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We demonstrate an efficient nonequilibrium Green’s function transport calculation procedure based on the
real-space finite-difference method. The direct inversion of matrices for obtaining the self-energy terms of
electrodes is computationally demanding in the real-space method because the matrix dimension corresponds to
the number of grid points in the unit cell of electrodes, which is much larger than that of sites in the tight-binding
approach. The procedure using the ratio matrices of the overbridging boundary-matching technique [Y. Fujimoto
and K. Hirose, Phys. Rev. B 67, 195315 (2003)], which is related to the wave functions of a couple of grid
planes in the matching regions, greatly reduces the computational effort to calculate self-energy terms without
losing mathematical strictness. In addition, the present procedure saves computational time to obtain the Green’s
function of the semi-infinite system required in the Landauer-Büttiker formula. Moreover, the compact expression
to relate Green’s functions and scattering wave functions, which provide a real-space picture of the scattering
process, is introduced. An example of the calculated results is given for the transport property of the BN ring
connected to (9,0) carbon nanotubes. The wave-function matching at the interface reveals that the rotational
symmetry of wave functions with respect to the tube axis plays an important role in electron transport. Since the
states coming from and going to electrodes show threefold rotational symmetry, the states in the vicinity of the
Fermi level, the wave function of which exhibits fivefold symmetry, do not contribute to the electron transport
through the BN ring.
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I. INTRODUCTION

Recently, electronic-structure calculations have become an
important tool for investigating the physics and chemistry of
nanoscale systems with the miniaturization of electronic de-
vices. The electron-transport properties of nanoscale systems
have been studied actively because they are of significant
importance from both fundamental and practical points of
view. Owing to the complexity of the problem, such studies
are strongly dependent on the existence of reliable numerical
treatments based on first-principles approaches.

A number of first-principles calculation methods for the
electron-transport properties of nanoscale systems have been
proposed so far. They are roughly categorized into two
approaches. One approach uses the nonequilibrium Green’s
function (NEGF). The relation between conductance and
Green’s function has been derived within the nonequilibrium
Keldysh formalism.1 This approach has been used extensively
in connection with tight-binding models and first-principles
methods employing localized basis sets consisting of either
atomic orbitals2–4 or Gaussians.5 In this formalism, by making
use of Green’s functions with energies of nonreal numbers,
the electronic structures of the isolated states in the transition
region, which are not easily treated only by the energies of
real numbers, can be included into the total charge density
of the system. On the other hand, the NEGF method has
not been employed with the real-space6–8 and plane-wave
formalisms in the first-principles calculations based on the
density functional theory9,10 so far because the large numbers
of grid points or plane waves prevent the direct inversion
of Nx × Ny × Nz-dimensional matrices to obtain the surface
Green’s functions and self-energy terms of electrodes, where
Nx , Ny , and Nz are the numbers of grid points along the x, y,

and z directions in the unit cell of the left or right electrode,
and electrons flow along the z direction (see, e.g., Fig. 1).

The other approach is to compute the scattering wave func-
tions from which transmission coefficients can be obtained. In
addition, the scattering wave functions provide a direct real-
space picture of the scattering process. This approach has been
employed by combining it with techniques where real-space
grids and/or plane-wave basis sets8,11–16 are used to describe
wave functions and potentials. The easiest way to obtain
scattering wave functions is to solve the Lippman-Schwinger
equation where the semi-infinite electrode is replaced with
a uniformly distributed charge background, i.e., “jellium.”11

The scattering wave function can alternatively be calculated by
the wave-function-matching approach proposed by Fujimoto
and Hirose, i.e., the overbridging boundary-matching (OBM)
method.8,16 In the OBM method, several parts of Green’s
functions of the transition region are computed to set up the
wave-function-matching formula and there is no limitation of
the usage of jellium, i.e., more realistic atomic and electronic
structures of the electrode can be taken into account. Moreover,
the effect of electrodes is included in the matching formula as
Nx × Ny × Nf -dimensional ratio matrices, where Nf is the
order of the finite-difference approximation6 for the kinetic
energy operator in the Kohn-Sham equation and is much
smaller than Nz.

In this paper, we propose the real-space finite-difference
(RSFD) NEGF scheme and demonstrate that the surface
Green’s functions and self-energy terms of the electrodes
required in the NEGF method can be obtained from the
ratio matrices in the OBM method. The dimension of the
matrices for the surface Green’s functions and self-energy
terms that are directly inverted is reduced from Nx × Ny × Nz
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FIG. 1. Sketch of a system with the transition region intervening between the left and right semi-infinite crystalline electrodes. The dashed
lines correspond to the borders of the partitioning of the Hamiltonian matrix in Eq. (1) and Fig. 2, whereas the dotted lines denote the borders
of individual regions used in wave-function matching (Ref. 16). The case for Nf = 2 and Nz = 2m is illustrated as an example, where Nf

corresponds to the order of the finite-difference approximation for the kinetic energy operator.

to Nx × Ny × Nf in the present scheme while keeping the
rigorousness of the mathematical formulation. This advantage
also saves computational effort to calculate Green’s functions
in the transition region because the number of elements of the
Green’s function matrix required for the transport calculation is
proportional to the dimension of the matrices of the self-energy
terms. In addition, we prove that scattering wave functions,
which help us to interpret the scattering process and are
usually calculated by wave-function-matching methods, can
be obtained within the framework of the RSFD NEGF method.

The rest of this paper is organized as follows: In Sec. II, we
relate the important quantities of the NEGF method to those
of the OBM scheme, and introduce the RSFD NEGF method.
In Sec. III, we present an example showing that scattering
wave functions help us to interpret the scattering process by
computing the transport properties of a BN ring sandwiched
between carbon nanotube electrodes (C/BNNT). In Sec. IV,
we summarize our procedures. Finally, a mathematical proof
is given in the Appendix.

