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Discrete-time quantum walks have been shown to simulate all known topological phases in one and two
dimensions. Being periodically driven quantum systems, their topological description, however, is more complex
than that of closed Hamiltonian systems. We map out the topological phases of the particle-hole symmetric
one-dimensional discrete-time quantum walk. We find that there is no chiral symmetry in this system: its
topology arises from the particle-hole symmetry alone. We calculate the Z2 × Z2 topological invariant in a
simple way that is consistent with a general definition for one-dimensional periodically driven quantum systems.
These results allow for a transparent interpretation of the edge states on a finite lattice via the the bulk-boundary
correspondence. We find that the bulk Floquet operator does not contain all the information needed for the
topological invariant. As an illustration to this statement, we show that in the split-step quantum walk, the edges
between two bulks with the same Floquet operator can host topologically protected edge states.
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I. INTRODUCTION

The quantum-mechanical generalization of the random
walk has, since its first definition,1 received quite some interest.
Its hallmark property is that as opposed to the classical walk,
the standard deviation of the position of the walker increases
linearly with time. This

√
t speedup over the classical diffusive

scaling lies behind the advantage of the Grover search. This
is all the more interesting, as a variant of the quantum walk
can realize a general purpose quantum computer.2,3 Quantum
walks have also attracted attention as a convenient platform
to study the effects of decoherence.4 The surge of interest in
quantum walks has resulted in their experimental realization
in varied physical systems, such as trapped ions,5,6 cold atoms
in optical lattices,7 and on photons on an optical table.8,9

A discrete time, coined quantum walk can be viewed as
a stroboscopic simulation of time evolution by an effective
Hamiltonian. The topological features of lattice Hamiltonians
have in the last decade been the focus of intense interest in solid
state physics. The so-called bulk-boundary correspondence,
showing how differences between bulk topologies give rise
to low-energy states residing at the “edges,” the boundaries
between these bulks, is at the heart of the general theory of
topological insulators.10,11 Recently, Kitagawa et al. have
shown how, by varying the parameters of the discrete-time
quantum walk, one can realize all known kinds of topological
phases in one and two dimensions.12,13 The striking physical
consequence is that in an inhomogeneous system, a walker
started at a boundary between domains with different topology
can be localized (1D case), or propagate unidirectionally (2D
case).12 This “trapping effect” for a 1D quantum walk has
already been seen in an experiment performed with photons.14

The appearance of these “trapping states” in a disordered
quantum walk can lead to subdiffusive spreading of the
wave function,8,15 a phenomenon familiar from disordered
superconducting wires.16

In the laboratory, a discrete-time quantum walk is realized
by periodically modulating the parameters of the experimental
setup. Compared to a closed time-independent system, a
quantum walk thus can have a broader range of ways in which
topology can enter its description. One example is the winding

of quasienergy,17 which can lead to novel kinds of edge states.
However, even for the quantum walks where the winding of
the quasienergy is 0, it is a relatively unexplored question to
what extent their topological properties go beyond that of the
underlying effective Hamiltonian.

The bulk-boundary correspondence predicts “edges states”
where the edges are defined by assigning a position de-
pendence to the parameters of a system. In many practical
situations, however, an edge represents the physical boundary
of the system. For Hamiltonian systems, the simplest approach,
called “open boundary conditions,” is to set the hopping rates to
zero at the edge. For quantum walks, boundaries are realized
by using reflective coins, or—the analog of open boundary
conditions—cutting the links. Topologically protected states
at such boundaries have been predicted15,18 and analyzed
using an adiabatic argument.13 However, their relation to the
bulk-boundary correspondence is so far not understood.

In this paper, we revisit the question of the topological
phases of the one-dimensional discrete-time quantum walk.
In Sec. II, we define the quantum walk that we are going to
study, along with the introduction of the associated effective
Hamiltonian. In Sec. III, we analyze the symmetries of
the system. Our choice of coin operator, which is widely
used,12,13,15 ensures particle-hole symmetry of the effective
Hamiltonian. However, contrary to previous works,12,13,15 we
find that there is no chiral symmetry for this walk. We also
discuss the sublattice symmetry of the time evolution operator;
this turns out to cause energy eigenstate to come in pairs, but
otherwise have no significant consequences for the topology.
In Sec. IV, we explore the topological phases of the quantum
walk. At variance with Kitagawa et al.,12 we find two different
topological phases for the simple 1D quantum walk. A spatial
boundary between domains with different topology hosts a
pair of topologically protected bound states. We show that a
naive way to determine the relative values of these invariants
is in line with the definition of the topological invariant for
periodically driven quantum systems due to Jiang et al.19

