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In this paper we discuss an interesting property of arrays of metallic carbon nanotubes, namely, the capability of
perfect absorption in optically ultrathin layers. The carbon nanotube array is used in a regime where it possesses
properties of a uniaxial indefinite medium. We show that if the optical axis is tilted with respect to an interface,
a plane incident wave propagates inside a finite-thickness slab of the carbon nanotube array with a very small
wavelength and small material losses cause the total wave absorption. We demonstrate that perfect matching with
free space can be achieved in an optically ultrathin layer without a magnetic response and when the reflected
wave is absent. Nonsymmetry appearing as a difference between wave numbers of waves propagating upward
and downward with respect to the interface under oblique incidence leads to the absence of a thickness resonance.
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I. INTRODUCTION

Recently perfect absorption was demonstrated at far-
infrared,1 mid-infrared,2 near-infrared,3 and visible4 frequen-
cies. This paper is focused on the terahertz range. Many
materials possess good absorption properties in the terahertz
range. Nevertheless, the creation of optically ultrathin nonre-
flective absorbers is still a challenge. A high level of absorption
can be achieved using resonant metamaterials.5,6 Different
metamaterials are utilized in each region and one of the
most important tasks in the design of a perfect absorber is
the impedance matching with free space. It can be achieved
by exploiting the magnetic resonant response provided by
the antiparallel surface currents in metal structures. Another
approach, based on interference, was proposed in Ref. 7.

In this paper we describe the concept of the terahertz
absorber, composed of a periodic array of parallel metallic
carbon nanotubes. Carbon nanotube (CNT) films have found
applications as absorbers for ultrafast broadband optical
devices,8 mode-locked lasers,9 infrared thermal detectors,10

etc. In these works no special properties of carbon nanotubes,
excepting saturable absorption, are used. Almost full absorp-
tion in aligned single-wall carbon nanotubes was demonstrated
across a very wide spectral range (0.2–200 μm) in Ref. 11, but
the height of the CNT layer was 460 μm, which cannot be
considered an optically thin layer. (Below we demonstrate that
our approach allows achievement of full absorption within a
considerably narrower spectral range, but at the slab thickness
λ/10 only, where λ is the wavelength in free space.) Recently
we have shown12,13 that in the terahertz range arrays of parallel
metallic carbon nanotubes exhibit properties of the indefinite
metamaterials (IMs)14—uniaxial materials in which the axial
and tangential components of the permittivity tensor have
different signs. Our approach exploits a thin slab of the CNT
indefinite medium, whose optical axis is tilted with respect
to interfaces (see Fig. 1). We assume for simplicity that the
CNT slab is grounded by the perfect electric conductor plane
at z = 0.

The main properties of both single CNTs and CNT arrays
are determined by their complex conductivity, where its
imaginary part is comparable with the real part or even exceeds
it.15 It was shown in Refs. 13 and 16 that CNT arrays behave

as ε-negative uniaxial crystals, whose axial component of
the effective permittivity tensor is expressed by the Drude
formula. Under certain conditions, described below, there is
possible propagation of the Transverse Magnetic (TM) waves
with extremely slow phase velocities and, consequently, very
small wavelengths. Then such waves will attenuate in an
ultrathin layer of even a low-loss medium. We show that the
CNT array can be matched with free space if we arrange
the carbon nanotubes under an angle of 45◦ with respect to
the interface and reflection can be totally eliminated. Then
perfect absorption can be achieved within an optically ultrathin
layer.

This paper is organized as follows. In Sec. II we discuss
properties of eigenwaves propagating in arrays of CNTs.
Propagation constants and wave impedances of these waves
with a fixed transverse component of the wave vector are
needed for solution of the problem of a plane-wave reflection
from a finite-thickness slab. If CNTs are tilted, wave-vector
components are different for waves propagating upward and
downward with respect to the interface. Of special interest is
when one of them tends to infinity and the other tends to the
normal component of the wave vector in free space. Conditions
of perfect absorption are derived. Section III presents a solution
of the wave-reflection problem using the transfer matrix
method, modified for nonsymmetrical transmission lines, and
discussion of numerical results.