II. NEGF METHOD USING THE COMPUTATIONAL
PROCEDURE OF THE OBM METHOD

A. Green’s function of a whole system including the transition
region and two semi-infinite electrodes

Let us consider the Green’s function of a system composed
of the transition region sandwiched between two semi-infinite
crystalline electrodes, as shown in Fig. 1, within the framework
of the RSFD scheme. Two-dimensional periodicity in the
x and y directions is assumed and a generalized z coor-
dinate ζl instead of zl is used because a couple of grid
planes are involved in wave-function and Green’s function
matching when higher-order finite-difference approximation
is employed (see Fig. 1). The exchange-correlation effect is
treated by the local density approximation17 or generalized
gradient approximation18 of the density functional theory.

In the RSFD method, the values of wave functions, Green’s
functions, and potentials on the grid points are directly
evaluated, while the approaches using basis sets compute the

coefficients of the base functions. The discretization of the
Kohn-Sham Hamiltonian on the grid points is introduced in
Ref. 6 and Appendix A of Ref. 16. The Green’s function matrix
involves the inversion of an infinite matrix corresponding to the
Hamiltonian matrix of the whole system Ĥ (k‖), where k‖ is the
lateral Bloch vector. In the first-principles calculations based
on the density functional theory, Ĥ (k‖) is the Kohn-Sham
Hamiltonian. As shown in Fig. 2, we are, however, interested
in the finite part of the Green’s function matrix

Ĥ (k‖) =
⎡
⎣ ĤL(k‖) B̂LT 0

B̂
†
LT ĤT (k‖) B̂T R

0 B̂
†
T R ĤR(k‖)

⎤
⎦ , (1)
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FIG. 2. Partitioning of the Hamiltonian matrix Ĥ of Eq. (1),
associated with the whole system sketched in Fig. 1. Block-matrix
elements Hl, Bl , and Bll′ are the abbreviations of H (ζl,k‖), B(ζl),
and B(ζl,ζl′ ), respectively. The partition lines are identical to those in
Eq. (1).
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where the borders of the partitioning of Ĥ (k‖) are drawn
according to the dashed lines in Fig. 1; the submatrix
ĤT (k‖) contains the matrix elements in the transition region,
ĤL(k‖) [ĤR(k‖)] corresponds to the semi-infinite left- (right-)
electrode region, and B̂LT (B̂T R), which is nonzero only
for some connection area between the transition region and
the left (right) electrode, is the interaction between the
transition region and the electrodes. ĤT (k‖) in the transition
region is treated as a general nonsparse matrix here and
in subsequent sections. On the other hand, ĤL(k‖) [ĤR(k)]
is a block-tridiagonal matrix in the RSFD formalism, all

of the block-matrix elements of which are N (= Nx × Ny ×
Nf ) dimensional. In addition, B̂LT (B̂T R) is a zero matrix
except for one N -dimensional block-matrix element B(ζ−1)
[B(ζm+1)], as illustrated in Fig. 2. In practice, Nf corre-
sponds to the number of x-y grid planes involved in the
function-matching region ζl since the order of the finite-
difference approximation is chosen so as to include the
nonlocal region of pseudopotentials in the matching region19

as well as to obtain sufficiently accurate results with the used
grid spacing.

The Green’s function of the whole system is defined as

Ĝ(Z,k‖) = [Z − Ĥ (k‖)]−1 =
⎡
⎣ ĜL(Z,k‖) ĜLT (Z,k‖) ĜLR(Z,k‖)

ĜT L(Z,k‖) ĜT (Z,k‖) ĜT R(Z,k‖)
ĜRL(Z,k‖) ĜRT (Z,k‖) ĜR(Z,k‖)

⎤
⎦ , (2)

where Z(=E + iη) is a complex energy variable. From the matrix equation⎡
⎣Z − ĤL(k‖) −B̂LT 0

−B̂
†
LT Z − ĤT (k‖) −B̂T R

0 −B̂
†
T R Z − ĤR(k‖)

⎤
⎦

⎡
⎣ ĜLT (Z,k‖)

ĜT (Z,k‖)
ĜRT (Z,k‖)

⎤
⎦ =

⎡
⎣ 0

I

0

⎤
⎦ , (3)

that is,

ĜLT (Z,k‖)ĜT (Z,k‖)−1 = [Z − ĤL(k‖)]−1B̂LT .

−B̂
†
LT ĜLT (Z,k‖) + [

Z − ĤT (k‖)
]
ĜT (Z,k‖) − B̂T RĜRT (Z,k‖) = I,

ĜRT (Z,k‖)ĜT (Z,k‖)−1 = [Z − ĤR(k‖)]−1B̂
†
T R, (4)

one sees that the Green’s function of the whole system
ĜT (Z,k‖) can be portioned to the transition region as

ĜT (Z,k‖) =
[
Z − ĤT (k‖) −

∑̂
L

(Z,k‖) −
∑̂
R

(Z,k‖)

]−1

.

(5)

Note that Eq. (5) is equivalent to Dyson’s equation in the
standard form20 of

ĜT (Z,k‖) = ĜT (Z,k‖) + ĜT (Z,k‖)

×
[∑̂

L

(Z,k‖) +
∑̂
R

(Z,k‖)

]
ĜT (Z,k‖). (6)

Here,
∑̂

L(Z,k‖) and
∑̂

R(Z,k‖) are the self-energy terms of
the left and right electrodes defined by∑̂

L

(Z,k‖) = B̂
†
LT ĜL(Z,k‖)B̂LT .

∑̂
R

(Z,k‖) = B̂T RĜR(Z,k‖)B̂†
T R, (7)

where

ĜL(Z,k‖) = [Z − ĤL(k‖)]−1,

ĜR(Z,k‖) = [Z − ĤR(k‖)]−1 (8)

are Green’s functions of the semi-infinite left and right
electrodes with right- and left-side truncations, respectively.
In addition, ĜT (Z,k‖) is the Green’s function associated with
the isolated transition-region Hamiltonian ĤT (k‖):

ĜT (Z,k‖) = [Z − ĤT (k‖)]−1. (9)

We used the script capital letter Ĝ for describing the Green’s
function of a semi-infinite system with one-side truncation
as well as an isolated (two-side truncated) system to prevent

confusing [Z − ĤA]
−1

with ĜA defined by Eq. (2), where
A = L, T , and R. From Eqs. (5) and (6), one sees that
ĜT (Z,k‖) is extended to ĜT (Z,k‖) so as to include the
effects of semi-infinite electrodes through the self-energy
terms

∑̂
{L,R}(Z,k‖).