In Sec. V, we consider the quantum walk on a finite line.
Termination of the lattice by a completely reflective coin
operator and “open boundary conditions” by cutting the links
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have already been considered, but we rederive the results
using the bulk-boundary correspondence for completeness.
Cutting the links at the boundary leads us to a generalization
of the discrete time quantum walk which is equivalent to
the split-step walk.12 We find that the split-step walk has a
Z2 × Z2 topological invariant, which is unique to periodically
driven quantum systems. We map out the parameter space of
the split-step walk. This allows us to predict that a generic
1D particle-hole-symmetric discrete time quantum walk has
a single topologically protected edge state at each “open
boundary,” with energy E = 0 or π , depending on the topology
of the bulk and on how the link at the boundary is cut. This is in
contrast to boundaries defined by reflective coins, where either
a pair of bound states with energies E = 0 and π are present, or
no bound states at all. Finally, we provide a striking example of
the way in which periodically driven systems have topological
features not present in their effective lattice Hamiltonians:
a boundary between two quantum walks with the same bulk
timestep operator supporting a pair of edge states with energies
E = 0 and ±π .

II. DISCRETE-TIME QUANTUM WALK

The quantum walk we consider in this paper is a standard
extension of the common discrete-time quantum walk. We
consider a particle with a discrete position degree of freedom,
x = 0, . . . ,N , and two internal (coin) states, labeled ↑ and ↓.
Thus the quantum state of the particle can be represented by a
complex 2N -component vector:

|�〉 =
N∑

x=1

(�x,↑|x〉 ⊗ |↑〉 + �x,↓|x〉 ⊗ |↓〉). (1)

The dynamics of the quantum walk is given by a unitary
time-step (Floquet) operator, consisting of a rotation of the
spin followed by a spin-dependent shift of the particle,

|�(t + 1)〉 = U |�(t)〉 = SR|�(t)〉. (2)

This is illustrated in Fig. 1. Conveniently, we choose the unit of
time to be the period of the time evolution, the unit of position
the period of the lattice, and set h̄ = 1.

The operator S translates the particle by one lattice site to
the left (right), if its spin is pointing down(up),

S =
N∑

x=1

(|x − 1〉〈x| ⊗ |↓〉〈↓| + |x + 1〉〈x| ⊗ |↑〉〈↑|). (3)

Periodic boundary conditions are taken, i.e., N + 1 = 1. For
a translation independent bulk, we use the Fourier transform,
|k〉 = 1√

N

∑
x e−ikx |x〉 and can write the particle shift operator

as

S =
∑

k

{e−ik|↑〉〈↑| + eik|↓〉〈↓|} ⊗ |k〉〈k| = e−ikσz . (4)

Here and in the following, the operators σx,y,z denote the
Pauli matrices acting on the internal “pseudospin” degree of
freedom, with basis states |↑〉,|↓〉.

The coin operator R is a unitary rotation in the internal
space of the particle (corresponding to the “coin flip” in the

x=−2 x=−1 x=0 x=1 x=2

t = 0

t = 1

t = 2

FIG. 1. (Color online) The discrete-time quantum walk. A spin-
1/2 particle starting from a site of a discrete lattice undergoes
alternating spin rotations R and spin-z dependent unitary shifts S. The
first few time steps are shown representing the effect of interference.

classical walk). It is diagonal in x,

R =
∑

x

|x〉〈x| ⊗ R(x). (5)

We require [R(x),R(x ′)] = 0 and σzR(x)σz = R(x)−1 for
every x,x ′, in order to ensure particle-hole symmetry (see
details later). In that case, without any loss of generality, we
can take R(x) to be a unitary rotation of the spin around the y

axis by a position-dependent angle θ ,

R(x) = R[θ (x)] = exp[−iθ (x)σy]. (6)

A. Effective Hamiltonian

To realize the quantum walk, we need an experimental setup
with time-dependent external fields. Denoting the explicitly
time-dependent Hamiltonian by H (t), we have

U = Te−i
∫ 1

H (t)dt , (7)

where T is the time-ordering operator. Taking the logarithm of
U , we can associate a time-independent effective Hamiltonian
Heff to this unitary operator (cf. Floquet theory), defined as

U = e−iHeff . (8)

In the translation invariant bulk, the time evolution operator is
diagonal in momentum space, U = ∑

k U (k) ⊗ |k〉〈k|, with

U (k) = e−ikσze−iθσy = e−iHeff (k). (9)

In the bulk, the quantum walk realized by H (t) stroboscop-
ically simulates the time evolution via Heff . The eigenvalues
of the effective Hamiltonian Heff are the quasienergies, which
can be restricted to an energy Brillouin zone −π, . . . ,π , in
the same way as the quasimomenta are restricted to the first
Brillouin zone. Since U is a product of SU(2) operators, its
determinant is 1, thus Heff has to be traceless, and the spectrum
has to be symmetric around E = 0. Note that this is a property
of the spectrum and not of Heff(k), and in itself implies neither
particle-hole symmetry (ensured by our choice of R) nor chiral
symmetry (absent in this system: see Sec. III C) of the effective
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Hamiltonian Heff . However, it does mean that there can be no
winding in quasienergy.17

III. SYMMETRIES AND GAPS

To understand what topological phases and topologically
protected edge states the quantum walk might have, we need
to examine the symmetries and the related protected gaps of
the effective Hamiltonian.

