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Periodic structures with subwavelength features are instrumental in the versatile and effective control
of electromagnetic waves from radio frequencies up to optics. In this paper, we theoretically evaluate the
potential applications and performance of electromagnetic metasurfaces made of periodically patterned graphene.
Several graphene metasurfaces are presented, thereby demonstrating that such ultrathin surfaces can be used
to dynamically control the electromagnetic wave reflection, absorption, or polarization. Indeed, owing to the
graphene properties, the structure performance in terms of resonance frequencies and bandwidths changes with
the variation of electrostatic bias fields. To demonstrate the applicability of the concept at different frequency
ranges, the examples provided range from microwave to infrared, corresponding to graphene features with
length scales of a few millimeters down to about a micrometer, respectively. The results are obtained using a
full-vector semianalytical numerical technique developed to accurately model the graphene-based multilayer
periodic structures under study.
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I. INTRODUCTION

Graphene is a flat monolayer of carbon atoms arranged
in a honeycomb lattice, which can also be viewed as the
building block for other graphitic materials, such as fullerenes,
carbon nanotubes, and bulk graphite.1,2 The experiments on
graphene confirmed that its electrons behave as massless Dirac
fermions with the possibility of traversing long distances
without being scattered by the crystal, which in turn results
in the capability to sustain large electric currents.3–6 These
unprecedented properties underpinned extensive applications
and development of ultrathin carbon nanoelectronic active
devices using small graphene samples.7,8 In the early years of
graphene research, it was one of the most expensive materials
obtained through the nanofabrication techniques.9 However,
recently efficient growth of large graphene samples has been
achieved using chemical vapor deposition, which has now
become a common graphene fabrication technique.10,11 This
allowed the production of larger graphene-based structures
as needed to realize the graphene electromagnetic (EM)
metasurfaces discussed in this paper.

One novel area where the properties of graphene may
be influential is the dynamic control of the EM waves
propagation.12–16 Notably, the capability of graphene to serve
as a platform in transformation optics has been shown based on
a homogeneous (i.e., unpatterned) but spatially bias modulated
graphene layer represented by a free-standing surface in a
commercial EM solver.12 More recently, employing graphene
to realize cloaking surfaces has also been proposed,15 while
the use of graphene as true antennas was studied in Ref. 17.
Furthermore, employing a graphene monolayer for sensing and
measuring a metamaterial performance was also suggested.13

These studies on graphene EM metasurfaces considered a
homogeneous layer of graphene. Only very recently has
research effort been devoted on nanostructuring graphene
to control its effective properties. For instance, the use of
graphene strips for the realization of plasmonic waveguides
with confined field profiles has been investigated.18 The
possibility of controlling the plasmonic resonances in a

periodic arrangement of such strips has also been reported.19

The effect of patterning on the transmission properties of these
monoatomic layers was studied as well.20 Finally, the use of
periodic graphene metasurfaces to achieve strong absorption
of infrared radiation was reported.21–24

The biperiodic patterning of metal has been long used
at micrometer- and millimeter-wave frequencies to achieve
electromagnetic properties which can not be obtained using
uniform multilayered structures. Perhaps the most widespread
application of such periodic screens lies in frequency-selective
surfaces (FSS), which are spectral filters for free space prop-
agation applications (as employed in radar technology).25,26

Although different FSSs having fixed-frequency responses
are successfully modeled, implemented, and utilized, their
dynamic control is still a challenging issue. The mechanism
allowing the dynamic control of the FSS performance gen-
erally introduces very tough limitations on the achievable
characteristics. In the microwave regime, the use of liquid
crystals, varactor diodes, and microelectromechanical systems
(MEMS) switches to provide a dynamic frequency response
has been reported.27–30 However, achieving such characteris-
tics in the terahertz and infrared regimes is even more difficult
because of the aforementioned technological reasons. In this
context, the use of micropatterned/nanopatterned graphene
seems extremely interesting to overcome the limitations of
existing technologies, in terms of operation frequency, biasing
complexity (thanks to graphene well-known electric field
effect31,32), as well as integration and miniaturization.