B. Evaluation of self-energy terms

This section is devoted to the evaluation of the surface
Green’s functions of the left- and right-electrode regions
Ĝ{L,R}(Z,k‖) and the self-energy terms

∑̂
{L,R}(Z,k‖). Here-

after, we omit the branch of the lateral Bloch vector k‖ for
simplicity. To set up the Hamiltonian of the electrodes, the
Kohn-Sham effective potential is obtained using the unit cell
consisting of Nx × Ny × Nz grid points under the periodic
boundary condition (see Fig. 3). When the potential of
electrodes is simple, such as jellium21 or that employed in the
effective mass approximation,22 the self-energy terms of the
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FIG. 3. Schematic representation of the periodic bulk. ζM
k repre-

sents the z coordinate at the kth grid plane group in the Mth unit
cell.

electrodes can be obtained by an analytical or a numerically
strict manner. On the other hand, we have to calculate the
self-energy terms numerically in the case of the crystalline
electrodes. The Green’s function matrices for electrodes
are computed using the recursive technique proposed by
López Sancho et al.23 or Guinea et al.24 Alternatively, the
matrices are evaluated by solving a quadratic eigenvalue
problem.25 In both schemes, the peculiar characteristic that
the Nx × Ny × Nz-dimensional matrices of the Hamiltonian
of the electrodes are the same for each unit cell of the electrodes
is employed, which implies that the dimension of the matrices
for Green’s functions and the self-energy terms becomes
Nx × Ny × Nz. When the number of grid points increases, the
computation of these matrices is demanding because the direct
inversion of the matrix and the matrix multiplication require
O(N3

x × N3
y × N3

z ) operations. In the RSFD NEGF scheme,

since B̂LT (B̂T R) has only one nonzero N (=Nx × Ny × Nf )-
dimensional block-matrix element B(ζ−1) [B(ζm+1)] [see
Eq. (1) and Fig. 2], the self-energy terms, which are calculated
by Eq. (7), are found to take the very simple form of

∑̂
L

(Z) =

⎡
⎢⎢⎣

∑
L(ζ0; Z) 0 . . . 0

0 0 . . . 0
...

...
0 0 . . . 0

⎤
⎥⎥⎦ ,

∑̂
R

(Z) =

⎡
⎢⎢⎣

0 . . . 0 0
...

...
0 . . . 0 0
0 . . . 0

∑
R(ζm+1; Z)

⎤
⎥⎥⎦ , (10)

where∑
L

(ζ0; Z) = B(ζ−1)†GL(ζ−1,ζ−1; Z)B(ζ−1),

∑
R

(ζm+1; Z) = B(ζm+1)GR(ζm+2,ζm+2; Z)B(ζm+1)† (11)

with G{L,R}(ζk,ζl ; Z) being the N -dimensional (k,l) block-
matrix element of Ĝ{L,R}(Z). In practical calculations, Nf is
much smaller than Nz.

To obtain the Green’s function of the whole system Ĝ(Z),
it is sufficient to calculate N -dimensional matrices for the
self-energy terms. However, although the Hamiltonians of the
Mth and (M + 1)th unit cell are identical, the sliced matrices
of the Hamiltonian of the electrodes H (ζM

l ) and H (ζM
l+1) are

not the same, where H (ζM
l ) is the lth N -dimensional diago-

nal block-matrix element of the Nx × Ny × Nz-dimensional
Hamiltonian matrices of the electrodes. Thus, we can not use
the two procedures mentioned above.23–25 We introduce a com-
putational procedure for obtaining N -dimensional matrices of
the surface Green’s functions and self-energy terms using ratio
matrices in the OBM method,16 which are computed by solving
the generalized eigenvalue problem for the periodic bulk model
shown in Fig. 3:

�1(Z)

[
�n

(
ζM−1
m ,Z

)
�n

(
ζM+1

1 ,Z
) ]

= λn(Z)�2(Z)

[
�n

(
ζM−1
m ,Z

)
�n

(
ζM+1

1 ,Z
) ]

,

(12)

where

�1(Z) =
[�

(
ζM
m ,ζM

1 ; Z
)
B

(
ζM
m

)†
�

(
ζM
m ,ζM

m ; Z
)
B

(
ζM
m

)
0 I

]
,

(13)

�2(Z) =
[ I 0

�
(
ζM

1 ,ζM
1 ; Z

)
B

(
ζM
m

)†
�

(
ζM

1 ,ζM
m ; Z

)
B

(
ζM
m

) ]
,

and �(ζM
k ,ζM

l ; Z) is the N -dimensional (k,l) block-matrix
element of the Green’s function of the truncated part of
the periodic Hamiltonian in the Mth unit cell. In addition,
Eq. (12) is the analytically continued equation of Eq. (19) in
Ref. 16. Note that the generalized eigenproblem of Eq. (12)
suffers numerical error owing to the extremely large and small
absolute values of λ(Z) in some cases, which prevent us from
conducting an accurate computation of the eigenstates {�n}.
To avoid this numerical difficulty, we introduce the following
ratios of the generalized eigenstates, which are proposed in
Ref. 16:

Rp(ζ0; Z) = Qp(ζ−1; Z)Qp(ζ0; Z)−1,
(14)

Rq(ζm+2; Z) = Qq(ζm+2; Z)Qq(ζm+1; Z)−1,

where

Qp(ζl ; Z) = [
�

p

1 (ζl ; Z),�p

2 (ζl ; Z), . . . ,�p

N (ζl ; Z)
]
,

(15)
Qq(ζl ; Z) = [

�
q

1(ζl ; Z),�q

2(ζl ; Z), . . . ,�q

N (ζl ; Z)
]
.