A. Particle-hole symmetry

The unitary time-step operator [cf Eqs. (2), (3), and (6)] in
position and σz basis has only real elements:

U ∗ = U, (10)

where here and in the following ∗ denotes complex conjugation
in the x and σz basis. By the definition of the effective
Hamiltonian, this implies

H ∗
eff = −Heff ; =⇒ H ∗

eff(−k) = −Heff(k). (11)

For stationary states |�〉 of the walk, this translates to

Heff|�〉∗ = −E|�〉∗.
Thus we have particle-hole symmetry (PHS), with P 2 = 1.
It is represented by complex conjugation: E ↔ −E; |�〉 ↔
|�〉∗.12

Eigenstates of the quantum walk with energy 0 or π can
be their own particle-hole symmetric partners–this happens if
their wave functions are real. If there is a bulk gap around
these states (if these are midgap states), their energies can be
protected against particle-hole symmetric perturbations.

B. Sublattice symmetry

The lattice on which the walk takes place is bipartite: we
can assign each lattice site j to one of the sublattices α and
β, with every link connecting sites from different sublattices.
Moreover, the lattice of the unitary timestep operator itself is
bipartite:

U =
∑
〈j l〉

Ujl|j 〉〈l| + Ulj |l〉〈j | : j ∈ α; l ∈ β, (12)

where the Ujl = 〈j |U |l〉 are operators in spin space. This leads
to a symmetry of the effective Hamiltonian,15 that is sometimes
called “chiral symmetry.”20 Since this symmetry arises from
the bipartition of the time-step operator, we are going to call it
“sublattice symmetry.”

Defining the sublattice operator τz, we can express sublat-
tice symmetry in a concise way:

τz ≡
∑
j∈α

|j 〉〈j | −
∑
l∈β

|l〉〈l|; (13)

τzUτz = −U. (14)

Substituting the definiton of Heff from Eq. (8), we obtain

τzHeffτz = Heff + π. (15)

For energy eigenstates |�〉, this means

Heffτz|�〉 = (E + π )τz|�〉. (16)

Note that τz is a local operator: we can extend the unit cell in
such a way that the matrix of τz is translation invariant, and
does not link different unit cells. Moreover, τz is independent
of all of the angles θ (x), and so defines a unitary symmetry for
the whole set of Hamiltonians {Heff[θ (x)]}.

Sublattice symmetry (SLS) does not change the number
of independent, symmetry protected gaps. On the one hand,
SLS implies that the bulk has a gap around E = π if and only
if it has a gap around E = 0: this decreases the number of
independent, symmetry protected gaps from 2 to 1. On the
other hand, however, there is a new kind of protected gap. For
a state with with energy π/2, its SLS partner can coincide with
its PHS partner. This happens, e.g., if the wave function is real
on even and imaginary on odd sites. Assuming there is a bulk
gap around energy π/2 (and therefore around E = −π/2 as
well), the energies of this pair of states are protected by SLS
and PHS.

C. No chiral symmetry

Importantly, it is the lattice of the time-step operator U ,
and not of the effective Hamiltonian Heff , i.e., bipartite. If the
Hamiltonian was bipartite, that would give us chiral symmetry,
with a unitary operator W = τz, as defined in Eq. (13), and

WHeffW
† = −Heff . (17)

Here, we find no local unitary operator W representing such a
symmetry.

Kitagawa et al.12 identify a “chiral symmetry” for the
system, with W = cos θσx + sin θσz. However, since this
operator depends explicitly on θ , we do not think it should be
considered a “symmetry.” Whenever symmetry properties of a
system are investigated, it is not only one specific Hamiltonian,
but an ensemble of Hamiltonians that should be considered.
The operator representing the symmetry has to be the same
for all elements of the ensemble. The ensemble we consider
here, are the quantum walks with varying rotation angles θ .
This follows from the fact that θ is the only tunable parameter
of the walk that we can use, e.g., to create an inhomogeneous
system with different domains. Since the “chiral symmetry
operator” W depends explicitly on θ , it does not represent a
symmetry of the system. (In an inhomogeneous system, θ is
a spatially varying parameter, and so W is not even properly
defined.)