We demonstrate this potential by presenting the modeling
and design of graphene-based dynamically controllable meta-
surface, at both microwave and THz frequencies. First, the
graphene conductivity model is recalled and the numerical
algorithm used for modeling the electromagnetic interaction
of a plane wave with a patterned graphene metasurface is
presented. Subsequently, application examples are analyzed
using the proposed method. It is shown that electronic gating
of a miniaturized graphene layer allows one to control both
the appearance and the position of the periodic structure
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resonances. Results for a controllable X-band microwave
absorber and an infrared switchable polarizer are presented,
highlighting the possibility to also affect absorption and
polarization through anisotropic structuring. The designed
structures are based on multilayer graphene stacks since
conventional biasing techniques can not be employed without
shielding the metasurface effective response (note that a
similar idea has recently been proposed for fabricating THz
modulators33). The different examples show that graphene
not only enables convenient dynamic control of the structure
response, but also that its periodic patterning also allows
tailoring the response both in terms of general functionality
and operation frequencies.

II. GRAPHENE CONDUCTIVITY MODEL

A graphene sheet can be modeled as an infinitesimally
thin conductive sheet, the conductivity of which is obtained
using a semiclassical quantum mechanical method. In the
low-frequency regime (low-THz regime and below) and in
the absence of magnetostatic biasing, this conductivity is
represented by a scalar value.34 However, at higher THz and
mid infrared frequencies for very intense spatial variations of
the interacting wave (in the scale of the scattering length),
the conductivity may possess non-negligible nondiagonal
terms due to the spatial dispersion effect.34,35 Additionally,
in the presence of a magnetic bias field, a similar dyadic
conductivity is needed to model the graphene sheet. There-
fore, the conductivity is generally modeled as the following
tensor:

σ [ω,μc(E0),�,T ,B0] =
[
σxx σxy

σyx σyy

]
, (1)

where ω is the radial frequency, μc is the chemical potential
hinging upon the applied electrostatic bias field E0 = ẑE0 or
doping, � is a phenomenological electron scattering rate, T

is the temperature, and B0 = ẑB0 is the applied magnetostatic
bias field. In this study, we consider graphene periodic surfaces
under electric bias field only, thus the anisotropic effect
emanating from magnetic biasing is set to zero. The four
elements of the conductivity tensor can be written in the
following general form:34

σxx = α
∂2

∂x2
+ β

∂2

∂y2
+ σ, σxy = 2β

∂2

∂x ∂y
,

(2)

σyx = 2β
∂2

∂x ∂y
, σyy = β

∂2

∂x2
+ α

∂2

∂y2
+ σ.

The operator terms in Eq. (2) represent the spatial dispersion
effect and are negligible either in the low-frequency regime or
the high-phase velocities.

The coefficients in Eq. (2), namely, α, β, and σ , can
be obtained experimentally or analytically based on the
existing models. In fact, the theoretical modeling of graphene
conductivity has been the subject of many recent research
efforts, including successful comparisons with experimental
results.31,36–39 However, like any other material properties,
these coefficients are strongly influenced by the fabrication
process and environmental effects. For instance, the defects
introduced by the substrate in the graphene sheet often incur
deviations from the theoretical predictions.40 In the presented
study, the numerical routine is developed for general parame-
ters, and later in the numerical examples values obtained based
on theoretical models are considered.

The conductivity value σ can be theoretically calculated us-
ing Kubo’s formalism,31 which yields the following equation:

σ [ω,μc(E0),�,T ,B0] = e2v2
F |eB0|(ω − j2�)h̄

−jπ

∞∑
n=0

{
fd (Mn) − fd (Mn+1) + fd (−Mn+1) − fd (−Mn)

(Mn+1 − Mn)2 − (ω − j2�)2h̄2

1 − 	2/(MnMn+1)

Mn+1 − Mn

+ fd (−Mn) − fd (Mn+1) + fd (−Mn+1) − fd (Mn)

(Mn+1 + Mn)2 − (ω − j2�)2h̄2

1 + 	2/(MnMn+1)

Mn+1 + Mn

}
, (3)

where Mn = √
	2 + 2nv2

F |eB0|h̄, and fd (ε) is the Fermi-Dirac distribution given by

fd (ε) = 1

1 + e(ε−μc)/(kBT )
. (4)

The above equation returns the conductivity for a general case, with both electric and magnetic bias fields. However, for the case
of no magnetic bias field, the above equation should be calculated when |eB0| tends to zero. In this case, the following equation
should be used:41

σ [ω,μc(E0),�,T ] = je2(ω − j2�)