Since the eigenvalues λn(Z) for a nonreal Z are divided evenly
into two groups with |λn| > 1 and |λn| < 1,26 we set up the N -
dimensional matrix Qp(ζl ; Z) and Qq (ζl ; Z), which gathers the
N eigenstates {�p

n (ζl ; Z)} and {�q
n(ζl ; Z)}, n = 1,2, . . . ,N , for
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a nonreal Z with |λn| > 1 and |λn| < 1, respectively, using the solutions of Eq. (12). Then, the accuracy of ratio matrices is
improved using the following continued-fraction equations in a self-consistent manner [see Eq. (25) of Ref. 16]:

Rp
(
ζM+1

1 ; Z
)

= �
(
ζM
m ,ζM

m ; Z
)
B

(
ζM
m

) + �
(
ζM
m ,ζM

1 ; Z
)
B

(
ζM
m

)† [
Rp

(
ζM

1 ; Z
)−1 − �

(
ζM

1 ,ζM
1 ; Z

)
B

(
ζM
m

)†]−1
�

(
ζM

1 ,ζM
m ; Z

)
B

(
ζM
m

)
,

Rq
(
ζM+1

1 ; Z
)

= �
(
ζM

1 ,ζM
1 ; Z

)
B

(
ζM
m

)† + �
(
ζM

1 ,ζM
m ; Z

)
B

(
ζM
m

) [
Rq

(
ζM+1

1 ; Z
)−1 − �

(
ζM
m ,ζM

m ; Z
)
B

(
ζM
m

)]−1
�

(
ζM
m ,ζM

1 ; Z
)
B

(
ζM
m

)†
. (16)

Now, we prove the following relation that gives a definite
description of the surface Green’s functions (or self-energy
terms) in terms of the ratio matrices of the generalized
eigenstates of Eq. (12). The surface Green’s functions of the
left and right electrodes are explicitly expressed as

GL(ζ−1,ζ−1; Z) = Rp(ζ0; Z)B(ζ−1)−1,
(17)

GR(ζm+2,ζm+2; Z) = Rq(ζm+2; Z)B(ζm+1)†−1,

and the self-energy terms (11) are given by∑
L

(ζ0; Z) = B(ζ−1)†Rp(ζ0; Z),

(18)∑
R

(ζm+1; Z) = B(ζm+1)Rq(ζm+2; Z).

Hereafter, we concentrate on proving the surface Green’s
functions and self-energy terms of the left electrode because
those of the right electrode can be derived in a similar manner.
The proof is derived using the results reported by Lee and
Joannopoulos26: the Green’s function G{L,R}(ζl,ζm; Z �= real)
of a crystalline bulk is a decaying function (i.e., G{L,R} → 0)
as |l| → ∞ with m fixed (or as |m| → ∞ with l fixed). The
eigenstates are N -independent functions with respect to ζl with

a decreasing or increasing property such that

�p
n (ζl−sL; Z) = (λn)−s�p

n (ζl ; Z). (19)

Here, s is an arbitrary positive integer and L is an integer
associated with the length of periodicity in the z direction.
For example, L = Nz/Nf when Nz is a multiple of Nf .
Furthermore, {�n(ζl ; Z)} satisfies

−B
†
l−2�

p
n (ζl−2; Z) +Al−1�

p
n (ζl−1; Z) −Bl−1�

p
n (ζl ; Z) = 0,

(20)

where

Al = Z − H (ζl) and Bl = B(ζl). (21)

Note that Eq. (20) is the Kohn-Sham equation when a complex
number Z is replaced with a real number E.

In the left electrode, the surface Green’s function
GL(ζl,ζ−1; Z) is expressed in terms of Qp(ζl ; Z):

GL(ζl,ζ−1; Z) = Qp(ζl ; Z)Qp(ζ0; Z)−1(B−1)−1

(l = −1,−2, . . .). (22)

In the following, the derivation of Eq. (22) is demonstrated.
It is straightforward from the definition that {GL(ζl,ζ−1; Z)}
satisfies

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . . 0

−B
†
−5 A−4 −B−4

−B
†
−4 A−3 −B−3

−B
†
−3 A−2 −B−2

0 −B
†
−2 A−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

...

G−4,−1

G−3,−1

G−2,−1

G−1,−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

...

0

0

0

I

⎤
⎥⎥⎥⎥⎥⎥⎦

, (23)

that is,

...

−B
†
−5G−5,−1 + A−3G−4,−1 − B−4G−3,−1 = 0,

−B
†
−4G−4,−1 + A−3G−3,−1 − B−3G−2,−1 = 0,

−B
†
−3G−3,−1 + A−2G−2,−1 − B−2G−1,−1 = 0,

(24)

and

− B
†
−2G−2,−1 + A−1G−1,−1 = I, (25)

where

Gl,−1 = GL(ζl,ζ−1; Z). (26)

From the facts that the N -dimensional GL(ζl,ζ−1; Z �= real)
decays deep inside the left electrode (l → −∞),26 we see that
{�p

n (ζl ; Z)} exhibits a linear independence of the decaying
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sequences, where n = 1,2, . . . ,N , and Eqs. (24) are the same
sets of simultaneous linear equations as Eq. (20) for l � −1.