Since U (k) has determinant 1, Heff(θ,k) is traceless, and
therefore its spectrum is symmetric for any θ . This could
hint at chiral symmetry: a unitary operator W that transforms
the positive energy eigenstate |+,θ,k〉 of Heff(θ,k) into its
negative energy eigenstate, |−,θ,k〉, and vice versa. However,
for different values of θ , as k is swept through [−π,π ], the
eigenstate |+,θ,k〉 takes on every value on different great
circles on the Bloch sphere.12 Unitary transformations are
rotations on the Bloch sphere, and there is no rotation that
takes every point to its antipodal pair on two different great
circles. Therefore there is no chiral symmetry for the effective
Hamiltonian of the discrete time quantum walk. Since we
have particle-hole symmetry, the absence of chiral symmetry
also precludes the existence of time reversal symmetry of the
effective Hamiltonian.
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FIG. 2. (Color online) Dispersion relations of the 1D quantum
walk. Continuous line shows a typical gapped phase, with θ = ±π/4.
The two gapless dispersion relations are θ = 0 (slashed) and ±π

(dotted). In both cases, the gaps at E = 0 and ±π are closed.

IV. TOPOLOGICAL PHASES OF THE QUANTUM WALK

To understand the topological phases of the quantum walk,
we treat the translation independent (bulk) case, i.e., θ (x) =
θ independent of x. The dispersion relation of the effective
Hamiltonian follows from Eq. (9) in a straightforward way,12

cos E(k) = cos(k) cos(θ ). (18)

The resulting dispersion relations for generic values of θ , and
for the special values θ = 0, and θ = π are plotted in Fig. 2.
Note that for generic rotation angle θ , the dispersion relation
has gaps around E = 0 and around E = π .

At the time reversal invariant momenta k = 0 and k = π ,
the Floquet operator U (k), as in Eq. (9), has a particularly
simple form:

U (k = 0) = e−iθσy , (19)

U (k = π ) = e−i(π+θσy ). (20)

This shows directly that the dispersion relation has gaps at
k = 0,E = 0 and at k = π,E = π of magnitude θ . Thus, the
parameter space θ = π, . . . ,π falls apart to two disconnected
intervals where the system is gapped: −π < θ < 0 and
0 < θ < π . This is illustrated in Fig. 3. This allows for

= - 0

=0,± : Gaps close at both E=0 and 

=± /2

Gapped Gapped 

FIG. 3. (Color online) Parameter space of the one-dimensional
simple quantum walk. The only parameter is the coin rotation angle
θ . The parameter space consists of two gapped domains, with gaps
around both E = 0 and π . These are separated by the gapless points
θ = 0 and π .

the possibility that these regimes correspond to two distinct
topological phases.

A. Edge states in the simple quantum walk

Whether the simple quantum walks with 0 < θ < π and
−π < θ < 0 constitute different topological phases can be
checked by considering an inhomogeneous system. As an illus-
tration, we show a simple choice, a quantum walk on N = 40
sites, with U = SR(θA,θB), where the rotation operator reads

R(θA,θB) =
∑
x∈A

|x〉〈x| ⊗ e−iθAσy +
∑
x /∈A

|x〉〈x| ⊗ e−iθBσy .

(21)

The domain with rotation angle θA is defined by

x ∈ A ⇔ 10 < x � 30. (22)

We start the walker localized at x = 10, with spin up. As
shown in Fig. 4, when θA = θB , the walker spreads, with the
maximum of the probability spreading with the maximum of
the group velocity. If θA and θB are different, but in the same
phase, there are diffraction effects at the boundaries x = 10
and 30. If θB and θA have different signs, a part of the walker
is localized at the boundary at x = 10.

Observed more closely, it is apparent that the walker trapped
at the domain boundary in Fig. 4(c) performs a “zigzag” mo-
tion. This is a consequence of the fact that there are not one, but
two localized states at the interface. These are SLS partners of
each other, and thus (1) their energies differ by E = π and (2)
that their wave functions are related by multiplication by τz, the
sublattice symmetry operator defined in Eq. (13). This zigzag
motion has already been seen in experiment,14 and its origin
in the existence of two bound states has also been inferred. We
now clarify the fact that it is sublattice symmetry that ensures
that bound states always come in pairs of E = 0 and π .

The existence of a pair of topologically protected bound
states can be inferred based on the “adiabatic continuation”
argument, as, e.g., in Kitagawa’s pedagogical paper.13 To
obtain a more complete picture, we need to find the topological
invariants associated with the gapped phases.

B. Topological invariants Q0 and Qπ

Topological invariants for periodically modulated quantum
systems have been suggested by Jiang et al.,19 via an elaborate
construction. For a periodically driven chain with particle-
hole symmetric effective Hamiltonian, they suggest a Z2 × Z2

topological invariant, (Q0,Qπ ). To define the invariant, they
introduce a set of time-dependent Hamiltonians HT (t), with
the parameter 0 � T � 1 specifying the time period. HT (t)
should be a smooth function of T , with

HT =0(t) = 0, (23)

HT =1(t) = H (t). (24)

To each HT (t) we can define the corresponding Floquet
operator UT = Te−i

∫ T

0 HT (t)dt , and the corresponding effective
Hamiltonian Heff,T . In the bulk, Heff,T is translation invariant,
and has a spectrum E

(n)
T (k).