II. EIGENWAVES IN CARBON NANOTUBE ARRAYS

Let us assume that single-wall carbon nanotubes are
infinitely long in the z′ direction and the CNT array is periodic
in the x ′ and y ′ directions. As a model of the individual metallic
zigzag nanotube we use an impedance cylinder, characterized
by complex dynamic conductivity, and effective boundary
conditions.15 The carbon nanotube radius r is expressed via
the dual index (m,n) and is given by

r =
√

3

2π
b
√

m2 + mn + n2, (1)

where b = 0.142 nm is the interatomic distance in graphene.
For the metallic zigzag CNTs n = 0 and m = 3q, where q is
an integer. So, the radius of the metallic zigzag CNT r reads as
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FIG. 1. (Color online) Schematic view of an indefinite-medium
slab with the tilted optical axis.

r = 3
√

3qb/2π . The simple approximate expression for the
axial component of the complex surface conductivity, which is
valid for metallic zigzag CNTs in the frequency range below
optical transitions, looks like

σ ∼= −j
2
√

3e2�0

3qπh̄2(ω − jν)
, (2)

where e is the electron charge, �0 = 2.7 eV is the overlapping
integral, τ = 1/ν is the relaxation time, and h̄ is the reduced
Planck constant. Since the wall of a single-wall CNT is a
monatomic sheet of carbon, Eq. (2) can be considered the
surface conductivity of the carbon nanotube. Simple formulas
for the surface conductivity like Eq. (2) were used in many
publications devoted to Electromagnetic (EM) properties of
CNTs.17–22 The surface impedance per unit length can be found
as

zi = 1

2πrσ
=

√
3qh̄2ν

4e2�0r
+ jω

√
3qh̄2

4e2�0r
= R0 + jωL0, (3)

where L0 is the kinetic inductance. Actually, taking into
account the expression for the Fermi velocity of the π

electrons21

vF = 3�0b

2h̄
(4)

and formula (1) for r , we come to the definition of the kinetic
inductance, Lkin = h̄π/(Me2vF ),23 where M is the number of
quantum channels. There are four quantum channels in thin
CNTs (M = 4): two spin-up and two spin-down channels (see
Ref. 17).

Let us consider a two-dimensional periodic array of CNTs.
In the coordinate system x ′,y ′,z′ the relative permittivity

dyadic reads as

ε
′ = ε′

zzz
′
0z′

0 + εt (x′
0x′

0 + y′
0y′

0), (5)

where εt is the transversal component of the permittivity
dyadic. In the considered case of a low-density CNT array
it is the permittivity of the host medium. Then for the CNT
array we apply the effective medium model, developed for
loaded wire media:24

ε′
zz

εt

= 1 − k2
p

k2 − jξk − k2
z′/n2

, k2
p = μ0

d2LCNT
, (6)

where d is the period of the CNT array lattice, k = k0
√

εt , k0

is the wave number in free space; kp is the effective plasma
wave number; parameter n2 = LCNTCCNT/(ε0μ0) measures
the strength of spatial dispersion in the medium; LCNT and
CCNT are the effective inductance and capacitance of CNTs
per unit length, respectively; μ0 and ε0 are the permeability
and permittivity of vacuum, respectively; and the parameter ξ

is responsible for losses. The effective inductance contains the
kinetic and the electromagnetic contributions and the last one
can be neglected,17 so we can take LCNT = L0. The parameter
of losses reads13

ξ = (R0/LCNT)
√

ε0μ0. (7)