Therefore, GL is expanded in terms of {�p
n } and expressed

as

GL(ζl,ζ−1; Z) =
[

N∑
n=1

fn1�
p
n (ζl ; Z),

N∑
n=1

fn2�
p
n (ζl ; Z),

. . . ,

N∑
n=1

fnN�p
n (ζl ; Z)

]

= Qp(ζl ; Z)F (l = −1,−2, . . .), (27)

where {fnn′ } is a set of unknown expansion coefficients
forming an N -dimensional matrix F . For simplicity, the
dependence of fnn′ and F on Z and k‖ is ignored. By inserting
Eq. (27) for l = −1 and −2 into Eq. (25) and subsequently
using Eq. (20) for l = 0, we obtain

F = Qp(ζ0; Z)−1(B−1)−1. (28)

By substituting Eq. (28) into Eq. (27), Eq. (22) is obtained.
Next, we carry out the limiting procedure in Eq. (22)

to obtain the retarded Green’s function. Since the pairing
characteristic of λ(E)’s implies that there are always equal
numbers of reflected waves �ref

n and transmitted waves �tra
n

for a given energy E and lateral Bloch wave vector k‖, we
obtain

lim
η→0+

�p
n (ζl ; E + iη) = �ref

n (ζl ; E),

lim
η→0+

Qp(ζl ; E + iη) = Qref(ζl ; E), (29)

lim
η→0+

Rp(ζl ; E + iη) = Rref(ζl ; E),

where Qref(ζl ; E) is an N -dimensional matrix that gathers left-
propagating Bloch waves {|λ(E)| = 1 and Re[λ(E)] < 0} and
rightward increasing evanescent waves [|λ(E)| > 1]:

Qref(ζl ; E) = [
�ref

1 (ζl ; E),�ref
2 (ζl ; E), . . . ,�ref

N (ζl ; E)
]

(30)

and

Rref(ζl ; E) = Qref(ζl−1; E)Qref(ζl ; E)−1 (31)

Note that the eigenstates with |λ(Z)| = 1 are absent when
η �= 0,26 while those with |λ(Z)| = 1 exist in the case of real-
number energy.16

Finally, the retarded Green’s function is

Gr
L(ζ−1,ζ−1; E) = lim

η→0+
GL(ζ−1,ζ−1; E + iη)

= Qref(ζ−1; E)Qref(ζ0; E)−1(B−1)−1

= Rref(ζ0; Z)B(ζ−1)−1, (32)

and hence the retarded self-energy term is∑̂r

{L,R}(E) = lim
η→0+

∑̂
{L,R}

(E + iη). (33)

Several researchers have investigated the representation of
the surface Green’s functions by generalized eigenstates.3,4,26

Note that the above relations are particularly attractive because
they allow us to directly evaluate the retarded surface Green’s
functions and retarded self-energy terms at a purely real E

without using the finite broadening (or smearing) parameter
η. More interestingly, we can reduce the dimension of the
matrices of Green’s functions and the self-energy terms from
Nx × Ny × Nz to N while keeping mathematical rigorousness,
and any additional computationally demanding procedures are
not required in the present method.

C. Evaluation of whole Green’s function in the transition region

The Green’s function of the whole system portioned to the
transition region ĜT (Z) is given by Eq. (5). In this section, we
present the analytic expression of Eq. (5), which is equivalent
to the exact solution of Dyson’s equation (6). In the general
case of the Hamiltonian matrix ĤT being not necessarily
sparse, the simplest way to calculate ĜT (Z) of Eq. (5) might
be to carry out direct matrix inversion. In practice, however, it
is computationally difficult to perform inversion calculations
with large matrices. In what follows, we show that there exists
an efficient approach to computing the non-Hermitian ĜT (E)
on the basis of the OBM scheme.

Let us consider the lth column of ĜT (Z),
i.e., [GT (ζ0,ζl ; Z),GT (ζ1,ζl ; Z), . . . ,GT (ζm+1,ζl ; Z)]t

(l = 0,1,2, . . . ,m + 1). From Eq. (5), one sees that the lth
column satisfies

[
Z − ĤT −

∑̂
L

(Z) −
∑̂
R

(Z)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GT (ζ0,ζl ; Z)
GT (ζ1,ζl ; Z)

...
GT (ζl,ζl ; Z)

...

GT (ζm,ζl ; Z)
GT (ζm+1,ζl ; Z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
I

0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the lth (34)
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by virtue of a simple form of the self-energy matrices, Eq. (10). Using the Green’s function of the truncated part of the Hamiltonian
ĜT (Z) defined in Eq. (9), the whole Green’s function in the transition region is given by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GT (ζ0,ζl ; Z)

GT (ζ1,ζl ; Z)

...

GT (ζl,ζl ; Z)
...

GT (ζm,ζl ; Z)

GT (ζm+1,ζl ; Z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ĜT (Z)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
L(ζ0; Z)GT (ζ0,ζl ; Z)

0
...

0

I

0
...

0∑
R(ζm+1; Z)GT (ζm+1,ζl ; Z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the lth. (35)

Equation (35) is a matching relation with regard to the Green’s function {GT (ζk,ζl)}, which is an analogous one with regard
to the wave function {�(zk)} [see Eq. (1) of Ref. 16]. The surface Green’s function matching theory has been pioneered by
Garcı́a-Moliner and Velasco.27 From Eq. (34), we see that once the Green’s function of the truncated part of the Hamiltonian
ĜT (Z) = [Z − ĤT ]−1 is known, the elements of the whole Green’s function GT (ζ0,ζl ; Z) and GT (ζm+1,ζl ; Z) are calculated
using [

GT (ζ0,ζ0; Z)
∑

L(ζ0; Z) − I GT (ζ0,ζm+1; Z)
∑

R(ζm+1; Z)
GT (ζm+1,ζ0; Z)

∑
L(ζ0; Z) GT (ζm+1,ζm+1; Z)

∑
R(ζm+1; Z) − I

] [
GT (ζ0,ζl ; Z)

GT (ζm+1,ζl ; Z)

]
= −

[
GT (ζ0,ζl ; Z)

GT (ζm+1,ζl ; Z)

]
. (36)

Here, GT (ζk,ζl ; Z) is the N -dimensional (k,l) block-matrix element of ĜT (Z). Equation (36), which is a 2N simultaneous linear
equation with respect to GT (ζ0,ζl ; Z) and GT (ζm+1,ζl ; Z), manifests boundary-value (surface) matching for the Green’s function
of the whole system. To calculate the electronic structure in the transition region, the diagonal elements of the Green’s function
matrix GT (ζl,ζl ; Z) are required. On the other hand, when we are only interested in the transport property, it is sufficient to
compute Green’s functions on the matching planes Gr

T (ζ0,ζ0; E), Gr
T (ζm+1,ζ0; E), Gr

T (ζ0,ζm+1; E), and Gr
T (ζm+1,ζm+1; E). In

the following, we show the analytic expressions for the solution of Eq. (36) in the cases of l = 0 and m + 1, which are required
in the calculation of the conductance in the NEGF formalism.

