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Electron localization in inhomogeneous Möbius rings
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The effects of inhomogeneity on the electron states in semiconductor Möbius rings at the microscale are
theoretically investigated. Effective electron localization in the untwisted part of an inhomogeneous Möbius ring
is caused by a change of the electron quantized kinetic energy. We suggest an experimental method to detect the
electron localization by measuring persistent currents in inhomogeneous Möbius rings.

DOI: 10.1103/PhysRevB.86.195421 PACS number(s): 73.22.−f, 73.23.Ra, 04.62.+v

I. INTRODUCTION

Nanostructure fabrication techniques can be exploited to
generate nontrivially shaped objects with manmade topolog-
ical space metrics, which determine the energy spectrum
and other physical properties of electrons confined in such
nontrivially shaped objects. For instance, spooling a single
crystalline NbSe3 ribbon on a selenium droplet by surface
tension produces a twist in the ribbon, leading to the formation
of a one-sided Möbius strip.1 The quantum states2–4 of
particles confined in such a topologically nontrivial manifold
can be revealed by superconducting properties,5 persistent
currents,6 the topology-induced Stark shift, spectral splitting,
and the quantum decoherence of the pseudospin.7 The Möbius
graphene strip, which is an exotic two-dimensional (2D)
electron system with a topologically nontrivial edge, has
been proven to be a topological insulator.8 Energy levels,
symmetry, optical transitions, and level splitting in a magnetic
field for a homogeneous Möbius ring without thickness have
recently been analyzed numerically.9 Generally, Möbius rings
are characterized by an inhomogeneous twist.10 The degree
of twist localization is an intrinsic mechanical property of an
inhomogeneously twisted Möbius ring. We show in the present
paper that it is this inhomogeneity of the twist that allows us to
quantify the space-dependent metric in Möbius structures by
the Aharonov-Bohm quantum-interference effect.

II. GROUND STATE FOR THE SCHRÖDINGER EQUATION
IN THE INHOMOGENEOUS MÖBIUS RING: A

“DELOCALIZATION-TO-LOCALIZATION”
TRANSITION

A Möbius ring with an inhomogeneous twist, spread over
a part of its circumference, can be formed as shown in Fig. 1.
An initial strip with length Lx , width Ly , and thickness Lz

shown in Fig. 1(a) is twisted over the length interval Lx2

[Fig. 1(b)] and then rolled up in a Möbius ring [Fig. 1(c)]. The
relative length of the untwisted part of the Möbius ring is η =
Lx1/Lx . A finite-element solution of the eigenstate problem
for the Schrödinger equation with zero boundary conditions
(supported by a variational solution for the ground state of an
electron in the inhomogeneous Möbius ring with the space-
dependent metric; see Sec. IV) shows that the ground state
of an electron confined to the inhomogeneous Möbius ring is
expelled from the twisted region already at relatively small

values of η. This is illustrated in Fig. 2 (first row) for a set
of Möbius rings with R ≡ Lx/2π = 10 nm, Ly = 8 nm, and
Lz = 2 nm at different values of the untwisted part. At η = 0, the
squared modulus of the ground-state wave function is the same
at any cross section normal to the center line of the Möbius
ring and reaches its maximal value everywhere on the center
line. At η > 0, the squared modulus of the ground-state wave
function on the center line in the untwisted region reaches its
maximal value, while its value on the center line in the middle
of the twisted region decays towards appreciably low values
(for η = 5%) and, further, down to 0 (for η = 10% and 20%).
An electronic ground-state wave function, which is delocalized
and spreads over the whole circumference at η = 0, becomes
effectively localized in the vicinity of the untwisted region when
increasing the relative length of the untwisted part of the ring.

It is noteworthy that the first excited state changes from
delocalized (with maxima of |�|2 that may be arbitrarily
positioned on the center line) at η = 0 to effectively localized
in the twisted region at η > 0 (Fig. 2, second row), the trend
of the localization being a slower function of η than that for
the ground state. The second and higher excited states remain
essentially delocalized at η > 0 (Fig. 2, third row). In what
follows, we focus on the effects due to the effective localization
of the ground state.