The next step to obtain the topological invariant Q0 is to
count the parity of the number of times the gap at E = 0 closes
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FIG. 4. Time dependence of the probability distribution (color
coding corresponding to |�x,↑|2 + |�x,↓|2) of a walker on a lattice
consisting of N = 40 sites with periodic boundary conditions. The
coin operator is taken as R[θ (x)], with θ (x) = θA for 10 < x < 31
and θ (x) = θB otherwise. In each case, we start the walker localized
on the boundary between the domains of θA and θB , on site x = 10,
with spin up. In cases (a) and (b), the walk is homogeneous:
in (a), θA = θB = 0.4π and in (b), θA = θB = 0.2π . In (c), an
inhomogenous system is considered, with a sharp boundary between
two bulks with the same topology: θA = 0.2π and θB = 0.4π . In (d),
θA = −0.2π and θB = 0.4π ; here, the two domains have different
topology. Accordingly, a significant part of the wave function of the
walker gets trapped at the interface.

during the path T = 0 → 1. Because of PHS, gaps at ±k close
at the same time. It is therefore enough to count the number of
solutions to E

(n)
T (k = 0) = mπ with arbitrary even integer m,

add to this the number of solutions to E
(n)
T (k = π ) = mπ with

arbitrary even integer m, divide the sum by 2 (gaps close from
both directions), and take modulo 2 of the result. Repeating
the same process for arbitrary odd integers m gives us the
invariant Qπ .

For the quantum walk, we can evaluate the topological
invariants Qπ and Q0 without following the elaborate con-
struction of Jiang et al. As shown in Appendix B, as long
as we are only interested in the differences between the
topological invariants of two phases, say A and B—and this is
all that matters for the physics—there is a quite straightforward
method. (1) Select any point in parameter space representing
a phase A, (2) connect it via a continuous path in parameter
space to a representative point for phase B. (3) Count the parity
of the number of times the gap around E = 0 closes along
this path, to obtain the invariant Q0, and (4) similarly for the
gap around E = ±π , to obtain Qπ . This construction shows
that the gapped phases −π < θ < 0 and 0 < θ < π differ in
both invariants Q0 and Qπ . This completes the bulk-boundary
correspondence picture for the edge states at the interfaces
between these phases.

V. QUANTUM WALK ON A FINITE LINE

To have a discrete time quantum walk on a finite line,
we need to terminate the 1D lattice. There are two ways
to accomplish this: (1) changing the coin operators at the
boundaries or (2) cutting the bonds with reflection.

A. Reflective coin

Totally reflective coins have already been considered in
the literature. Obuse and Kawakami15 mention that θ = −π/2
gives a reflective coin with edge states if the bulk has θ > 0
and θ = +π/2 should be taken for θ < 0. Kitagawa13 explains
why this is so using an adiabatic continuation argument. For
the sake of completeness, we briefly summarize a different
derivation here.

The totally reflective unitary coin operator reads

R0 =
(

0 eiφ

eiξ 0

)
. (25)

To keep PHS represented by complex conjugation, we would
like to choose R0 to have only real elements. That leaves us four
choices for R0: ±σx and ±iσy . A walker only sees the totally
reflective coin from one side, and thus we can take R = ±iσy

without loss of generality. This corresponds to choosing the
reflective coin to have a rotation angle θ which is in the middle
of one of the gapped phases. If this is the same gapped phase
as that of the bulk, there are no bound states at the boundary. If
it is not the same as that of the bulk, there are two bound states
with energies 0 and π that are sublattice partners of each other.

B. Cutting a link

Unitarity of the quantum walk is a strong constraint on how
we can cut a link. When the walker attempts to jump over a link
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that is cut, it has to end up in a state which is unaccessible to
it from any other state. The only states that are “not taken” are
those to either sides of a cut link. Therefore the only option to
implement a totally cut link, is to introduce a spin flip instead
of a jump. It is still possible to include a phase shift along with
the spin flip. To retain PHS, this phase shift can only be chosen
to be ±1. In much the same way as with the reflective coin
above, without loss of generality, we can fix a phase of −1
upon reflection from one of the sides. Cutting the link between
sites y and y + 1 is implemented by altering the shift operator
S:

S(y) =
∑
x �=y

Sx,x+1 ± Cy,y+1. (26)

Here, the shift operators for the “link” and “cut link” between
sites x and x + 1 are defined as

Sx,x+1 = |x,↓〉〈x + 1,↓| + |x + 1,↑〉〈x,↑|, (27)

Cx,x+1 = |x + 1,↑〉〈x + 1,↓| − |x,↓〉〈x,↑|. (28)

The ± in Eq. (26) represents the choice of the reflection phases
allowed by PHS.

