
PHYSICAL REVIEW B 86, 195415 (2012)

Channeling of a subangstrom electron beam in a crystal mapped
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The propagation of high-energy electrons in crystals is in general a complicated multiple-scattering problem.
However, along high-symmetry zone axes the problem can be mapped to the time evolution of a two-dimensional
(2D) molecular system. Each projected atomic column can be approximated by the potential of a 2D screened
hydrogenic atom. When two columns are in close proximity, their bound states overlap and form analogs to
molecular orbitals. For subangstrom electron beams, excitation of antisymmetric orbitals can result in the failure
of the simple incoherent imaging approximation. As a result, the standard resolution test and the one-to-one
correspondence of atomic positions of a crystal imaged along a zone axis with closely spaced projected columns
(“dumbbells”) can fail dramatically at finite and realistic sample thicknesses. This is demonstrated experimentally
in high-angle annular dark-field scanning transmission electron microscope (HAADF STEM) images of [211]-
oriented Si showing an apparent intercolumn spacing of 1.28( ± 0.09) Å, over 64% larger than the actual 0.78 Å
spacing. Furthermore, the apparent spacing can be tuned with sample thickness and probe size to produce a
larger, smaller, or even the actual spacing under conditions when the peaks of two adjacent Si columns should
not even have been resolved given the electron probe size.
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I. INTRODUCTION

The propagation of a high-energy electron beam through
a three-dimensional (3D) periodic potential can be mapped
to the time evolution of a wave packet in an array of two-
dimensional (2D) projected potentials.1–4 Previous real-space
and Bloch-wave5,6 models are effective descriptions of well-
separated atomic columns, but the simple image interpretations
that can be extracted from these models are recognized to
fail for the closely spaced features accessible to the new
generation of aberration-corrected electron microscopes.7,8

The form of the failure has not yet been considered—here
we show it leads to a new scattering regime with noticeable
consequences for image interpretation. We present a tight-
binding model for swift electron propagation in crystals where
paired atomic columns can be treated in analogy to a 2D
hydrogenic molecule. In isolation, each column produces a
transverse set of bound and continuous states, resembling
that of a 2D hydrogenic atom. When two atomic columns
are in close proximity, the overlapping bound states give rise
to symmetric and antisymmetric orbitals. When a scanning
transmission electron microscope (STEM) is used to probe a
crystal structure, the excitation of antisymmetric orbitals can
make paired atomic columns separated by less than the probe
width appear to be incorrectly resolved, placing images of
the projected columns at unphysical locations. Prior studies
of overlapping orbitals9,10 had considered a regime where the
atomic columns were separated by more than an angstrom and
the potential effects of overlap and coupling are exponentially
weaker. Consequently, in Geuens and Van Dyke11 the authors
concluded coupling between columns can be neglected. While
their conclusions were appropriate for the older generation
of lower-resolution microscopes where the coupling between
sufficiently widely spaced columns can be neglected, for more
modern instruments capable of forming subangstrom-sized
beams, this is no longer the case and the resulting distortions

often prevent a simple interpretation of images and may
raise doubts about real-space resolution measurements or
atomic displacements such as ferroelectric distortions in a
material.

A major challenge in measuring the experimental probe
profile of a subangstrom electron wave packet is the lack of
good test objects. There are no bond lengths shorter than 0.5 Å.
Instead, most resolution tests rely on viewing a thin section
of a crystal along a zone axis such as silicon [11n] (n =
2,4, . . .) where the projected distance between neighboring
atom columns can be shrunk incrementally.12 In projection,
the resulting closely spaced pair of atomic atoms is referred
to as a dumbbell due to the shape of its image when the pair
is just resolved. An implicit assumption in this test is that the
shape of the probe wave function is not altered by the atomic
potentials. However, incident swift electrons are known to
channel along the positively charged screened potential of an
atomic column’s nuclei.13–16