III. EFFECT OF THE INHOMOGENEOUS TWIST ON
THE GROUND-STATE PERSISTENT CURRENT

This “delocalization-to-localization” transition may be
detected by measuring the persistent current in the Möbius
ring threaded by a magnetic flux � through its opening
[Fig. 1(c)]. The Aharonov-Bohm oscillations of the persistent
current carried by single electron states arise from the periodic
dependence of the electron phase on the magnetic flux �,
leading to a quantum interference pattern that is periodic11–14

with the period �0 = h/e, where h is Planck’s constant and e

is the absolute value of the electron charge. The eigenenergies
for the lowest states of an electron confined to the Möbius ring
are represented as a function of the magnetic flux � within
one period 0 � �/�0 � 1 (Fig. 3). Due to the geometric
potential,15 the ground-state energy of an electron in a ring is
shifted downwards [green arrow in Fig. 3(a)]. The ground-state
energy of an electron in a Möbius ring is shifted upwards [red
arrow in Fig. 3(a)] compared to that for a ring made of the
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FIG. 1. (Color online) Formation of a Möbius ring with an
inhomogeneous twist. The initial strip [with geometric characteristics
shown in panel (a)] is twisted only over the length interval Lx2 (b) and
then rolled up in a Möbius ring (c). A characteristic radius of the
Möbius ring is R ≡ Lx/2π . The relative length of the untwisted part
of the Möbius ring is η = Lx1/Lx . The electron states are analyzed
for a Möbius ring threaded by a magnetic flux � through its opening
(shown with arrows).

same initial strip [Fig. 3(a)], in qualitative agreement with
the behavior revealed for a Möbius ring without thickness.9

The twist-induced shift of the ground-state energy at zero
magnetic field �E = 22 meV in a Möbius ring of volume
V = 1.0 × 103 nm3 corresponds to an energy density of
2.2 × 1022 eV m−3. The localization of the electron is
revealed by a flattening of the ground-state energy as a
function of the magnetic flux E1(�) with increasing ratio

= 0 % = 5 % = 10 % = 20 %

ground state

1st excited state

2nd excited state

FIG. 2. (Color online) Squared modulus of the wave functions
|� |2 of an electron confined to a Möbius ring with an inhomogeneous
twist (color code: ground state, red; first excited state, purple; second
excited state, blue). Three isosurfaces of the squared modulus of the
wave function at 0.7, 0.5, and 0.3 of its maximal value are shown with
reducing color intensity. The ground-state wave function is expelled
from the twisted region. The magnitude of this expulsion increases
when increasing the ratio of the length of the untwisted part of the ring
to the whole circumference η = Lx1/Lx . The ground state changes
from delocalized at η = 0 to effectively localized in the vicinity of
the untwisted region at η > 0. The first excited state changes from
delocalized at η = 0 to effectively localized in the twisted region at
η > 0. The second excited state remains essentially delocalized at
η > 0. The localization/delocalization patterns shown for η = 20 are
typical also for larger values η > 20. The finite-element calculation is
performed for the effective mass me = 0.022m0, where m0 is the free-
electron mass, and the structural parameters R = Lx/2π = 10 nm,
Ly = 8 nm, and Lz = 2 nm.

FIG. 3. (Color online) Eigenenergies of the lowest states of an
electron in a Möbius ring as a function of the relative magnetic flux.
The calculation is performed for R = Lx/2π = 10 nm, Ly = 8 nm,
and Lz = 2 nm. (a) The ground-state energies of an electron in a
ring rolled up from the initial strip shown in Fig. 2(a) are decreased
(green arrow down) due to a geometric potential. The ground-state
energies of an electron in a Möbius ring are increased (red arrow
up) because the increase of the kinetic energy of an electron due to
a twist is larger than the energy decrease caused by the geometric
potential. (b) When increasing the relative length of the untwisted
part η, the expulsion of the electron wave function from the twisted
region leads to an overall decrease (except for very small values of η)
of the ground-state energy, accompanied by its flattening as a function
of the magnetic flux because of an enhanced trend to localization.

η = Lx1/Lx [Fig. 3(b)]. The ground-state persistent current
I1(�) = −dE1(�)/d� taken at �/�0 = 0.25 [Fig. 4(a)]
shows two distinctly different regions as a function of the
ratio η: for lower η, when localization is weak, the current
decays by a power law (which, as follows from the fitting of
the numerical data, is quadratic), while for higher η it decays
exponentially. A boundary between those regions is given by
ηcr, which quantifies the transition between delocalized and
effectively localized states.