πh̄2

{
1

(ω − j2�)2

∫ ∞

0
ε

(
∂fd (ε)

∂ε
− ∂fd (−ε)

∂ε

)
dε −

∫ ∞

0

fd (−ε) − fd (ε)

(ω − j2�)2 − 4(ε/h̄2)
dε

}
. (5)

Room temperature (T = 300 K) is considered throughout the paper. Correspondingly, the excitonic energy gap 	 is set to zero,
the Fermi velocity in graphene is vF = 106 m/s and � is set to 12.2 meV.6,40,42 Note that for the case of no magnetic bias
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FIG. 1. (Color online) (a) Real part and (b) imaginary part of the
conductivity (σd ) in terms of frequency for various bias electric fields
in the microwave regime.

field, the above equation should be calculated when |eB0| tends
to zero. Figure 1 shows the variation of graphene conductivity
with frequency for different bias electrostatic fields in the
microwave and infrared regimes. In the microwave regime,
although the conductivity does not change significantly with
frequency, it is strongly dependent on the bias electric field.
The curves evidence stronger sensitivity of the conductivity to
the bias field at low-THz frequencies compared to the higher
ones. It can be observed that changing the bias electrostatic
field values directly affects the range of frequency over which
graphene behaves as a conductor.

The coefficients α and β are obtained using a perturbation
theory approach presented in Ref. 34. Although this was
initially made for unbiased graphene, following the same
approach, it can be shown that the final results also hold
for electrically biased graphene. The equations providing the
values of α and β then read as

α = 3

4

v2
F

(ω − j2�)2
and β = α

3
. (6)

III. PERIODIC METHOD OF MOMENTS FOR GRAPHENE
BIPERIODIC SURFACES

Modeling EM properties of homogeneous graphene layers
has been targeted in some previous publications34,41,43,44 where
the solution of the Maxwell equations in a one-dimensional
space is used to simulate multilayer structures. The analysis
of periodically patterned graphene demands more advanced
analysis techniques to account for the periodic boundary
condition on the electromagnetic fields as well as the boundary
condition on the induced currents, i.e., the normal component
at the graphene boundaries should vanish. The properties of an
EM screen can be obtained by formulating the scattered field
as a result of a plane-wave excitation. The whole metasurface
characteristics, such as resonance frequencies, high-absorption
frequency points, band diagram, and polarization sensitivity,
are then extracted from the scattered field spectrum. Here, a pe-
riodic method of moments (PMoM) technique is implemented,
which efficiently solves Maxwell’s equations for multilayer
planar metasurfaces.45 This full-vector semianalytical numer-
ical technique not only allows accurately modeling periodic
graphene surfaces, but also includes the effect of the substrate
actual topology.

The concept of PMoM for periodic surfaces of various types
has been introduced in many publications.25,26,45 The method
begins with the formulation of the boundary condition which
must hold on the graphene surface, i.e.,[

Ei
x

Ei
y

]
+

[
Es

x

Es
y

]
= −Zs

[
Jx

Jy

]
, (7)

where Es
t = [Es

x,E
s
y]T and Ei

t = [Ei
x,E

i
y]T are tangential

components of the scattered and incident electric fields on
graphene, respectively. In addition, Zs stands for the surface
impedance and J = [Jx,Jy]T is the induced current on the
graphene surface. The scattered field can be written in terms
of a Green’s function and the induced currents. In the case of
a homogeneous substrate, this yields the following equation:

−
[

Ei
x

Ei
y

]
=

∞∑
m=−∞

∞∑
n=−∞

([
G̃xxmn

G̃xymn

G̃yxmn
G̃yymn

]

+
[
Zs 0
0 Zs

]) [
J̃xmn

J̃ymn

]
e−(jkxmx+jkyny), (8)

where G̃xx , G̃xy , G̃yx , and G̃yy are the components of the
dyadic Green’s function in the spectral domain. kxm and kyn

are given by

kxm = 2πm

Lx

+ kx and kyn = 2πn

Ly
+ ky, (9)

where kinc = kxx̂ + kyŷ is the wave vector of the incident
plane wave and the pair (Lx,Ly) determines the lattice
constants of the periodic structure in both the x and y

directions, respectively.
If the summations in Eq. (8) are cast in a matrix form, the

following equation is obtained:

−
[

Ei
x

Ei
y

]
(x,y)

= A(x,y)(G̃ + Zs)

[
J̃x

J̃y

]
(10)

195408-3



ARYA FALLAHI AND JULIEN PERRUISSEAU-CARRIER PHYSICAL REVIEW B 86, 195408 (2012)

with

A(x,y) =
[

[e(jkxmx+jkyny)]T [0]T

[0]T [e(jkxmx+jkyny)]T

]
. (11)

[exp(jkxmx + jkyny)]T is a row matrix containing the expo-
nential terms and [0]T is a zero matrix with the same size as
[exp(jkxmx + jkyny)]T . In fact, the superscript T representing
the transpose sign is used to distinguish between row and
column vectors. J̃x and J̃y are column vectors obtained from
the Fourier coefficients J̃xmn

and J̃ymn
in the (kxm,kyn) basis.

Finally, G̃ is the Green’s function matrix.
For solving (10) using the concept of the MoM, electric

currents excited on the patches should be expanded in terms
of some basis functions[

Jx

Jy

]
=

[
JT

x

JT
y

]
ejkinc·r · C, (12)

where JT
x and JT

y are row vectors containing the basis functions
used for expanding Jx and Jy , respectively. The unknown
coefficients of these functions are arranged in the column
vector C. Using Galerkin’s method and after some algebraic
operations, the following system of equations is obtained:

−
[∫

J∗ejkinc·r · Ei ds

]

= [[J̃x]† [J̃y]†](G̃ + Zs)

[
[J̃x]

[J̃y]

]
C, (13)

where J = Jx x̂ + Jy ŷ and Ei = Ei
xx̂ + Ei

yŷ is the incident
electric field vector. [J̃x] and [J̃y] are matrices whose kth
columns are Fourier coefficients of kth corresponding basis
functions. The signs ∗ and † stand for the complex and
Hermitian conjugates, respectively. J̃x and J̃y in Eq. (10) are
related to [J̃x] and [J̃y] through[

J̃x

J̃y

]
=

[
[J̃x]

[J̃y]

]
· C. (14)

Using the obtained coefficients C, all the desired quantities
such as reflection and transmission coefficients can easily be
calculated. The term exp(jkinc · r) is considered as a phase
factor in all basis functions. Therefore, the Fourier coefficients
are calculated in the ( 2mπ

Lx
, 2nπ

Ly
) basis.

The studies on modeling planar geometries containing
periodic patches are mainly limited to considering various sub-
strate properties. Different schemes are developed for homo-
geneous, lossy, multilayer,25,26 periodic,45 and anisotropic46,47

substrates. Thin metallic patches are accurately modeled with
an equivalent scalar surface impedance. Therefore, a scalar
value is always assumed for the matrix Zs . However, for
graphene patches, a more general form should be developed
for Zs , which is actually the goal in this section.

Let us first take the conductivity equation Jt = σEt into
account. By considering the operator form of the graphene
conductivity, the general equation for graphene reads as[

Jx

Jy

]
=

[
σ + α ∂2

∂x2 + β ∂2

∂y2 2β ∂2

∂x ∂y

2β ∂2

∂x ∂y
σ + β ∂2

∂x2 + α ∂2

∂y2

] [
Ex

Ey

]
.

(15)

For the analysis of a frequency-selective surface using PMoM,
this equation should be transformed in the spectral domain.
For this purpose, the equivalence equations ∂/∂x ≡ −jkx
and ∂/∂y ≡ −jky should be used, where kx and ky are
diagonal matrices with diagonal elements equal to kxm and
kyn. Therefore, the conductivity equation for graphene in the
spectral domain is as follows:[

J̃x

J̃y

]
=

[
σ − αkx

2 − βky
2 −2βkxky

−2βkxky σ − βkx
2 − αky

2

] [
Ẽx

Ẽy

]
,

(16)

By simply comparing (16) with (10), the matrix Zs can be
deduced as

Zs =
[
σ − αkx

2 − βky
2 −2βkxky

−2βkxky σ − βkx
2 − αky

2

]−1

. (17)