Here, we explain how electron channeling can result in
image artifacts, a dramatic failure of standard resolution tests,
and confound attempts to measure atomic displacements in
interfaces and ferroelectric thin films. Experimentally, these
effects are shown in a STEM image (Fig. 1), where the Si [211]
paired columns are located 64%17 further away than the actual
intercolumn spacing. Considering the resolution degradation
from chromatic aberration and the incoherent source size,
the paired column peaks of Si [211] are not expected to
be resolved in this micrograph. This is in agreement with
the fact that no information out to 0.78 Å (i.e., 444) is
found in the diffractogram (Fig. 1; also seen in Fig. 1 of
the Supplemental Material).18 Previous work has emphasized
real-space resolution measurements since information in the
diffractogram can lead to false positives.17,19,20 However,
simply checking for the appearance of dumbbell structure in
an image could lead many to overestimate the resolution of
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FIG. 1. (Color online) An ADF-STEM image (eight successively acquired images cross correlated and averaged to increase the signal-
to-noise ratio) of Si along the [211] zone axis acquired by a 100 keV aberration-corrected Nion UltraSTEM (αmax = 33 mrad, I = 30 pA).
Considering the resolution degradation from the chromatic aberration and the incoherent source size, the 0.78-Å spaced dumbbells are not
expected to be resolved by this microscope. However, the image shows apparent but unphysical atomic columns with a separation much wider
than the actual spacing. Red dots (lower right) show the actual atomic positions, which lie closer together by 0.78 Å than the experimental
peaks, giving a “squinted eye” appearance to the composite.

their STEM. A combination of Fourier analysis, peak-to-peak
measurement, ideally over a range of sample thicknesses
and backed by multislice simulation is needed to best verify
resolution. These shifts are also much larger than many
atomic displacements expected near grain boundaries or
interfaces.

II. METHODS

Understanding the dynamic scattering of high-energy elec-
trons in crystals is often tackled by solving Bethe’s equation
using Bloch waves.21,22 Plane-wave Bloch s states are a
truncated (and slowly converging) Fourier expansion of the
atomic columnar s states considered here. When a small
number of plane-wave Bloch beams is selected to keep the
model analytically tractable and interpretable, the Bloch s

state has a very different shape and spatial extent from that
of the columnar s state. The Bloch convergence is worst for
the on-column features, which are those that contribute most to
the ADF-STEM intensity. Consequently, describing a highly
localized, channeled electron wave may not be best suited for
the extended, periodic plane-wave Bloch basis that relies on the
extended translational symmetry of a crystal in the transverse
direction, a symmetry which is broken at interfaces, grain
boundaries, and defects. Nevertheless, when fully converged
[which scales as the cube of the number of beams, O(N3),
as shown by Fig. 6.2 of Ref. 23], it does capture many of
the properties of isolated columns, a result best understood by
again appealing to atomic models. Here we will focus on the
direct calculation of the real-space s states in a local basis,
an approach that scales linearly with the number of atomic
columns.

Numerical solutions can also be obtained with O(N2

log N ) scaling by a real-space, Green’s-function multislice
formulation incorporating a frozen phonon model,24,25 and
we will use this to check our simpler, analytic models.
Forward-propagating fast electrons of constant velocity in
materials can be described by a scalar-relativistic-corrected

time-dependent Schrodinger equation with the time t replaced
by the position in the forward direction, z:

∂ψ

∂z
=

[
iλ

4π
∇2

xy + 2meiλ

4πh̄2 V (x,y,z)

]
ψ(x,y,z), (1)

where x,y,z are Cartesian spatial coordinates, e is the electron
charge, and m and λ are the relativistic electron mass and
wavelength, respectively.23 By numerical application of this
method, Fig. 2(a) shows the free propagation of a 100 keV
electron beam with a semiconvergent angle of 33 mrad. The
electron beam converges at the focal plane and then diverges
rapidly. However, when a column of Si atoms is present
and aligned with the incident beam direction [Fig. 2(b)], a
significant fraction of the electrons are attracted to and channel
along the column.