C. Partially cut links in the bulk

In order to use bulk-boundary correspondence, we need
to connect the “cut link” to the “uncut link” by way of a
continuous parameter in the Floquet operator. The first idea
here, the introduction of an additional “link rotation angle” φ,
works,

Sx,x+1(φ) = cos(φ) Sx,x+1 + sin(φ) Cx,x+1. (29)

In the bulk, this is equivalent to the “split-step” walk of
Kitagawa et al.,12 where the spin-z dependent displacement
is broken down to two successive steps:

S↓ =
N∑

x=1

(|x − 1〉〈x| ⊗ |↓〉〈↓| + |x〉〈x| ⊗ |↑〉〈↑|), (30)

S↑ =
N∑

x=1

(|x〉〈x| ⊗ |↓〉〈↓| + |x + 1〉〈x| ⊗ |↑〉〈↑|), (31)

U2(θ,φ) = S(φ)R(θ ) = S↑e−iφσy S↓e−iθσy . (32)

As shown in Ref. 12, S(φ = 0) = S↑S↓ = S.
With a partially cut link, the sublattice symmetry of the

Floquet operator U is broken. A walker that is reflected off
an edge has the same x at the end of the timestep as at the
beginning (and possibly even the same spin), therefore the
graph of U cannot be bipartite. Therefore the gaps at E = 0
and ±π now can open and close independently (and the energy
E = ±π/2 is no longer protected by symmetries).

D. Topological phases of the split-step walk

The split-step quantum walk, Eq. (32), has two parameters,
the “coin angle” θ and the “bond angle” φ. The parameter
space is therefore now a torus. The Floquet timestep operator
U2 reads

U2(k) = e−iσzk/2e−iσyφe−iσzk/2e−iσyθ . (33)

The dispersion relation is straightforwardly derived,12

cos E(k) = cos(k) cos(θ ) cos(φ) − sin(θ ) sin(φ). (34)

As can be seen from this dispersion relation, the split-step
quantum walk for generic φ and θ has gaps around E = 0 and
±π . The Floquet operator takes on a very simple form at the
time-reversal invariant momenta k = 0,π :

U2(k = 0) = e−iH (k=0) = e−iσy (θ+φ), (35)

U2(k = π ) = e−iH (k=π) = −e−iσy (θ−φ). (36)

Therefore the gap around E = 0 closes at k = 0, φ = −θ , and
k = π , φ = ±π + θ , and the gap around E = ±π closes at
k = π , φ = θ , and k = 0, φ = ±π − θ .

The parameter space (θ,φ) is divided into four different
gapped topological phases, with topological invariants Q0

and Qπ , as shown in Fig. 5. Selecting θ = π/2, φ = 0 as
a reference point, we define the values of the invariants for the
domain around this point as (0,0). For any point in parameter
space, we (1) pick a continuous path in parameter space
connecting it with the reference point, and (2) count the parity
of the number of times gap around E = 0 (E = π ) closes
along the path. The parities give the values of the invariant Q0

(Qπ ). Because of PHS, it is enough to count the gap closings
at the time-reversal invariant momenta k = 0 and k = ±π .

Setting φ = 0 corresponds to the original “simple” quantum
walk. Setting φ = ±π/2 corresponds to two different ways
in which the bonds can be cut in a unitary and particle–
hole-symmetric way. As illustrated in Fig. 5, using the bulk-
boundary correspondence, we find that for a generic quantum
walk with φ = 0, each edge defined by cutting a link in
a particle-hole-symmetric way hosts a single topologically
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FIG. 5. (Color online) Phase map of a 1D quantum walk with
partially cut links. The various gapped domains (different shadings)
have a Z2 × Z2 invariant associated with them, which is indicated
as a pair of numbers (Q0,Qπ ). Separating these domains are the
lines where the gap at E = 0 closes (continuous line), or the gap at
E = π closes (dotted line). The vertical (horizontal) slashed lines
denote the parameters corresponding to reflective coins (cut links).
To find the number of edge states at an edge with cut links, a the
point corresponding to the quantum walk (circle) is connected to
the horizontal slashed line representing the boundary conditions. In
the example shown, there is a single bound state with E = π .
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factor of (-1) in 1 timestep: 
E= , in the gap, protected
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(-1)

(-1)
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t=0:

t=2/4:

t=3/4:

t=1:

(b)(a)