For l = 0 and m + 1,

GT (ζ0,ζ0; Z) = G̃T (ζ0,ζ0; Z)

[
I −

∑
L

(ζ0; Z)G̃T (ζ0,ζ0; Z)

]−1

,

GT (ζm+1,ζ0; Z) =
[
I − GT (ζm+1,ζm+1; Z)

∑
R

(ζm+1; Z)

]−1

GT (ζm+1,ζ0; Z)

[
I −

∑
L

(ζ0; Z)G̃T (ζ0,ζ0; Z)

]−1

,

GT (ζ0,ζm+1; Z) =
[
I − GT (ζ0,ζ0; Z)

∑
L

(ζ0; Z)

]−1

GT (ζ0,ζm+1; Z)

[
I −

∑
R

(ζm+1; Z)G̃T (ζm+1,ζm+1; Z)

]−1

,

GT (ζm+1,ζm+1; Z) = G̃T (ζm+1,ζm+1; Z)

[
I −

∑
R

(ζm+1; Z)G̃T (ζm+1,ζm+1; Z)

]−1

, (37)

where G̃T is a modified GT under the influence of the self-energy term
∑

{L,R}, which is expressed as

G̃T (ζ0,ζ0; Z) = GT (ζ0,ζ0; Z) + GT (ζ0,ζm+1; Z)
∑
R

(ζm+1; Z)

[
I − GT (ζm+1,ζm+1; Z)

∑
R

(ζm+1; Z)

]−1

GT (ζm+1,ζ0; Z),

(38)

G̃T (ζm+1,ζm+1; Z) = GT (ζm+1,ζm+1; Z) + GT (ζm+1,ζ0; Z)
∑
L

(ζ0; Z)

[
I − GT (ζ0,ζ0; Z)

∑
L

(ζ0; Z)

]−1

GT (ζ0,ζm+1; Z).

It is easy to ensure that the GT ’s given by Eqs. (37) and (38) satisfy Eq. (36), and therefore, they are the exact analytic solutions
of Eq. (5) as well as Dyson’s equation (6). Finally, a retarded Green’s function is obtainable by carrying out the limiting
procedure:

Gr
T (ζk,ζl ; E) = lim

η→0+
GT (ζk,ζl ; E + iη). (39)
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Note that the block matrices of the Green’s function
Gr

T (ζ0,ζ0; E), Gr
T (ζm+1,ζ0; E), Gr

T (ζ0,ζm+1; E), and
Gr

T (ζm+1,ζm+1; E) are not Nx × Ny × Nz dimensional
but N dimensional because the matrices of the self-energy
terms have already been reduced to N dimensional in the
preceding section.

D. Description of scattering wave function in terms of the whole
Green’s function

We next show that the relationship between the retarded
Green’s functions and the scattering wave functions is ex-
pressed as

�j (ζl ; E) = iGr
T (ζl,ζ0; E)	L(ζ0; E)�in

j (ζ0; E)

× (0 � l � m + 1), (40)

where 	L(ζl ; E) is the coupling matrix, which describes the
“coupling strength” of the transition region to the left electrode
at ζ0, and is defined by

	L(ζ0; E) = i

[
r∑
L

(ζ0; E) −
a∑
L

(ζ0; E)

]

×
(

a∑
L

(ζ0; E) =
r∑
L

(ζ0; E)†
)

. (41)

From Eq. (6) of Ref. 21, the scattering wave func-
tion incoming from deep inside the left electrode is
expressed as

[
E − ĤT −

∑̂r

L
(E) −

∑̂r

R
(E)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

�j (ζ0; E)

�j (ζ1; E)
...

�j (ζm; E)

�j (ζm+1; E)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

B(ζ−1)†�in
j (ζ−1; E) − ∑r

L(ζ0; E)�in
j (ζ0; E)

0
...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(42)

The incident wave from the right electrode can be derived
in a similar manner. By the definition of the retarded
Green’s function of the whole system in Eq. (5), Eq. (42) is
rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎣

�j (ζ0; E)

�j (ζ1; E)
...

�j (ζm; E)

�j (ζm+1; E)

⎤
⎥⎥⎥⎥⎥⎥⎦

= Ĝr
T (E)

⎡
⎢⎢⎢⎢⎢⎢⎣

B(ζ−1)†�in
j (ζ−1; E) − ∑r

L(ζ0; E)�in
j (ζ0; E)

0
...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (43)

Now, the ratio matrix Rin in the left electrode (l � 0) is
introduced along a similar line into the definition of Rref :

Rin(ζl ; E) = Qin(ζl−1; E)Qin(ζl ; E)−1, (44)

where

Qin(ζl ; E) = [
�in

1 (ζl ; E),�in
2 (ζl ; E), . . . ,�in

N (ζl ; E)
]
, (45)

which is assumed to include not only ordinary right-
propagating incident Bloch waves, but also leftward-
decreasing evanescent waves. From the definition of

Rin(ζ0; E), it is straightforward to state that

�in
j (ζ−1; E) = Rin(ζ0; E)�in

j (ζ0; E). (46)

Furthermore, the relationship between the retarded self-energy
term

∑r
L(ζ0; E)† and Rin(ζ0; E) is expressed as

r∑
L

(ζ0; E)† = B(ζ−1)†Rin(ζ0; E) (47)

similarly to that of
∑r

L(ζ0; E) and Rref(ζ0; E) in Sec. II B.
From Eqs. (43), (46), and (47), the scattering wave function
�j (ζl ; E) for 0 � l � m + 1 can be written as

�j (ζl ; E) = Gr
T (ζl,ζ0; E)

[
B(ζ−1)†�in

j (ζ−1; E) −
r∑
L

(ζ0; E)�in
j (ζ0; E)

]

= −Gr
T (ζl,ζ0; E)

[
r∑
L

(ζ0; E) −
r∑
L

(ζ0; E)†
]

�in
j (ζ0; E)

= iGr
T (ζl,ζ0; E)	L(ζ0; E)�in

j (ζ0; E). (48)
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The derivation of Eq. (40) in a different manner is given in
Ref. 8, and the expression using Nx × Ny × Nz-dimensional
matrices is also introduced in Ref. 28.