In an s-state model, electron channeling is assumed to be
predominantly from the excitation and propagation of the 1s

transverse bound state of a projected atomic column, although
more generally a larger family of bound and unbound states
needs to be considered.26 In the first-order approximation, a
fast moving incident electron (60–300 keV) experiences the
average potential along its direction of motion. When a crystal
is projected down a high-symmetry zone axis, atoms aligned
along the zone can be approximated as uniform columns of
charge. The Ewald sphere is treated as a flat surface and the
excitations on the high-order Laue zones are ignored.1,2 At
lower energies and larger angles, this approximation can break
down.27 In this approximation, the potential is z independent
and radially symmetric. The propagating wave function can be
written as a linear combination of transverse eigenstates of a
2D time-independent Schrödinger equation,

ψ(ρ,θ,z) =
∑
n,	

c(n,	) ϕn,	(ρ)

ρ1/2
ei	θ exp

(
−i2π

meλE
(n,	)
t

h2
z

)
,

(2)

where Et is the transverse eigenenergy of the particle and ρ,θ
are the planar transverse polar coordinates. Each eigenstate
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FIG. 2. (Color online) Cross-sectional depth profile of probability
for an aberration-corrected electron probe (33 mrad, 100 keV) as it
propagates (a) in free space, (b) down a single isolated atomic column,
(c) down two adjacent isolated columns, and (d) down two adjacent
columns in a full lattice. The atomic columns, atomic spacings, and
column spacings are that of the Si [211] zone axis. The electron probe
is focused at the entrance surface and positioned just left (0.2 Å) of
the atomic columns. The probability density remains localized deep
into the sample (>1000 Å) as it oscillates between atomic columns.
The frequency of oscillation is determined by the difference of the
eigenenergies of the transverse bonding and antibonding states. (a)–
(d) are calculated using the full multislice method. (e) is the analytic
tight-binding approach to (c) as described in the text.

is indexed by quantum numbers n, 	 and weighted by the
overlap coefficient with the initial probe wave function,
c(n,	) = 〈�(ρ,θ,0)|ψ (n,	)

t (ρ,θ )〉. As discussed by Berry,1 the
2D radial Schrödinger equation differs from the 3D radial
equation by containing an (	2 − 1

4 ) term in the centripetal
potential instead of the familiar 	(	 + 1), with 	 being
the angular momentum quantum number. In contrast to
the 3D case, the radial wave equation acquires an attrac-
tive centripetal potential when 	 = 0 (s states). The trans-
verse bound states (i.e., columnar orbitals) of each isolated
atomic column are analogous to that of a 2D hydrogen
atom28—with only the s states having nonzero values at the
origin.

This formalism permits both the bound atomic-like states
and unbound states that can be written as a linear combination
of Bessel functions (Laurent series).1 The unbound states of
the columnar potential can be converged more efficiently
by avoiding the rapid oscillatory behavior required near
atomic nuclei by constructing waves orthogonalized to the
bound eigenstates.29 The resulting pseudopotential then may
be sufficiently weak enough to justify a weakly scattering
calculation of unbound states. For any incident electron beam,
the wave-function propagation is determined by matching the
appropriate phase and amplitudes at the entrance surface to
the bound eigenstates, which propagate according to Eq. (2),
while the remaining uncoupled states propagate as unbound,

weakly scattered waves in the crystal:

ψf r (ρ,θ,z) =
[
�(ρ,θ,0) −

∑
n,	

c(n,	)ψ
(n,	)
t (ρ,θ )

]

× exp

(−i2πz

λ

)
. (3)

The higher the beam energy, and thinner the crystal, the
better this approximation becomes, but the pseudopotential
experienced by the orthogonalized states will always be weaker
than the original potential.

III. RESULTS

A. Si [211] as a two-level system

When two projected potentials are brought together, the
time-independent Schrödinger equation can be approximately
solved using a linear combination of the columnar orbitals.9,11

In this tight-binding approach, a two-level system arises from
the overlap of two closely spaced columnar orbitals and the
energy splitting of the resulting bonding and antibonding states
(Figs. 3 and 4). Such a system arises in the dumbbell structure
of Si along the [211] zone axes.