Note that the inverted matrix consists of four diagonal matrices.
Thus, its inversion can be accomplished analytically, without
the need to follow complicated computational procedures for
obtaining Zs . Once this impedance matrix is evaluated, it is
plugged in Eq. (10) and the common process for solving the
metasurface problem is carried out. The presented formulation
is a general procedure allowing us to solve unbiased and biased
graphene metasurfaces under plane-wave incidence. However,
the examples considered next do not include magnetic bias,
thus there are no nondiagonal terms due to magnetic field.
Concerning the contribution of spatial dispersion to the nondi-
agonal conductivity terms, it is negligible in our examples (see
the following) and thus the conductivity writes in essence as

Zs =
[

σ 0
0 σ

]
. (18)

IV. APPLICATION EXAMPLES

The remainder of the paper presents different examples
of tunable biperiodic graphene metasurfaces, modeled and
designed using the PMoM for graphene described in the
previous sections. We begin with a simple fundamental case
to illustrate the physical basis of the considered configurations
and their potential. Then, more realistic structures from
both nanofabrication and biasing control point of views
are considered. Note that the effect of edges on graphene
conductivity is also neglected since the smallest dimensions
considered are in the order of 1 μm, which is much larger than
the electron scattering length within the graphene layer.

A. Free-standing metasurface

The simplified topology, considered first, consists of a
single biperiodic surface, the unit cell of which is a cross-
shaped graphene patch [Figs. 2(a) and 2(b)]. In this example,
results are computed assuming that the patterned graphene
layer is free standing in air or vacuum and the effect of gating
on its performance is studied. The dimensions of the patch
are L = 10 mm, d = 1.25 mm, D = 7.5 mm, and a normal
incidence of the plane wave on the graphene layer is assumed.
The frequency range for the analysis is 0 GHz < f < 30 GHz.
Figure 2(c) shows the reflected and transmitted energies
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FIG. 2. (Color online) (a) Schematic illustration of the graphene
biperiodic structure consisting of graphene cross-shaped patches
arranged in a two-dimensional lattice and under a normally incident
plane wave. (b) Unit cell of the lattice. (c) Reflected and transmitted
energies versus frequency. The filled circles represent the results
obtained when accounting for the spatial dispersion terms in the case
E0 = 20 V/nm.

plotted in terms of the excitation frequency for various bias
electric field values. The case E0 = 20 V/nm is also analyzed,
including the spatial dispersion terms, which confirms their
negligible effect. The results reveal an extremely promising
feature, which is the possibility to electrically control the
emergence and strength of resonances. Note that this capability
is different from that presented by Ju et al.19 since there only
the position of the resonance is controlled. Indeed, applying
the bias electric field results in a strong increase in the surface
conductivity, thereby exciting the resonances between adjacent
graphene patches. These resonances introduce maximum and
minimum points in the reflection and transmission spectra.
This behavior can be verified by visualizing the current
profile induced on the graphene patches at f = 19.5 GHz,
as done in Fig. 3 for three different electrostatic gatings,
namely, E0 = 0, 2, and 20 V/nm. It is observed that the
induced currents gradually take on a resonating form when the
bias electric field increases, meaning that the current density
sharply increases at the center of the patch and vanishes at
the edges. Although this illustration was mainly devised and
presented for a first physical insight on controllable graphene

c)(a) (b) (

FIG. 3. (Color online) Normalized induced current on the patch
at ω = 19.5 GHz for different applied electrostatic fields are plotted
for a free-standing FSS consisting of a two-dimensional lattice of
cross-shaped graphene patches exposed to a normal incident plane
wave: (a) E0 = 0 V/nm, (b) E0 = 2 V/nm, and (c) E0 = 20 V/nm.

metasurface, it is noticeable that the demonstrated switchable
frequency-selective property would find real applications. For
instance, radar absorbers can be realized where the absorption
peaks are switched on and off through an external voltage.

As mentioned earlier, this initial illustration is presented
merely to introduce the advantage of graphene patterning and
does not constitute a realistic electrically biased graphene
metasurface. From an experimental point of view, the graphene
layer must reside on a substrate, and for simple biasing it
is impractical to have dc-disconnected graphene unit cells.
Graphene layers are sensitive to normal bias electrostatic fields
in the order of 109 V/m. Even a relatively thin dielectric layer
spacer can result in very large bias voltages to achieve the
required electrostatic bias.15 Gate voltages in the order of max-
imum 100–200 V thus require a very thin dielectric between
graphene layer and gate, namely, in the order of some tens
of nanometers. Such thin dielectrics are implementable and
can be employed in most applications of graphene to realize
nanoelectronic devices. However, they become problematic
when considering graphene layers affecting the propagation
of an EM wave since a metal or silicon conductive gate
layer in close proximity to the graphene layer would generally
mask, or at least strongly affect, the desired tunable property.
Therefore, the remainder of the paper considers metasurfaces
including actual substrates, and where the different unit cells
of a graphene layer are dc connected so as to only require
applying dc biasing at a single location on the surface. The
maximum dc bias voltage considered is 200 V.