The CNT capacitance is the quantum capacitance and it
takes the form CCNT = e2/(πh̄vF ). In the following calcula-
tions the relaxation time is taken to be τ = 10−13 s, the integer
q = 13 [the dual index, characterizing the CNT, is (39,0)],
so the radius of CNTs is r � 1.53 nm. Let us estimate terms
entering the denominator of Eq. (6) (see Refs. 13 and 16).
Using the formulas given above, we obtain n2 � 3.2 × 104.
The value kz′/k can be quite large for eigenwaves;12 however,
it happens for very dense arrays (d ∼ 2 nm) and under a very
large transversal component of the wave vector kx ′ (close to
edges of the Brillouin zones of the CNT lattice). In our case
kx ′ is determined by kx = k sin θ and cannot be so large, so
we can assume that this value is close to k. Thus, the spatial
dispersion term k2

z′/n2 can be neglected for carbon nanotube
arrays.

The permittivity dyadic of the CNT medium with CNTs,
tilted in the XOZ plane, can be expressed through rotation
transformation as

ε = Uε
′
U

T

, (8)
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FIG. 2. (Color online) Real and imaginary parts of diagonal components of the relative permittivity dyadic for the CNT medium versus the
tilt angle, calculated at the frequency f = 20 THz. Re(εxx) and Im(εxx) are shown by solid curves, Re(εzz) and Im(εzz) by dashed curves.
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FIG. 3. (Color online) Real and imaginary parts of nondiagonal components of the relative permittivity dyadic for the CNT medium versus
the tilt angle, calculated at f = 20 THz.

where the ε
′

dyadic is the diagonal dyadic defined in Eq. (5),

U is the matrix of rotation around the y axis

U =
⎡
⎣ cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

⎤
⎦ , (9)

and U
T

is the transposed matrix. The Cartesian components
of ε

′
read

εxz = εzx = (ε′
zz − εt ) cos φ sin φ,

εxx = ε′
zz sin2 φ + εt cos2 φ, (10)

εzz = ε′
zz cos2 φ + εt sin2 φ.

One can find such d = d0 that the permittivity dyadic
components satisfy the condition of the indefinite medium,
Re(ε′

zz) = −Re(εt ) = εind. Since εt = 1 for the CNT array,
εind = −1 in our case. We note that for φ = 45◦ we obtain
Re(εzz) = Re(εxx) = 0. The corresponding value of d can

be computed as d0 =
√

μ0/(2LCNT(k2
0 + ξ 2)). For the taken

parameter of losses at the frequency f0 = 20 THz, imag-
inary parts of the permittivity dyadic components are the
following: Im(ε′

zz) = −0.16, Im(εxz) = Im(εxx) = Im(εzz) =
−0.08. Real and imaginary parts of diagonal and nondiagonal
components of the permittivity dyadic, calculated for three
different CNT lattice periods, are shown in Figs. 2 and 3.

One can see that the absolute value of the relative permittivity
decreases with increase of the lattice period.

To obtain eigenmodes propagating in the structure, we
solve source-free Maxwell equations for TM waves using the
constitutive relations for the tilted CNTs medium, and after
eliminating the magnetic field, the equation for the electric
field (eigenvalue equation) is obtained in the form[

k2
z − k0εxx kxkz − k2

0εxz

−kxkz + k0εxz −k2
x + k2

0εzz

] [
Ex

Ez

]
= 0. (11)

The eigenvalues of Eq. (11) are the propagation constants of
plane waves, propagating in the z direction under fixed kx .
They are evaluated as

k(1,2)
z =

kxεxz ±
√(

ε2
xz − εxxεzz

)(
k2
x − k2

0εzz

)
εzz

. (12)

In the particular case d = d0,

k(1,2)
z =

−kx

√
1 − ε2

ind ±
√

k2
x − k2

0εind

εind
. (13)

It can be seen from Eqs. (12) and (13) that there are two
different values for kz except in the case of the normal
incidence kx = 0. The incidence-angle dependence of real and
imaginary parts of the normalized k(1,2)

z for φ = 45◦, calculated
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FIG. 4. (Color online) Real and imaginary parts of the normalized k(1,2)
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FIG. 5. (Color online) Frequency dependence of real and imaginary parts of the normalized k(1)
z .

at different frequencies in the vicinity of f0, are shown in
Fig. 4. We can see that in one direction we have a large real
part of k(1)

z and a lower value for k(2)
z and vice versa in the

opposite direction. This effect of nonsymmetry takes place
because at the fixed kx the electric field vector of one wave has
a larger projection to CNTs than that of another wave causing
a different interaction between the field and the CNTs.