For a 100-keV electron, a single column of silicon atoms
along the [211] direction only permits a single 1s bound state,
which is broader than 1 Å—a severe issue for subangstrom
imaging. However, as two atomic columns are brought
together, the bound states overlap and give rise to a two-level
system comprising a bonding and antibonding state. This has
a pronounced impact on the electron propagation as shown in
Fig. 2(c), which implies a signal delocalization as the electron
beats between two columns. The behavior changes little when
the full lattice is added [Fig. 2(d)] except to introduce a slightly
faster damping envelope, indicating that the local bound states
dominate the scattering and propagation behavior.

The two-level molecular system provides a transparent
understanding for the unintuitive “jumping” of a channeled
beam between adjacent columns: Down the silicon [211]
zone axis, the bonding and antibonding states made from
two 1s columnar orbitals located on their parent columns are
shown in Fig. 3 for a 100-keV probing electron. The column
pair has a 0.78 Å intercolumn spacing and atomic column

Beam Voltage (keV)

FIG. 3. The eigenenergies of the transverse antibonding and
bonding states for Si [211] as a function of incident electron energy
(top). The plot below shows how the energy levels of the eigenstates
split as two atomic columns are brought together.

195415-3



ROBERT HOVDEN, HUOLIN L. XIN, AND DAVID A. MULLER PHYSICAL REVIEW B 86, 195415 (2012)

˚

Ψ
Antibonding State

FIG. 4. (Color online) Bonding (left) and antibonding (right)
transverse eigenstates of the Si [211] dumbbell structure for a
100-keV electron. Line profiles of the eigenstates are shown (top)
with atomic positions marked; corresponding two-dimensional plot
shown (bottom).

density of 1.50 atoms/nm. We used the screened atomic
potentials tabulated by Kirkland23 and solved the 1s bound
state—the only bound state for this system—numerically using
the Numerov method.30 When comparing the two states of
the columnar pair, the antibonding state has a central node, an
increased electron density in the tails outside the columnar pair,
as well as a 28% larger on-column magnitude than the bonding
state. The energies of the bonding and antibonding states are,
respectively, −18.28 and −3.37 eV for a 100-keV electron
and −21.89 and −9.15 eV for a 300-keV electron (two beam
energies typical to current aberration-corrected microscopes).
The shape of the bound s states changes with beam energy
due to scalar relativistic effects. Length contraction causes
faster electrons to experience deeper potential wells, resulting
in bound eigenstates with lower energies and faster radially
decaying 1s states [Fig. 3(a)]. With less overlap in the adjacent
column’s s states, there is a smaller energy splitting between
eigenstates [Fig. 3(b)].

As the bonding (ψ (b)
t ) and antibonding (ψ (a)

t ) states
propagate with periods inversely proportional to their
energy, they constructively and destructively interfere,
resulting in a beating of wave intensity between the
two columns. The period of beating between columns is
inversely proportional to the difference in their energies
[h2/meλ(E(a)

t − E
(b)
t )]. The total wave-function intensity of

the two-level system is described by I = c(a)ψ
(a)
t + c(b)ψ

(b)
t =

1 + 2c(a)c(b) cos[(2πmeλ/h2)(E(a)
t − E

(b)
t )]. Fourier analysis

of the oscillations along each of the columns simulated by
the multislice method (Fig. 1 of the Supplemental Material18)
shows a single strong peak with a wavelength of 45.51 and
75.85 nm for the 100 and 300 keV electrons, respectively,
which matches within 0.3% the eigenenergy difference
calculated by the tight-binding model.18 Plotting the intensity
of the two-level system with the addition of unbound states
[Fig. 2(e)], we see that the periodicity of the channeled

electron’s wave function matches well with the multislice
simulation.