The effect of the inhomogeneous twist on the persistent
current at low temperatures can be explained as follows. For
η = 0, the electron wave function is uniformly distributed over
the whole ring (see the panel η = 0 in Fig. 2). For η > 0, the
electron wave function tends to be expelled from the twisted
region in order to decrease the electron energy. This means that
the electron state becomes confined to a region (in the vicinity
of the untwisted part of the Möbius ring) of smaller length
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FIG. 4. (Color online) “Delocalization-to-localization” transition
in a Möbius ring with an inhomogeneous twist. (a) Persistent current
as a function of the relative length of the untwisted part. The values
of the persistent current are taken at �/�0 = 0.25. The delocalized
states (at lower values of η) reveal a slow (quadratic) decay of the
persistent current with increasing η. The effectively localized states
(at higher values of η) are characterized by a fast (exponential) decay
of the persistent current as a function of η. The value ηcr ≈ 12
shown with a dashed line indicates a position of a conventional
boundary between the delocalized and effectively localized states.
The calculation is performed for R = Lx/2π = 10 nm, Ly = 8 nm,
and Lz = 2 nm. (b) Phase boundaries for a “delocalized-to-localized”
transition obtained from the persistent currents shown in panel (a)
plotted as a function of thickness of the Möbius ring. The calculation
is performed for R = Lx/2π = 10 nm.

than the ring’s circumference. The kinetic energy quantized
due to such a confinement of the circumferential motion
(“size-quantized” energy) increases as compared to that in
a homogeneous Möbius ring. The electron ground state is
then a result of an interplay of these counteracting trends,
which depends on the relative value of the untwisted part
of the Möbius ring. This scenario is confirmed also by the
variational solution for the ground state of the Schrödinger
equation in the inhomogeneous Möbius ring (see Sec. IV). (i)
For small values of η, the energy decrease due to the expulsion
of the electron wave function from the relatively large twisted
region cannot compensate for the increase of energy due to
the size quantization, and the electron wave function is only
moderately reduced in the twisted region (see the panel η = 5%

in Fig. 2). For the Aharonov-Bohm effect, this implies a small
reduction of the persistent current. (ii) With a further increase
of η, the twisted region shrinks. Therefore, the energy decrease
due to the expulsion of the electron wave function from the
twisted region becomes larger than the energy increase due to
the confinement of the circumferential motion. As a result, the
degree of penetration of the electron wave function into the
twisted region quickly decays with increasing η (see the panels
η = 10% and 20% in Fig. 2). Consequently, in the presence
of an Aharonov-Bohm magnetic flux, the persistent current
through the inhomogeneous Möbius ring is progressively
hindered with increasing η [Fig. 4(a)]. The boundary values
ηcr are increasing functions of the thickness Lz in the range
from 1 to 4 nm at a given width Ly in the range from 4 to
12 nm [Fig. 4(b)]. For Ly = 4 nm, the increase of ηcr with
thickness is slowed down when the thickness Lz approaches
the value of the width (4 nm). For a given thickness Lz, ηcr

significantly increases upon decreasing the width Ly .

IV. VARIATIONAL SOLUTION FOR THE GROUND STATE
OF THE SCHRÖDINGER EQUATION IN THE

INHOMOGENEOUS MÖBIUS RING WITH THE
SPACE-DEPENDENT METRIC

To find eigenstates of an electron confined to a Möbius ring
R, where a twist is spread only over a part of its circumference,
we solve the Schrödinger equation

Ĥψ = Eψ, Ĥ = − h̄2

2me

∇2, ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

(1)

in the ring: (x,y,z) ∈ R with Dirichlet boundary conditions

ψ |(x,y,z)∈S = 0 (2)

on the surface of the Möbius ring: (x,y,z)∈ S. The space is
Euclidean: the interval is described by the equation dl2 =
gij dxidxj with a unit Euclidean metric tensor

‖gij‖ =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (3)

We recall the procedure of formation of the Möbius ring
from a planar strip P {(X,Y,Z)} shown in Fig. 1. This procedure
generates the transformation of coordinates from the original
set R(X,Y,Z) bound to the initial strip to the final set r(x,y,z):

x = (R − Z) sin
X

R
Lx1	(Lx1 − X) + (R − Y sin ξ −Z cos ξ )