Let us consider the special case φ = 45◦ and θ → 45◦.
Then Re(εxx) = Re(εzz) = εind = δ → 0. To find the limiting
transition for k(1)

z , corresponding to the sign “+”, we expand
the second term of the numerator of Eq. (13) into the Taylor
series under δ → 0, restricting expansion by the first small
term, and obtain

k(1)
z �

−kx + k0
(

kx

k0
− k0δ

2kx

)
δ

, (14)

so k(1)
z → −k0/

√
2 = −k0 sin 45◦ if δ → 0. With regard to

the problem of the wave reflection from the slab (see Fig. 1),
this eigenvalue corresponds to the wave reflected from the
ground plane and propagating to the interface. It is equivalent
to the z component of the wave vector in free space because
its electric field vector is orthogonal to CNTs, which do not
affect the wave propagation in this case. For the second wave
number we come to k(2)

z → −∞. This is explained by the facts
that the electric field vector of the incident wave is parallel
to CNTs and Re(ε′

zz) → −1 if d → d0. This wave propagates
almost perpendicularly to the interface. It has the negative sign

because it is the backward wave with respect to the interface
(the wave deviates from the normal to the left side, i.e.,
in the carbon nanotubes direction). Figures 5 and 6 illustrate
the frequency dependence of k(1,2)

z and show that both real
and imaginary parts of k(1)

z remain constant at frequencies
below fp � 28 THz with |Re(k(1)

z )| = k0/
√

2, where fp is the
plasmonic resonance frequency of the CNT array. For k(2)

z

either the real or the imaginary part becomes quite large in the
vicinity of f0 for the lossy case.

The second remarkable feature concerns the transverse
wave impedance Z1,2, which reads as

Z1,2 = −Ex

Hy

= η

k0

√
k2
x − k2

0εzz√
ε2
xz − εxxεzz

, (15)

where η = 120π �. One can show that if φ = 45◦ and θ = 45◦
then

εxz = εzx = 1
2 (ε′

zz − εt ), εxx = εzz = 1
2 (ε′

zz + εt ). (16)

So, if εt = 1 we come to condition of perfect matching of
transverse impedances of the plane wave, incident from free
space,

Z0 = η

√
k2

0 − k2
x

k0
= η

1√
2
, (17)
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FIG. 7. (Color online) Real part of the normalized wave impedance versus frequency, calculated at φ = 45◦, θ = 45◦, and d = d0 =
31.12 nm.

and both waves propagating in the indefinite medium with
the tilted optical axis. This condition does not depend on
the frequency while εt = 1, which is satisfied for arrays of
thin single-wall metallic CNTs. Then, taking into account that
|k(2)

z | → ∞, we come to condition of perfect absorption if the
indefinite medium possesses low losses. In this case the wave,
propagating in the slab with a very short wavelength, attenuates
at an ultrashort distance. The frequency dependence of the real
part of the wave impedance of the CNT array is shown in Fig. 7.
Despite that all nonzero components of the permittivity dyadic
quite strongly depend on the frequency, the real part of Z1,2

remains constant within the whole frequency range jumping
from −1 to 1 (or vice versa) at f = fp. The imaginary part
of Z1,2 is close to zero under the parameter of losses taken
here.