B. Annular dark-field signals from the bonding and
antibonding states

In annular dark-field STEM, the image is formed by scan-
ning the beam across the sample and incoherently collecting
the electrons that scatter to an annular dark-field (ADF)
detector. Because the local scattering potential of atoms is
strongly peaked at the atomic nuclei, the ADF signal is
approximately proportional to the integrated probe intensity
along atomic columns.13 An interesting scattering regime
arises for depths beyond the microscope’s depth of focus,
where unbound components of the probe are sufficiently
spread out and only contribute to the background level of the
ADF signal. As the specimen thickness increases beyond the
depth of focus, only the channeled beam intensity remains and
plays a dominant role (Fig. 2 of the Supplemental Material).18

The excitation coefficient of each state, c(j ), is given by the
inner product of the probe at the entrance surface and that
eigenstate. For the channeled electron beam along two adjacent
and equivalent atomic columns, the contributed ADF signal at
a given depth is approximately proportional to the change
in beam intensity along each atomic column positioned at r1

and r2:

dI ( �ρ,z)/dz ∝ ∣∣c(a)ψ
(a)
t (�r1,z) + c(b)ψ

(b)
t (�r1,z)

∣∣2

+ ∣∣c(a)ψ
(a)
t (�r2,z) + c(b)ψ

(b)
t (�r2,z)

∣∣2
, (4)

where ρ is the incident beam position, and z is the depth.
Expanding the terms:

dI ( �ρ,z)/dz ∝ |c(a)|2[∣∣ψ (a)
t (�r1,z)

∣∣2 + ∣∣ψ (a)
t (�r2,z)

∣∣2]
+ |c(b)|2[∣∣ψ (b)

t (�r1,z)
∣∣2 + ∣∣ψ (b)

t (�r2,z)
∣∣2]

. . .

+ (c(a)∗c(b) + c(a)c(b)∗)
[
ψ

(a)
t (�r1,z)ψ (a)

t (�r2,z)

+ψ
(a)
t (�r1,z)ψ (a)

t (�r2,z)
]
. (5)

For two adjacent, equivalent columns containing a two-level
system the bonding and antibonding states are symmetric and
antisymmetric such that

ψ
(b)
t (�r1,z) = ψ

(b)
t (�r2,z) and ψ

(a)
t (�r1,z) = −ψ

(a)
t (�r2,z)

(6)

and the cross terms cancel out,

dI ( �ρ,z)/dz ∝ |c(a)|2∣∣ψ (a)
t (�r1,z)

∣∣2 + |c(b)|2∣∣ψ (b)
t (�r1,z)

∣∣2
. (7)

Further simplifying the expression, we can drop the z

dependence, exp(−i2πmeλEz/h2), in terms that have squared
magnitude:

dI ( �ρ,z)/dz ∝ |c(a)|2∣∣ψ (a)
t (�r1)

∣∣2 + |c(b)|2∣∣ψ (b)
t (�r1)

∣∣2
. (8)

This constant scattering rate that does not vary with thick-
ness is very different to the enhancement and depletion seen at
the entrance surface. For realistically thick specimens where
channeling behavior dominates, the ADF signal depends on
the excitation coefficients and the on-column intensity of the
bound eigenstates. When the excitation coefficient magnitudes
change very slowly with z, the signal I (z) from the channeled
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Å Å

FIG. 5. (Color online) Squared excitation amplitudes of the bonding and antibonding states by a convergent electron probe (100 keV,
25 mrad) as a function of the lateral probe position. A probe focused on the surface, defocus = 0 Å (left), and a probe focused into the sample,
defocus = 120 Å (right), are compared. Peak intensities deviate noticeably from atomic column positions as the probe defocus increases.

beam is approximately linear with thickness. As a measure of
the variation of the excitation coefficients for a typical case
of a 100-keV beam propagating in Si [211], the on-column
intensity drops roughly 15% from 50 to 100 nm (Figs. 2 and 3
of the Supplemental Material).18