E. Conductance

We finally address the problem of electronic transport
within the framework of the RSFD Green’s function approach.
Here, we consider the case of the incident wave �in

j incoming
from deep inside the left electrode. We can prove that
the Landauer-Büttiker formula29 G = 2e2/h

∑
i,j |tij |2v′

i/vj

describing the conductance G has the expression in terms of
Green’s functions G

{r,a}
T and the self-energy matrices

∑{r,a}
{L,R},

where e is the electron charge, h is Planck’s constant, tij
is the transmission coefficient for the j th incident wave
to the ith outgoing wave, and vj (v′

i) is the group veloc-
ity of the state �in

j (ζ0; E) [�tra
i (ζm+1; E)] through the x-y

plane at ζ0(ζm+1). In the OBM scheme, group velocity is
expressed as

vj = Lz

[
�in

j (ζ0; E)†	L(ζ0; E)�in
j (ζ0; E)

]
,

v′
i = Lz

[
�tra

i (ζm+1; E)†	R(ζm+1; E)�tra
i (ζm+1; E)

]
, (49)

where Lz is the length of the unit cell in the z direction. The
proof of Eq. (49) is given in the Appendix.

The scattering wave function �j (ζl ; E) corresponding to the
j th incident wave �in

j (ζ0; E) is given by a linear combination
of transmitted waves �tra

i (ζl ; E) inside the right electrode

(l � m + 1) with a transmission coefficient tij , i.e.,

�j (ζl ; E) =
N∑

i=1

tij�
tra
i (ζl ; E) =Qtra(ζl ; E)[t1j ,t2j , . . . ,tNj ]t,

(50)
where Qtra(ζl ; E) is an N -dimensional matrix that gathers
right-propagating Bloch waves {|λ(E)| = 1 and Re[λ(E)] >

0} and rightward-decreasing evanescent waves [|λ(E)| < 1]
of �tra

i (ζl ; E), i.e.,

Qtra(ζl ; E) = [�tra
1 (ζl ; E),�tra

2 (ζl ; E), . . . ,�tra
N (ζl ; E)]. (51)

From Eqs. (40) and (50) for l = m + 1, we have

[t1j ,t2j , . . . ,tNj ]t = iQtra(ζm+1; E)−1Gr
T (ζm+1,ζ0; E)

×	L(ζ0; E)�in
L,j (ζ0; E) (52)

and then obtain

T = iQtra(ζm+1; E)−1Gr
T (ζm+1,ζ0; E)	L(ζ0; E)Qin(ζ0; E).

(53)

Here, T is the transmission-coefficient matrix

T =

⎡
⎢⎢⎢⎣

t11 t12 . . . t1N

t21 t22 . . . t2N

. . .

tN1 tN2 . . . tNN

⎤
⎥⎥⎥⎦ (54)

and Qin(ζ0; E) is the matrix defined by Eq. (45). Note that the
expression

∑
i,j

|tij |2 v′
i

vj

= Tr[V−1T †V ′T ] (55)

holds, with V (′) being a diagonal matrix whose elements are v
(′)
i δij . By substituting Eq. (53) into the right-hand side of Eq. (55),

we find ∑
i,j

|tij |2 v′
i

vj

= Tr[	L(ζ0; E)Qin(ζ0; E)V−1Qin(ζ0; E)†	L(ζ0; E)Ga
T (ζ0,ζm+1; E)

× Qtra(ζm+1; E)†−1V ′Qtra(ζm+1; E)−1Gr
T (ζm+1,ζ0; E)]. (56)

Here, “Tr” stands for the trace, i.e., the sum of the diagonal matrix elements, and the cyclic property of the trace is used. From
Eqs. (45), (49), and (51), the relations

V = iLzQ
in(ζ0; E)†	L(ζ0; E)Qin(ζ0; E), V ′ = iLzQ

tra(ζm+1; E)†	R(ζm+1; E)Qtra(ζm+1; E) (57)

are derived, and then

G = 2e2

h

∑
i,j

|tij |2 v′
i

vj

= 2e2

h
Tr

[
	L(ζ0; E)Ga

T (ζ0,ζm+1; E)	R(ζm+1; E)Gr
T (ζm+1,ζ0; E)

]

= 2e2

h
Tr

[
	L(ζ0; E)Gr

T (ζ0,ζm+1; E)	R(ζm+1; E)Ga
T (ζm+1,ζ0; E)

]
(58)

are established. Here, the advanced Green’s function is

Ga
T (ζk,ζl ; E) = Gr

T (ζl,ζk; E)†. (59)

Equation (58) is a well-known formula30 in the NEGF
formalism pioneered by Keldysh.1 The equality of the last
line in Eq. (58) is also verified with a similar consideration of
the case of incident waves incoming from the right electrode.
One of the advantages of the Green’s function approach is
that the conductance is calculated without the knowledge
of well-defined asymptotic wave functions in the transition
region.

III. TRANSPORT PROPERTY OF BN RING CONNECTED
TO CNT ELECTRODES

To demonstrate the applicability of the RSFD NEGF
method and the importance of the interpretation using scat-
tering wave functions, the transport property of the C/BNNT
where one carbon ring of (9,0) carbon nanotubes (CNT) is
replaced with a BN ring is examined. Figure 4 shows the
computational model, in which the C/BNNT is sandwiched
between the CNT electrodes. A valence electron-ion interac-
tion is described using norm-conserving pseudopotentials31

generated by the scheme proposed by Troullier and Martins.32
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FIG. 4. (Color online) Computational model where one BN
zigzag ring is sandwiched between (9,0) CNT electrodes. Large
dark, small dark, and small light balls are N, C, and B atoms,
respectively. The rectangle enclosed by broken lines represents the
supercell used to evaluate the optimized atomic configuration and
Kohn-Sham effective potential.