FIG. 6. (Color online) Time steps for a walker started from an
edge. Continuous (dotted) circles and lines correspond to the sites
and links of the bulk (boundary). The time steps are broken down to
four successive operations, as in Eq. (33), each occurring in 1/4 time.
Continuous (dotted) circles and lines correspond to the sites and links
of the bulk (boundary). For simplicity, the bulk is taken with θ = π/2
and φ = 0: a simple quantum walk. The boundary has θ = π/2 and
cut links: φ = π/2. If the reflection is on a cut link (a), there is a
protected midgap edge state with energy π . If the reflection happens
on a reflective coin (b), during two timesteps, the walker acquires
a phase of (−1). Superpositions of the states at t = 0 and 1 with a
relative phase of i (−i) are therefore stationary states with energy
−π/2 (π/2) not protected by PHS.

protected edge state. Whether the energy of that state is E = 0
or π depends on the bulk quantum walk and on the way in
which the link is cut (on the reflection phase). In the example
of Fig. 5, we find that the energy of the bound state is E = π .
Note that this is independent of the path itself, and also of its
endpoint on the line representing the cut links, except if this
endpoint is at θ = ±π/2, in which case the details of the edge
need to be specified to show whether the reflection is off of the
reflective coin or from the cut link. This is illustrated in Fig. 6.

E. Edge states between two bulks with
the same Floquet operator

The topological invariant for a quantum walk cannot be
inferred from its effective Hamiltonian alone. Evidence for
this has already been noted by Kitagawa,13 who describes
pairs of bound states between topological phases with the
same “winding number.” The most striking illustration of this
statement, however, is a pair of edge states between two bulks
with the same Floquet operator.

Consider an inhomogeneous quantum walk with periodic
boundary conditions, consisting of two bulks, separated by
a sharp boundary. The dynamics is given by the split-step
protocol, and the bulks differ in both parameters θ and φ:

U2 = S↑R(φA,φB)S↓R(θA,θB), (37)

with the inhomogeneous rotation operator R(θA,θB) defined
as in Eq. (21). Taking φB = φA + π and θB = θA + π , the
translationally invariant bulk time evolution operators of the
two domains read

UA = S↑e−iφAσy S↓e−iθAσy , (38)

UB = S↑e−i(φA+π)σy S↓e−i(θA+π)σy . (39)

Note that since e−iπσy = −1, we have

UA = UB. (40)

As can be seen from the phase map, Fig. 5, the simplest path
in the parameter space connecting two such points intersects
gap closings at E = 0 and at E = π once. Thus there are two
edge states between these two bulks, with energies 0 and π .

Perhaps the simplest concrete example is a boundary
between φ = 0,θ = π/2, and φ = π,θ = −π/2. We illustrate
this in Fig. 7.

VI. CONCLUSIONS

In this paper, we revisited the topological phases of the
one-dimensional quantum walk. To begin, we identified the
symmetries of the corresponding effective Hamiltonian. In
contrast with the literature, we find that the Hamiltonian
belongs to class D, i.e., it has a PHS that squares to 1, and
no other symmetries. We argue that the property of the homo-
geneous quantum walk identified as chiral symmetry should
not rightfully be regarded as a symmetry, since the operator
representing it varies from phase to phase. We also find that
there is an additional symmetry of the timestep operator, which
could be called “sublattice symmetry,” however, it does not
have any special effect on the topological properties of the
system.

To identify the topological phases of one-dimensional
discrete-time quantum walks, however, the bulk effective
Hamiltonian (or indeed, the bulk Floquet operator) is not
enough. We have found that a more complete specification
of the experimental realization is needed, e.g., the sequences
of rotation translation. We have evaluated the topological
invariant of Jiang et al.19 for such specifications corresponding
to the simple discrete-time quantum walk, and for the “split-
step” walk introduced by Kitagawa et al.12 For the simple walk,
we find two different phases, whose boundary hosts a pair of
topologically protected edge states. For the split-step walk, we
find all four different topological phases corresponding to the
Z2 × Z2. We provide a blatant proof of the fact that the bulk
Floquet operator does not contain all the information about the
topological phase: a pair of topologically protected edge states
between two bulks that differ in their experimental description,
but have the same Floquet operator.

The use of periodically modulated external fields to
alter the topological properties of Hamiltonians has been
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timesteps: E=± /2, factor of (-1) in 2 
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factor of (+1) in 2 
timesteps: E=0, , 

in the bulk gap 

FIG. 7. (Color online) Two successive time steps of a quantum
walk, with a walker started in bulk A (a), at a sharp boundary (b), or
in bulk B (c). Each time step is broken down to its four stages,
given by the four factors in U2(k) = S↑R(0,π )S↓R(π/2, − π/2),
with R(θA,θB ) as defined in Eq. (21), with x ∈ A ↔ x < 1. In each
case, the walker returns to its initial site after two time steps. In the
bulk, during the two time steps, a phase factor of (−1) is acquired by
the walker, showing that stationary states (superpositions of the states
at t = 0 and 1 with relative phase ±i) have quasienergy ∓π . At the
boundary, this factor is (+1), therefore even and odd superpositions of
the states at t = 0 and 1 are stationary states with energy 0,π . These
are at the topologically protected midgap states.