C. Failure of the linear imaging model

The Si [211] antibonding state, with a 28% larger on-
column probability density than the bonding state, scatters
more strongly to high angles. We found that the probe
positions where the maximum excitation of the Si [211]
antibonding state occur deviate from the positions where
the atomic columns are actually located (Fig. 5). The ADF
signal from excitation of the antibonding state will have an
interpeak spacing of 0.92 Å (17% larger than 0.78 Å) for a
100-keV probe (αmax = 33 mrad, aberration free) focused on
the entrance surface [Fig. 5(a)]. If the probe is focused 12 nm
into the sample, the excitation coefficients change and there is
a dramatic increase in maximum interpeak spacing—1.48 Å
or 89% increase [Figs. 5(b) and 6]. Additionally, there will be
little to no excitation of the antibonding state when the probe
is positioned near the node of the antisymmetric state. As
a result, signal contributions from the scattered antibonding
states cause closely spaced dumbbells to appear wider than
the actual spacing and with an enhanced intercolumn contrast.
While the model provides an upper bound to the observed
spacing, the exact value is a sensitive function of the probe
shape, defocus, and sample thickness.

The increased spacing of adjacent columns in a HAADF
image may seem counterintuitive. A simple linear imaging
model, where images are assumed to be the scattering
potential convolved with the intensity of the unperturbed wave
function,23 would result in two overlapping airy disks only
capable of producing a smaller peak-to-peak spacing with less
contrast.12 However, the simple linear imaging model is seen
to fail at thicknesses greater than ∼10 nm, typical for current
imaging conditions (Figs. 1 and 7). Atoms can appear resolved

(but at incorrect locations) under unresolvable microscope
conditions as defined by the Rayleigh criterion and the linear
imaging approximation. Figure 7 demonstrates such behavior
for a 300-keV instrument with an 11-mrad probe forming
a semiangle. For very thin samples, the ADF-STEM image
matches well with the linear incoherent imaging model and the
Si [211] structure is unresolved. However, for a thicker 20-nm
sample [Fig. 7(c)], the Si [211] structure appears resolved
but the “atomic” positions are not in their expected locations
(∼26% further apart). Figure 7(c) shows that these artifacts are
most pronounced for realistic sample thicknesses in the range
of 10–40 nm and remain for substantially thick specimens
(100 nm or more). Figure 8 shows the apparent separation

FIG. 6. (Color online) 2D map of the excitation amplitudes of
the bonding (left) and antibonding (right) states by an aberration-
free convergent electron probe (100 keV, 25 mrad) as a function
of both the lateral probe position (x axis) and defocus (y axis). The
interpeak spacing of the antibonding excitation is wider than the actual
interatomic spacing and further widens as the beam is defocused.

195415-5



ROBERT HOVDEN, HUOLIN L. XIN, AND DAVID A. MULLER PHYSICAL REVIEW B 86, 195415 (2012)

FIG. 7. (Color online) For a 300-keV electron and 11-mrad
probe-forming aperture: Multislice simulation for thin samples (a)
closely matches a simple linear incoherent approximation. However,
for thicker samples (b), the presence of the two 0.78-Å atomic
columns (marked in white) become clearly visible despite the 1.09 Å
resolving limit of the probe. On the right (c), line profiles are shown
for all thicknesses up to 100 nm. Dumbbells are clearly visible at
∼20–60 nm thicknesses.

of the [211] Si dumbbell for an aberration-corrected (C5 =
20 mm) 300 keV Titan as the probe size varies. Here this was
achieved by varying the size of probe-forming aperture as this
provides a hard and unambiguous cutoff for the information
limit in the linear imaging approximation. A similar effect
could also be achieved by introducing a progressively larger
incoherent source size. While for thin specimens (2 nm) the
linear imaging approximation holds, in thicker specimens a
false dumbbell is present, even when the aperture is reduced
below the information limit needed for the true dumbbell
spacing. The dumbbells can appear without information
transfer beyond the microscope’s information limit; however,
work by Liu and Cowley and Hillyard and Silcox [especially
their Fig. 8(a)] has demonstrated that under some conditions
it is possible to see Bragg spots in a diffractogram beyond
the information limit as a result of channeling artifacts.17,20