For this purpose, we propose to use periodic metasurfaces
made of different layers of graphene.33 Such a stack can be
realized by first transferring a uniform graphene layer on the
substrate and patterning it via e-beam lithography to enable
geometrical features down to a few tens of nanometers. Then,
the thin dielectric is deposited and, finally, the transferring
and patterning steps are repeated for the second graphene
layer. In fact, the process can also be simplified by etching all
graphene and dielectric layers in a single step. This topology
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FIG. 4. (Color online) (a) Schematic illustration of the graphene
biperiodic structure consisting of dc-connected patches on both sides
of a GaAs layer residing on an infinitely thick GaAs substrate and
assumed to be subjected to a normally incident plane wave. (b) The
unit cell of the lattice is depicted with the dimensions; the top figure
is the top view of the unit cell and the bottom figure is its side view.
(c) The reflected energy versus frequency is plotted for the unbiased
case as well as the biased electrostatic field with E0 = 2.2 V/nm.

has two main advantages: (1) It provides more freedom
for tailoring the surface EM response, and (2) it allows an
efficient dynamic bias of the structure by applying a voltage
between the graphene layers themselves, as symbolized in
Fig. 4(b). Hence, the aforementioned masking of the graphene
metasurface by a neighboring metal or silicon gate is basically
avoided. Obviously, a dc contact between the lower layer and
the voltage source must be implemented at one location in the
surface, but this is also very simply realized through an access
cavity in the thin dielectric or implementing vias (metallized
holes). Furthermore, each patch of the periodic metasurface
must be connected to the neighboring ones for transferring the
dc voltage throughout the whole surface. Therefore, owing to
the conductive properties of graphene, a periodic structure with
dc-connected patches is preferred. In this case, no additional
circuit or layer to support for the dc gating is required.

B. dc-connected double-layer metasurface

Based on the described technological approach, a graphene
metasurface was designed to operate as a frequency-selective
surface in the far-infrared range to demonstrate the potential
of the proposed concept at higher frequencies. The considered
surface and unit cell are depicted in Figs. 4(a) and 4(b).
The same pattern is etched in both graphene layers, with
L = 5 μm, l = 0.5 μm, d = 1.25 μm, and D = 1.5 μm. The
two patch layers sandwich a L = 50 nm thick GaAs layer over
an infinitely thick GaAs substrate. The relative permittivity of
GaAs at dc is equal to εdc

r = 10.8, and at far-infrared fre-
quencies measured data for the dispersive dielectric constant
is considered.48 Note that although GaAs might not be the
best dielectric for graphene, in fact the performance computed
here is weakly dependent on the dielectric permittivity. In any
case, the results could be easily updated for other material
choices, such as parylene having similar permittivities. A
110-V bias voltage, corresponding to the normal electrostatic
field E0 = 2.2 V/nm, is applied between the two graphene
layers. In Fig. 4(c), the reflected energy under the excitation of
a x-polarized plane wave is shown, when the bias voltage
is switched on and off. The sharp resonances seen in the
reflection spectrum occur due to the increase in the graphene
conductivity. The devised graphene biperiodic layer consti-
tutes a controllable ultrathin multiple-band filter at infrared
frequencies. The device simulation is carried out with and
without consideration of spatial dispersion, which confirms
the negligible effect of spatial dispersion in this example as
well. In Fig. 5, the magnitude of the electric field in the xz

plane is shown at the two different resonance frequencies.
Two different cases of biased and unbiased graphene patches
are considered. The results evidence the considerable variation
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FIG. 5. (Color online) Magnitude of the total electric field is
shown for two resonant frequencies, namely, (a) 11.3 THz and (b)
20.0 THz. The upper figures correspond to unbiased graphene patches
and the lower ones are obtained for an electrically biased graphene
surface with E = 2.2 V/nm.
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FIG. 6. (Color online) Schematic illustration of the absorber
structure consisting of five graphene layers printed on a glass
substrate: (a) the graphene patch layer, (b) the side view of the
absorber and the biasing circuit. (c) Magnitude of the reflection
coefficient versus frequency for different applied bias voltages (Vg)
are plotted. In the subfigure, magnitude of the reflection coefficient
at f0 = 11.2 GHz is plotted in terms of the applied bias voltages (Vg)
for the considered absorber.

of the transmitted field with the electrostatic gating, which is
more pronounced in the first resonance.