III. PLANE-WAVE REFLECTION FROM A GROUNDED
SLAB OF TILTED CARBON NANOTUBES

For solution of the wave reflection problem we will use
the 2 × 2 transfer matrix method, modified for the general
case |k1

z | 	= |k2
z |. Propagation constants and transverse wave

impedances of the waves within the slab can be expressed via
elements of the transfer matrix [M] as25

e−jk
(1,2)
z h = M11 + M22 ±

√
(M11 + M22)2 − 4|M|

2
,

Z1,2 = M12

M11 − e−jk
1,2
z h

, (18)

where |M| is the determinant of the transfer matrix. Solving
the system of equations with respect to Mij one can obtain
the expression for the transfer matrix via the wave impedances
and wave numbers as

M =
[

M11 M12

M21 M22

]

=
⎡
⎣ Z1e

−jk
(1)
z h−Z2e

−jk
(2)
z h

Z1−Z2
−Z1Z2

e−jk
(1)
z h−e−jk

(2)
z h

Z1−Z2

e−jk
(1)
z h−e−jk

(2)
z h

Z1−Z2

Z2e
−jk

(1)
z h−Z1e

−jk
(2)
z h

Z2−Z1

⎤
⎦ . (19)

The reflection coefficient R can be calculated using the well-
known formula

R = M12 − M22Z0

M12 + M22Z0
, (20)

where Z0 is defined by formula (17). Absorption A is defined
as

A = 1 − |R|2. (21)

The frequency dependence of absorption A is shown in Fig. 8.
It is remarkable that the thickness resonance is absent due to the
difference in propagation constants for upward and downward
waves within the slab. The central frequency of the absorption
band f0 = 20 THz corresponds to the IM condition which is
determined by the period of the CNT array lattice. Increase
of the thickness causes increase of the absorption bandwidth.
The total absorption bandwidth of 17% can be achieved at
the thickness 3.75 μm (0.25λ0) and 8.6% at h = 0.1λ0. The
incidence angle dependence of the absorption, calculated for
different frequencies in vicinity of f0, is shown in Fig. 9. At the
IM frequency f0 the total absorption is achieved at θ = ±45◦.
However, if the operating frequency is slightly different from
f0, the level of absorption around 95% can be achieved within
the range −60◦ < θ < 60◦.
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FIG. 8. (Color online) Absorption versus frequency calculated for
different thicknesses of the slab. The incidence angle is 45◦, the tilt an-
gle is 45◦, and λ0 is the wavelength in free space corresponding to f0.
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FIG. 9. (Color online) Absorption versus the incidence angle.

IV. CONCLUSION

We proposed an alternative, based on a plasmonic resonance
solution, for design of optically thin absorbing layers. It

exploits properties of a specially prepared indefinite medium,
whose permittivity tensor has near-zero diagonal components
and close to −1 nondiagonal components. The wave, incident
under the angle 45◦, enters the slab without reflection and
propagates, attenuating in the medium with a very small
wavelength that provides perfect absorption within ultrathin
layers. We have demonstrated that such absorbing slabs for the
mid-infrared range can be made of arrays of metallic carbon
nanotubes, which possess properties of indefinite media in the
terahertz range.13 The discussed effect can find applications
for such absorbers, where a range of incidence angles is
confined.

ACKNOWLEDGMENTS

The first author would like to thank Iran’s MSRT (The
Ministry of Science, Research and Technology) and ITRC
(Iran Telecommunications Research Center) for their financial
support during the visit to Aalto University (Finland). This
work has been partially funded by the Academy of Finland
and Nokia through the Center-of-Excellence program.

1D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov,
Phys. Rev. B 82, 205117 (2010).

2M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79,
033101 (2009).

3K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt.
Express 19, 14260 (2011).

4C. H. Lin, R. L. Chern, and H. Y. Lin, Opt. Express 19, 415 (2011).
5N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla,
Phys. Rev. Lett. 100, 207402 (2008).

6H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and
W. J. Padilla, Opt. Express 16, 7181 (2008).

7H.-T. Chen, Opt. Express 20, 7165 (2012).
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