× sin
X

R
	(X − Lx1),

y = Y	(Lx1 − X) + (Y cos ξ − Z sin ξ )	(X − Lx1), (4)

z =
[
R − (R − Z) cos

X

R

]
	(Lx1 − X)

+
[
R − (R − Y sin ξ − Z cos ξ ) cos

X

R

]
	(X − Lx1),

where

R = Lx

2π
, ξ = κ(X − Lx1), κ = π

Lx2
.
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The coefficient κ is a maximal principal curvature of a
twisted strip. The inverse radius R−1 = κ1 is a maximal prin-
cipal curvature of a rolled-up strip. Due to the inhomogeneous
twist, the twist-related curvature κ can be tuned (to a large
extent) independently of the rolling-up-related curvature κ1.
A Heaviside step function 	(X) equals 1 if X > 0 and 0
otherwise.

We consider further a transformation of the coordinates (4)
as a transformation of space. It results in the non-Euclidean
metric

‖gij‖ =

⎛
⎜⎝

�2 0 0

0 1 0

0 0 1

⎞
⎟⎠ 	 (Lx1 − X)

+

⎛
⎜⎝

Ỹ 2 + Z̃2 + �2 −Z̃ Ỹ

−Z̃ 1 0

Ỹ 0 1

⎞
⎟⎠ 	 (X − Lx1) , (5)

where

� =
(

1 − Z

R

)
	(Lx1 − X) +

(
1 − Y

R
sin ξ − Z

R
cos ξ

)
×	(X − Lx1),

Ỹ = κY, Z̃ = κZ.

A determinant of the metric tensor (5),

g = |gij | = �2,

represents a change of the elementary volume under the
transformation (4): dxdydz = √

gdXdYdZ = �dXdYdZ.

The wave function must undergo a norm-conserving trans-
formation

ψ(r) = 1√
�

χ (R). (6)

An inverse of the metric tensor of Eq. (5) is

∥∥g−1
ij

∥∥ = 1

g

⎛
⎜⎝

1 0 0

0 �2 0

0 0 �2

⎞
⎟⎠ 	(Lx1 − X)

+ 1

g

⎛
⎜⎝

1 Z̃ −Ỹ

Z̃ Z̃2 + �2 −Ỹ Z̃

−Ỹ −Ỹ Z̃ Ỹ 2 + �2

⎞
⎟⎠ 	 (X − Lx1) .

(7)

A transformation of the Laplace-Beltrami operator16

∇2ψ = 1√
g

∂

∂Xi

[√
g(g−1)ij

∂ψ

∂Xj

]
,

after substitution of Eqs. (5)–(7), leads to the following explicit
expression:

∇2ψ = 1√
�

Ôχ, Ôχ =
{

1
�2

∂2χ

∂X2 + 1
4R2�2 χ + ∂2χ

∂Y 2 + ∂2χ

∂Z2 for X < Lx1,

1
�2

(
∂

∂X
+ Z̃ ∂

∂Y
− Ỹ ∂

∂Z

)2
χ + 1

4R2�2 χ + ∂2χ

∂Y 2 + ∂2χ

∂Z2 for X > Lx1.

Consequently, the Hamiltonian acquires a complicated
form

Ĥ = − h̄2

2me

[
αij ∂2

∂Xi∂Xj

+ βi ∂

∂Xi

+ α0

]
,

‖αij‖ =

⎛
⎜⎝

1
�2 0 0

0 1 0

0 0 1

⎞
⎟⎠ 	 (Lx1 − X)

(8)

+

⎛
⎜⎝

1
�2

Z̃
�2 − Ỹ

�2

Z̃
�2

Z̃2

�2 + 1 − Ỹ Z̃
�2

− Ỹ
�2 − Ỹ Z̃

�2
Ỹ 2

�2 + 1

⎞
⎟⎠ 	(X − Lx1),

(βi) =
(

0,−κỸ

�2
,−κZ̃

�2

)
, α0 = 1

4R2�2
.

At the same time, solving the Schrödinger equation
Ĥχ (R) = Eχ (R) is facilitated because the Dirichlet boundary
conditions in terms of the coordinates (X,Y,Z) are applied on
the surface of the planar strip P .