C. Graphene microwave absorber

A general conclusion from the presented analyses is that by
using graphene technology, ultrathin surfaces can be devised,
which influence dramatically the incident wave. Moreover,
in these extremely thin geometries, one has the possibility
to electrically control the performance of the device. This
further adds to the promise of the graphene biperiodic surfaces.
Based on the gained insight, useful devices can be designed
for specific applications, which is the main focus of the
next example. In Fig. 6, a multilayer absorber configuration
is shown, which contains five layers of graphene patches
separated by SiO2 thin films with thickness t = 50 nm.
The multilayer graphene metasurface resides on an SiO2

substrate with thickness h = 3 mm backed by a perfect electric
conductor (PEC). Figure 6(b) shows the dc biasing circuit
which can be used for applying the electrostatic bias field on
the patches.

In Fig. 6(c), the magnitude of the reflection coefficient in
terms of frequency is depicted for various bias voltages Vg . The
structure behaves as an absorber operating at f0 = 10.7 GHz
when no bias voltage is applied. When a bias voltage is applied,
the perforated patch layers start to resonate, which prevents
the penetration of the incident wave into the absorber. Thus,
a large amount of the incoming field is reflected, as depicted
in Fig. 6(c). The large variation of reflection coefficient at
resonance frequency with the bias voltage is an interesting
feature of the proposed absorber, which is shown in the inset
of Fig. 6(c). According to this figure, the reflected energy from
the absorber is controlled by the bias voltage over a relatively
large interval.

D. Graphene polarizer

A remarkable advantage of graphene biperiodic structures
is that a birefringent performance can be achieved using
unit cells without diagonal symmetry. Based on this idea, a
polarizer is designed as the last example, which is illustrated in
Fig. 7. Homogeneous graphene layers are etched periodically
to create a lattice of slots. The slots are longer along the y

axis than the x axis, which leads to different performance
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FIG. 7. (Color online) Schematic illustration of the polarizer
designed for infrared frequencies which consists of two layers of
graphene printed on a Si2N3 substrate: (a) the graphene patch layer,
(b) the side view of the polarizer and the biasing circuit. (c) Power
reflection coefficients Rxx and Ryy versus frequency for bias voltages
Vg = 50 and 0 V are plotted for the depicted multilayer periodic
graphene metasurface.
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for x and y polarized waves. By proper adjustment of
the dimensions, a tunable polarizer is designed for infrared
frequencies. The graphene patch layers shown in Fig. 7(a)
are fabricated on two sides of a silicon nitride (εdc

r = 6.6 and
εIR
r = 4.2) thin film with thickness t = 50 nm and the whole

structure resides on a thick SiO2 substrate [Fig. 7(b)]. The
reflected energy versus frequency for Vg = 0 and 50 V are
plotted for two polarizations in Fig. 7(c). The power reflection
coefficient (Rxx) represents the reflected energy for the electric
x-polarized wave (Ex �= 0, Ey = 0) when a similar plane
wave illuminates the surface. Similarly, Ryy is computed for
the electric y-polarized reflected and incident waves (Ex = 0,
Ey �= 0). It is observed that at the resonance frequency f =
12.7 THz, the x polarization is strongly reflected, whereas
the y polarization is weakly affected. Hence, when both
polarizations equally exist in the incident wave, the reflected
plane wave has a dominant x polarization at this frequency.

V. CONCLUSION

A full-vector spectral method based on the periodic method
of moments (PMoM) has been introduced for the analysis of
graphene biperiodic structures. The method was then applied
to the modeling and design of various graphene biperiodic
structures, demonstrating that periodically patterned graphene
structures can implement EM metasurfaces, which exhibit
different and useful dynamically controllable capabilities,
influencing both the amplitude and polarization of the EM
wave.
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