EL(rj+1) + EL(rj ) − 2ET ]

)
. (6)

The DMC expectation value of the bare estimator Ô over the
mixed distribution is calculated as the weighted sum

〈Ô〉DMC =
∑Ns

i

∑Nw

j W
(0)
ij Ôij∑Ns

i

∑Nw

j W
(0)
ij

, (7)

where the sums are over all Nw walkers which exist at each of
the Ns time steps.

Now we can move on to show how the complete derivative
of the energy in Eq. (1) can be calculated. The second integral
requires the derivative of the DMC mixed distribution. We
can obtain this quantity by differentiating the DMC evolution
equation,

∂λf (r′,t + τ ) =
∫

∂λG̃(r,r′; τ )f (r,t)dr

+
∫

G̃(r,r′; τ )∂λf (r,t)dr. (8)

In the long-time limit this becomes

lim
τ→∞ ∂λf = lim

τ→∞ ∂λ[�T (r′)�0(r′)]e−τ (E0−ET )〈�0|φ〉
+ lim

τ→∞ �T (r′)�0(r′)e−τ (E0−ET )

× [∂λ〈�0|φ〉 − τ (∂λE0 − ∂λET )〈�0|φ〉]. (9)

The first term in this limit is proportional to the derivative
of the DMC mixed distribution, which is the quantity that
we require. There are also contamination terms, which are
proportional to the DMC mixed distribution and therefore do
not contribute to the value of the ZB integral. In order to
understand where the contamination comes from, we note that
while the DMC method is effectively solving the Schrödinger
eigenvalue equation (Ĥ − E)�0 = 0, the first-order DMC
method is effectively solving the Sternheimer10 equation

(Ĥ − E)∂λ�0 = −(∂λĤ − ∂λE)�0. (10)

This equation is weakly singular, in that if ∂λ�0 is a solution,
then so is ∂λ�0 + c�0 for any constant c.

The first-order evolution equation in Eq. (8) requires the
derivative of the Green’s function. The derivative of the short-
time Green’s function is

∂λG̃st(r,r′; τ ) = G̃st(r,r′; τ )

{
[r′ − r − τv(r)] · ∂λv(r)

− τ

2
[∂λEL(r′) + ∂λEL(r) − 2∂λET ]

}
. (11)

This expression can be interpreted in a similar way to the short-
time Green’s function itself. The stochastic drift-diffusion
kernel and branching weight from the original Green’s function
are retained, and we now have an additional weight, given by
the term in braces, which can be either positive or negative.
The first term in this new weight is the contribution from the
drift-diffusion part of the Green’s function, while the second
term is the contribution from the original branching weight.

Despite the similarity of the interpretation of the derivative
of the Green’s function to the original Green’s function,
the new weights behave quite differently from the original
branching weights. The derivative of the evolution equation
using the repeated application of the short-time Green’s
function can be written in a natural way as

∂λf (rM,t + Mτ )

=
∫ M−1∏

i=1

G̃st(ri ,ri+1; τ )
M−1∑
j=1

∂λG̃st(rj ,rj+1; τ )

G̃st(rj ,rj+1; τ )

× f (r1,t)dr1 · · · drM−1. (12)

We have neglected the term involving the derivative of the
initial distribution, as this can (without loss of generality) be
assumed to be independent of the perturbation. Our first-order
distribution ∂λf can be represented in the same way as the
distribution f , as a collection of weighted delta functions.
Equation (12) shows that the new weights are additive, rather
than being multiplicative as the original branching weights.
Thus, the weight associated with a walker labeled i at time
step M is now the product of the original weight [shown in
Eq. (6)] and a new weight

W
(1)
Mi =

M−1∑
j=1

{
[rj+1 − rj − τv(rj )] · ∂λv(rj )

− τ

2
[∂λEL(rj+1) + ∂λEL(rj ) − 2∂λET ]

}
, (13)

where the sum is over all previous time steps. Using the new
weight, we can obtain an unbiased estimate of the ZB integral
in Eq. (1) using

∑Ns

i

∑Nw

j W
(0)
ij W

(1)
ij (EL ij − EDMC)∑Ns

i

∑Nw

j W
(0)
ij

. (14)

So far we have not considered the effect of using the fixed-
node approximation (FNA), which is necessary in practical
calculations involving many electrons. The simplest way of
implementing the FNA is to delete walkers which attempt to
cross the nodal surface. This can be described in the context
of the evolution equation by replacing the short-time Green’s
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function describing a single step with the product

G̃FNA
st (r,r′; τ ) = G̃st(r,r′; τ )α(r,r′). (15)

The α(r,r′) term is a weight which is equal to 0 if the move
from r to r′ crosses a node, and 1 otherwise. The derivative of
the FNA Green’s function is

∂λG̃
FNA
st (r,r′; τ ) = ∂λG̃st(r,r′; τ )α(r,r′). (16)

Note that there is no contribution from the derivative of the
fixed-node weight ∂λα. The reason for this is that in order
for the derivative of the DMC energy to be equal to the
(fixed-node) unbiased expectation value of the operator Ô,
it is necessary that the perturbation does not affect the nodal
surface.11 As a result, the new weight defined in Eq. (13) is
unchanged. A more common approach to implementing the
fixed-node approximation is to reject moves which attempt to
cross the nodal surface. In this case, for rejected moves there
is no drift-diffusion contribution to the weight W (1).