considered by several authors.21,22 In all cases, however,
these works employ the same topological invariants as for
time-independent systems. It would be interesting to explore
what the complete topological invariant in these cases is,
and under what conditions does it give rise to edge states
that are unique to periodically driven systems. Kitagawa
et al.17 have already shown that for a periodically modulated
hexagonal lattice, edge states can arise between bulk phases
with the same Chern number. However, even for this specific
system, the bulk topological invariant has not yet been
defined.
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APPENDIX A: SUBLATTICE SYMMETRY AND
THE DOUBLING OF STATES

Any stationary state |�〉 of a quantum walk with sublattice
symmetry must have support on both sublattices A and B.

Using the obvious notation for the projection of a state on
a sublattice, |�A〉 ≡ ∑

j∈A |j 〉〈j ||�〉, and similarly, |�B〉 ≡∑
j∈B |j 〉〈j ||�〉, we have

|�〉 = |�A〉 + |�B〉. (A1)

For stationary states, U |�〉 = e−iE |�〉, which gives us
U |�A,B〉 = e−iE |�B,A〉. Therefore both |�A〉 and |�B〉 are
eigenstates of the step-doubled walk,

U 2|�A,B〉 = e−2iE |�A,B〉. (A2)

Doubling the time step gives a walk on only one sublattice,
since U 2τz = τzτzUτzτzUτz = τzU

2, and projection to sublat-
tice A,B is given by 1/2(1 ± τz). Therefore we can double the
time step and restrict to sublattice A. For any eigenstate of U 2

with energy E2, we have

U |�A〉 = |�B〉, U |�B〉 = e−iE2 |�A〉.
Introducing E = E2/2, we can reconstruct the two eigenstates
of U with energies E2 and E2 + π , linked by sublattice
symmetry:

U (|�A〉 ± e−iE |�B〉) = ±e−iE(|�〉A ± e−iE |�B〉).
Therefore any energy eigenstate of U 2, projected onto one of
the sublattices, gives us two energy eigenstates of U , related to
each other by the sublattice symmetry. This means that we can
double the time step without losing any energy eigenstates.

APPENDIX B: THE Z2 × Z2 INVARIANT
IN PARAMETER SPACE

To infer the number of topologically protected edge states
at an edge between two bulks A and B, i.e., to apply the
bulk-boundary correspondence, we do not need to know the
values of the topological invariants (Q0,Qπ ) in these bulks.
It is enough to know the amounts by which the values of
these invariants change between the two bulks. Therefore
it is not necessary to find the complete set HT (t), corre-
sponding to a continuous path in parameter space to “doing
nothing.”

We assume two things. First, a set of experimental Hamil-
tonians exists for bulk A that connects it to “doing nothing”:
HA

T (t), with HA
T =0 = 1 and HA

T =1(t) = HA
exp. Second, that

for the continuous path in the space of parameters of the
quantum walk, θ (x), with θ (x = 0) = θA and θ (x = 1) = θB ,
the experimental Hamiltonians Hθ (x)exp along the path are
also continuous functions of x.

We construct the path HB
exp,T in the following way:

HB
exp,T (t) = HA

exp,2T (2t) if T < 1/2, (B1)

HA
exp,T (t) = Hθ(2T −1)

exp (t/T ) if T � 1/2. (B2)

For this construction, the difference in the invariant Q0

between the bulks B and A can be obtained by just counting
the number of times the gap around E = 0 closes along the
path θ (x). The analogous recipe holds for the invariant Qπ ,
with the gap around E = ±π .
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22B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett.

108, 056602 (2012).

195414-9

http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://arXiv.org/abs/arXiv:1205.3782v1
http://dx.doi.org/10.1017/S0960129507006354
http://dx.doi.org/10.1017/S0960129507006354
http://dx.doi.org/10.1103/PhysRevLett.104.100503
http://dx.doi.org/10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1103/PhysRevLett.104.050502
http://dx.doi.org/10.1103/PhysRevLett.104.050502
http://dx.doi.org/10.1103/PhysRevLett.104.153602
http://dx.doi.org/10.1103/PhysRevLett.104.153602
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevA.82.033429
http://dx.doi.org/10.1103/PhysRevA.82.033429
http://arXiv.org/abs/arXiv:1112.1882v1
http://dx.doi.org/10.1103/PhysRevB.84.195139
http://dx.doi.org/10.1103/PhysRevLett.85.1064
http://dx.doi.org/10.1103/PhysRevLett.85.1064
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevLett.94.100602
http://dx.doi.org/10.1103/PhysRevLett.94.100602
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevE.82.031122
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.108.056602