The attractive geometric potential −h̄2/8meR
2�2 has one

and the same form in the regions with and without twist. (Note
that here we consider a case of homogeneous rolling up. In
systems with inhomogeneous bending, the geometric potential
gives rise to a trend of localization of the electronic state in

the regions with the largest curvature.) If the transverse sizes
of the strip are much smaller than its radius R (and hence the
length Lx), Ly � R,Lz � R,� ≈ 1, and we get a geometric
potential for a 2D cylinder.15 The kinetic energy operator in the
region with twist contains a coordinate dependence not only
via �, but also through terms depending on the coordinates Ỹ

and Z̃. This leads to a dramatic difference in the behavior of
the electron wave function in regions without and with twist
in a 3D Möbius ring.

We discuss further a practically relevant case in which the
strip has a small width and thickness as compared to its length,
Ly,Lz � Lx, when � ≈ 1. It is then reasonable to consider
the motion along the circumference as slow as compared to the
fast motion across the ring and to choose a trial wave function
of the form of an adiabatic ansatz,

χ (X,Y,Z) = �(X)

√
2

Ly

cos

(
π

Ly

Y

)√
2

Lz

cos

(
π

Lz

Z

)
,

which contains the ground-state wave functions describing
the electron motion in a strip along the Y and Z directions
with the lowest eigenenergies E010(Ly) = h̄2π2/2meL

2
y and

E001(Lz) = h̄2π2/2meL
2
z , correspondingly. This trial wave

function obeys the zero boundary conditions for the coor-
dinates Y and Z. Averaging the Hamiltonian (8) with this
function, we arrive at the following structure of the electron
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energy:

E = 〈χ |Ĥ |χ〉 = E100 + EYZ + �Eroll + �Etwist (9)

with the kinetic energy of the motion along the circumference

E100 = − h̄2

2me

〈χ | 1

�2

∂2

∂X2
|χ〉

and the kinetic energy of the motion in the YZ plane confined
to a rectangle of sizes Ly × Lz,

EYZ = E010(Ly) + E001(Lz),

as well as the contributions due to rolling up,

�Eroll = −〈χ | h̄2

8meR2�2
|χ〉,

and due to twist,

�Etwist = C(Ly/Lz)
h̄2κ2

2me

〈χ | 1

�2
	(X − Lx1)|χ〉. (10)

The coefficient

C(Ly/Lz) = π2 − 6

12

(
L2

z

L2
y

+ L2
y

L2
z

)
− 1

2

is a positive function of the ratio of sizes Ly/Lz, reaching
its minimal value ≈0.14 when the ring has equal width and
thickness (Ly = Lz). Hence the contribution to the energy due
to twist (10) is always positive. It can be increased by reducing
the spatial extent of the twisted region (via κ = π/Lx2). A
twist modifies the space metric in such a way that the kinetic
energy of an electron in a twisted region of a strip increases as
if the electron would have acquired a smaller effective mass as
compared to the regions of a strip without twist. This makes
energetically profitable an expulsion of the electron states from

a twisted region to a region without twist. A pattern of the
resulting electron wave function is determined by the interplay
of the two above-discussed trends: an increase of the kinetic
energy due to the geometry-modified metric in a twisted region
(�Etwist) and a rise of the size quantization energy due to
confinement in the vicinity of an untwisted region (E100).

The electron energy in an initial strip rolled up into a ring
is denoted by the subscript “0” for the Hamiltonian and for the
corresponding wave function:

E0 = 〈χ0|Ĥ0|χ0〉 = E010(Ly) + E001(Lz) + �Eroll, (11)

where we take into account the fact that the kinetic energy of
the motion along the circumference in the ground state with
the azimuthal quantum number equal to 0 vanishes:

E100 = − h̄2

2me

〈χ0| ∂2

∂X2
|χ0〉 = 0.

A difference between the electron energy in a Möbius ring
with an inhomogeneous twist (8) and that in an initial strip
rolled up in a ring (11) is

�E = E − E0 = E100 + �Etwist.

A relative contribution to the electron energy due to the
inhomogeneous twist �E/E0 is estimated to be ∼10−3–10−2

for the typical geometric characteristics of Möbius rings. For a
given width Ly , the relative contribution �E/E0 increases in
Möbius strips with high cross-sectional aspect ratio Lz/Ly �
1 (or �1) as compared to the region of comparable thickness
and width: Lz/Ly ∼ 1. For relatively small thickness Lz,
the relative contribution �E/E0 increases when reducing
the relative length η = Lx1/Lx of the untwisted part of the
Möbius ring. The maximal values of that contribution range
from ∼10−3 for Ly = 4 nm to ∼ 10−2 for Ly = 12 nm (see
Fig. 5, lower row).