We have applied our ZBDMC method to calculate forces in
diatomic molecules as a function of bond length. Tests on the
H2 molecule show the method is able to reproduce the exact
forces, even when using an extremely poor trial wave function
consisting of a single 1s-type function on each nucleus. Results
from force calculations on the BH molecule using a low-quality
trial wave function are shown in Fig. 1. As the bare force esti-
mator has infinite variance, we use the renormalized estimator
defined in Ref. 2. Forces obtained with this estimator are not
strictly exact, as they neglect the change in the nodal surface
caused by perturbing atomic positions. In the present case this
effect turns out to be tiny, but we stress that it is possible to con-
struct a force estimator which includes these nodal effects by
choosing ∂λ�T to be the derivative of a properly cusp-corrected
trial wave function.3 In addition to the true ZBDMC result, we
present results calculated using the mixed distribution (defined
by setting ∂λ�0 = 0) and the usual approximate zero-bias
method (defined by setting �T ∂λ�0 = �0∂λ�T ). The forces
calculated with the approximate methods contain a significant
amount of systematic bias due to the poor trial wave function
used, whereas the ZBDMC results accurately reproduce the

FIG. 1. Force on the H atom in a BH molecule as a function of
bond length. Open triangles: DMC mixed estimate. Open circles:
Approximate ZB estimate. Solid circles: True ZBDMC value.
Statistical errors are smaller than the symbols. The solid black curve
was obtained by differentiating a Morse potential fit to accurate DMC
energies.

FIG. 2. Behavior of the ZB term and its variance (see inset) as a
function of accumulation time, for trial wave functions of different
quality in the force calculation of BH. Open circles indicate a poorer
trial wave function, and solid circles a better wave function.

forces obtained by differentiating a Morse potential fit to DMC
energies. The ZBDMC equilibrium bond length agrees closely
with the experimental value of 2.3285 bohrs.

Some important aspects of the behavior of the estimate of
the ZB integral in Eq. (1) are shown in Fig. 2. The variance
of the ZBDMC estimate increases linearly with the length of
the sum used to determine the new weights W (1). To deal with
this, we simply restrict the back sum in Eq. (13) to be over a
fixed finite number of steps, referred to as the accumulation
time. This leads to a small amount of bias in the result, which
decays with increasing accumulation time. A side effect of
using a finite accumulation time is that the derivative of the
trial energy in Eq. (13) (which can be chosen to be a constant)
does not contribute to the value of the ZB integral, so in all
our calculations we use ∂λET = 0. The use of a better trial
wave function leads to a quicker convergence to the unbiased
result, and a shallower gradient in the behavior of the variance.
The absolute value of the ZB integral is smaller when a more
accurate trial wave function is used, and it vanishes entirely
when the trial wave function is exact.

Although the primary motivation for using our ZBDMC
method is to calculate unbiased expectation values of renor-
malized estimators, it can also be used with standard bare esti-
mators by choosing ∂λ�T = 0. In that case, the contribution to
the new weight W (1) from the derivative of the drift-diffusion
term vanishes, and we are left with a contribution from the
derivative of the branching weight, which involves the bare
estimator,

W
(1)
Mi = −τ

2

M−1∑
j=1

[Ô(rj+1) + Ô(rj )]. (17)

When this weight is used in Eq. (14) to evaluate the ZB integral
in Eq. (1), we obtain an expression similar to that of Gaudoin
and Pitarke.13 Thus, our ZBDMC method contains their
Hellmann-Feynman sampling (HFS) method as a special case,
which is valid only when using nonrenormalized estimators.

While the ZBDMC method can be used with bare esti-
mators, there are definite advantages to using renormalized
estimators even when the bare estimators have finite variance.
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To illustrate this point, we have calculated the electron-nucleus
Coulomb potential (VeN) in the Be atom using both bare and
renormalized estimators. The bare estimator is the standard
expression, −Z

∑
i r

−1
i , and the renormalized estimator is

given by

∂λ�T = −Z�T

∑
i

ri , (18)

where Z is the nuclear charge and ri is the distance between
electron i and the nucleus.

Figure 3 shows the ZBDMC results using both the bare and
renormalized estimators as a function of the accumulation time
used to calculate the W (1) weights. The renormalized estimator
shows a linear increase in variance as the accumulation time is
increased, in the same manner as shown for the force in Fig. 2.
In contrast, using the bare estimator results in a much more
rapid nonlinearly increasing variance for long accumulation
times. The time-step error associated with the bare estimator
is much larger than that of the renormalized estimator, though
both estimators do converge to the same value in the τ → 0
limit. Using a more complex DMC algorithm such as the one
described in Ref. 14 should reduce the time-step errors of both
estimates. The extension of the ZBDMC method to this type
of algorithm will be presented in a future paper.

To conclude, we have presented a method which allows
the calculation of unbiased expectation values in DMC.
The method is inherently linked to the use of renormalized
estimators, and so allows the efficient and accurate calculation

FIG. 3. Comparison of the behavior of the ZBDMC variance and
expectation value (see inset) of VeN in the Be atom using the bare
estimator (open circles) and the renormalized estimator (solid circles).
All calculations used a time step of 0.001 a.u. and a target population
of 2048 walkers. The exact expectation value is close to −33.711,
from Ref. 12.

of quantities such as forces. We have shown that the Hellmann-
Feynman-sampling method of Ref. 13 corresponds to applying
our method to bare rather than renormalized estimators. We
have also shown that attempting to calculate the unbiased
expectation value of bare estimators (even those with finite
variance) leads to a rapidly increasing variance. In contrast,
when using renormalized estimators, the variance increases
only linearly with the accumulation time.
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