These spots reflect distortions in the image and should not be
interpreted as improved resolution. We observe similar results
(Fig. 5 of the Supplemental Material).18

In general, the false dumbbell spacing is larger than that of
the true atom locations. However, in thicker samples and small
aperture sizes, the dumbbell spacing is reduced, crosses the
“correct” spacing as the aperture is increased, and continues to
increase, reaching a maximum and then decreasing and finally
asymptoting to the correct spacing. This is illustrated in the
50-nm curve, where the correct spacings, albeit with reduced
contrast, can also be seen for an aperture size that should
have been too small to resolve this spacing. The lesson is that
even if the dumbbells are resolved at their correct positions,
it does not mean that the probe is as small as the dumbbell

FIG. 8. (Color online) Apparent separation of the [211] Si
dumbbell for an aberration-corrected (C5 = 20 mm) 300 keV Titan as
a function of the probe-forming aperture size. Multislice simulations
were run for 2-, 20-, and 50-nm-thick samples. For thin specimens
(2 nm) a linear imaging approximation holds well—for probes smaller
than the actual 0.78 Å spacing, dumbbells appear at the correct
position. This spacing decreases past the Rayleigh criterion until
it reaches zero (Sparrow criterion). However, for thicker specimens,
a false dumbbell with an incorrect spacing is present, even when the
aperture is reduced below the information limit for the true dumbbell
spacing. Correct spacings with reduced contrast can also be seen
beyond the transfer limit of the microscope, as shown by the 50-nm
curve. The probe size was calculated from the Raleigh criterion.

spacing—here a probe larger than 1 angstrom has produced
an image with a subangstrom (0.078 nm) spacing. The artifact
could be detected by repeating the measurement at a series of
different sample thicknesses. If the probe is too large, then at
many thicknesses, the dumbbell spacing will be too large as
well and will vary with thickness.

Additionally, there is a noticeable polarity of the dumbbell
HAADF intensity in the experimental image (Fig. 1). This
polarity is a real effect seen in the multislice simulation (Fig. 6)
where the intensity of the right column is higher over a range
of realistic thicknesses. This asymmetry is reflected in the Si
[211] zone axis, where the positions of atoms along one column
are shifted along the [211] direction relative to the adjacent
column such that symmetry between the left and right column
is broken. A linear imaging model fails to predict the polarity
of a dumbbell that is seen in experiment and simulation.

The multislice simulations confirm the rather unexpected
tight-binding prediction of increased dumbbell spacing and
also demonstrate the failure of resolution tests based on
the assumption of a simple linear imaging model, or the
independent column approximation, at realistic and typical
sample thicknesses.

IV. CONCLUSIONS

In summary, we have shown that a simple two-dimensional
molecular system captures the key physical trends for fast
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electron propagation along crystal zone axes, as well as
predicting real imaging artifacts found in experimental and
simulated ADF-STEM images. When viewing a crystal down
a principle zone axis, as is done to obtain atomic images,
we have shown that the complexity of the problem can be
reduced to textbook simplicity by mapping the propagating
beam to the time evolution of a nonstationary state of a
2D-columnar “molecule.” As to efficiency, while Bloch plane
waves scale as O(N3), multislice scales as O[(N log N )2], but
the coupled-columnar approximation scales as O(N ), which
could reduce the length of some of simulations from days or
weeks to minutes or hours for electron propagation through
crystals. While imaging of crystals is now possible with
subangstrom electron beams produced by a new generation
of aberration-corrected microscopes, the propagation of the
electron beam can complicate image interpretation. When
atomic columns with sufficiently close proximity are observed,
the excitation of the resulting 2D molecular orbitals have
distinct characteristic signatures in the images that we are

able to observe experimentally, and can drastically and
predictably change the apparent location of atoms in samples
currently used as resolution tests. The shifts in the apparent
column spacings suggest caution in directly reading off atomic
displacements from ADF-STEM images of grain boundaries
and interfaces when atom columns are sufficiently closely
spaced to generate molecular orbitals.
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