FIG. 5. (Color online) Variational solutions for the amplitude a [Eq. (12)] of the delocalized states (the upper row) and the relative
contribution to the electron energy due to twist �E/E0 (the lower row) in a Möbius ring with an inhomogeneous twist. Black lines indicate
the level a = 0.9, which serves as a conventional localization boundary. The calculation is performed for R = Lx/2π = 10 nm.
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For a thin ring where Ly � R,Lz � R, and hence � ≈ 1,
the average Hamiltonian

〈χ |Ĥ |χ〉 = E100 + E010(Ly) + E001(Lz) + �Eroll + �Etwist

with a contribution due to rolling up,

�Eroll = − h̄2

8meR2
≡ −h̄2κ2

1

8me

,

contains a trial wave function �(X) in the terms

E100 = − h̄2

2me

〈�| ∂2

∂X2
|�〉

and �Etwist = C(Ly/Lz)
h̄2κ2

2me

〈�|	(X − Lx1)|�〉.

A trial wave function is selected symmetric with respect to
the central point of the untwisted region (X = Lx1/2),

�(X) = a√
Lx

+ 2b√
3Lx3

cos2

[
π

2Lx3

(
X − Lx1

2

)]

×	

(∣∣∣∣X − Lx1

2

∣∣∣∣− Lx3

)
, −Lx

2
< X − Lx1

2
<

Lx

2
.

(12)

It allows for a continuous tuning between a delocalized
state (a = 1, b = 0) to a localized state (a = 0, b = 1)
with a characteristic localization length Lx3. A normalization
condition leads to the following link between a and b:

a =
√(

4Lx3

3Lx

− 1

)
b2 + 1 − 2

√
Lx3

3Lx

b.

The parameters b and Lx3 are treated as variational
parameters. The resulting amplitude a of the delocalized
states in a Möbius ring (Fig. 5, upper row) decreases from
values close to 1 [which imply delocalized states according to
Eq. (12)] to values close to 0 (effectively localized states) when
increasing η at a given value of Lz. The level a = 0.9 selected
as a conventional “delocalization-to-localization” boundary is
achieved at higher values of η for a larger thickness Lz at a
given width Ly or at a smaller width Ly at a given thickness
Lz, when Lz is smaller than the width Ly . When Lz becomes

larger than the width Ly , the roles of thickness and width
in the above relations interchange, and the level a = 0.9 is
achieved at lower values of η for a larger thickness Lz at a
given width Ly (see the interval Lz > 4 nm for Ly = 4 nm).
This characteristic behavior explains the boundaries for a
“delocalized-to-localized” transition obtained in the main text
from the persistent current [Fig. 4(b)].

It is worth noting that we consider here a direct, geometry-
determined, effect of the inhomogeneous twist on the elec-
tronic states in finite-width Möbius rings. As shown in Ref. 4,
the eigenstate characteristics are well captured in the absence
of hydrodynamic strain using the differential-geometry anal-
ysis of Möbius rings.2 Inhomogeneity of twist of the Möbius
ring may lead also to inhomogeneous strain, which is known
to control the electronic properties in nonflat heterostructures,
e.g., in quantum dots17 and quantum wires.18 The strain-
induced deformation potential would then give rise to addi-
tional electron localization in inhomogeneous Möbius rings.

V. CONCLUSIONS

In summary, symbiosis of the geometric potential and an
inhomogeneous twist renders an observation of the topology
effect on the electron ground-state energy in microscale
Möbius rings into the realm of experimental verification.
We predict a “delocalization-to-localization” transition for
the electron ground state as the Möbius ring is made more
and more inhomogeneous. This transition can be quantified
through the Aharonov-Bohm quantum-interference effect on
the ground-state persistent current as a function of the magnetic
flux threading the Möbius ring. Our theoretical considerations
may receive practical relevance in view of the emerging
experimental realizations of topologically nontrivial manifolds
at the nanoscale, as any pertinent fabrication techniques are
likely to generate structural and geometrical inhomogeneities.
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