Exchange and correlation effects are treated within the local
density approximation17 of the density functional theory. The
central finite-difference case, i.e., the case of Nf = 1, is
adopted for the derivative arising from the kinetic-energy oper-
ator in the Kohn-Sham equation. To determine the Kohn-Sham
effective potential, we use a conventional supercell under a
periodic boundary condition in all directions with a real-space
grid spacing of ∼0.24 Å; the dimensions of the supercell
are Lx = 13.34 Å, Ly = 13.34 Å, and Lz = 4.32 Å for
the electrodes and Lx = 13.34 Å, Ly = 13.34 Å, and Lz =
8.64 Å for the transition region, where Lx and Ly are the lateral
lengths of the supercell in the x and y directions perpendicular
to the nanotube axis, respectively, and Lz is the length in the
z direction. The size of the matrices for the self-energy terms
is reduced from 75 264 to 3136 using the present method.
Then, we compute the scattering wave functions obtained
non-self-consistently. It has been reported that this procedure
is just as accurate in the linear response regime but significantly
more efficient than performing computations self-consistently
on a scattering-wave basis.33 The conductance is calculated
using Eq. (58).

Figure 5 shows the conductance spectrum of the C/BNNT.
To investigate states that actually contribute to electron
transport, the eigenchannels are computed by diagonalizing the
Hermitian matrix T †T , where T is the transmission-coefficient
matrix defined in Eq. (54).12 Note that we have also calculated
the conductance spectrum and channel transmissions by the
OBM method and found that these are perfectly in agreement
with the results obtained by the present method except for
the rounding error of numerical calculation. For reference, we
plot in Fig. 6 the band structures of the CNT and C/BNNT in
the periodic supercell used to obtain the Kohn-Sham effective
potential. It is reported in the other DFT calculations that
the band gap of the (9,0) CNT opens even though the (9,0)
CNT is expected to be metallic by the zone folding of the
tight-binding approximation;34 the zero-conductance region
around the Fermi level corresponds to the fundamental band
gap of the (9,0) CNT. In addition, the bands of the C/BNNT
indicated by β and γ doubly degenerate as well as the bands
of the CNT indicated by α at approximately the Fermi level.
One can see in Fig. 5 that two channels actually contribute to
the transport in the vicinity of the Fermi level, and significant
peaks due to the resonant tunneling through the dispersionless
bands indicated by γ are not observed in the conductance
spectrum. Since a real-space picture of the wave function
helps us to understand the transport phenomenon, the spatial
behaviors of the C/BNNT and CNT states, which are relevant
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FIG. 5. (Color online) Conductance spectra (a) and channel
transmissions (b) as functions of energy of incident electrons.

to the electron transport, are shown in Fig. 7. We plot the
wave functions at the 	 point because the symmetry in the
x-y plane is insensitive with respect to the variation in kz

in a one-dimensional Brillouin zone. For comparison, the
behaviors of the wave functions indicated by α, β, and γ

in Fig. 6 are also plotted in Fig. 8. The wave function of the
energetically dispersive bands of the C/BNNT (indicated by β)
shows threefold rotational symmetry with respect to tube axis,
whereas that of the dispersionless bands (indicated by γ ) shows
fivefold symmetry. The energetically dispersive bands can
contribute to electron transport because the spatial symmetry

Γ X

0.0

1.0

−1.0
α

β

Γ X

En
er

gy
 (e

V
)

γ

(a) (b)

FIG. 6. Electronic band structures of (a) CNT and (b) C/BNNT.
The supercells include two and four (9,0) rings for CNT and C/BNNT,
respectively. The zero of energy is the Fermi energy.
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(a)

(d)

(e (f ))

(b)

(c)

FIG. 7. (Color online) Contour plots of wave functions. (a), (b)
Doubly degenerate bands indicated by β of C/BNNT in Fig. 6. (c),
(d) Doubly degenerate bands indicated by γ of C/BNNT. (e), (f)
Doubly degenerate bands indicated by α of CNT. Negative values are
indicated by dashed curves; the thick solid curve represents zero. The
contour plot is separated by 7.41 × 10−4 electron/Å3. The spheres
represent the position of carbon atoms.

of the wave functions of the bands corresponds to that of
the wave functions coming from the left CNT electrode and
outgoing to the right CNT electrode indicated by α. In contrast,
the symmetry of the dispersionless bands does not agree with
those of the coming and outgoing waves, and thus the wave
functions from the CNT electrodes are hardly connected to the
wave function of the dispersionless bands, resulting in a small

(a) (b)

FIG. 8. (Color online) Contour plots of doubly degenerate scat-
tering wave functions at energy of EF − 0.5 eV. Negative values are
indicated by dashed curves; the thick solid curve represents zero. The
contour plot is separated by 3.27 × 10−4 electron/Å3 eV. The spheres
represent the position of carbon atoms.

contribution to the electron transport. These results imply that
the interpretation using the scattering wave function, which
does not explicitly appear in the NEGF method, is important
for the investigation of the transport properties of nanoscale
systems.

IV. SUMMARY

We have proposed an efficient procedure for RSFD NEGF
calculations for obtaining the transport property of nanoscale
systems. Since the number of grid points in real-space methods
is larger than that of basis in the tight-binding approach, the
computational cost to obtain the surface Green’s functions
and self-energy terms has been the bottleneck. Using the
ratio matrices in the OBM method, the present procedure
greatly reduces the computational cost to obtain the surface
Green’s functions and self-energy terms of the electrodes as
well as the Green’s functions of the whole system without
loss of mathematical rigorousness. In addition, we proved
that scattering wave functions, which provide us a real-space
picture of the scattering process, can be obtainable by the
present scheme.

The transport property of the BN ring connected to the
carbon nanotube electrode is investigated using the present
method. By examining the rotational symmetry of wave
functions at the matching plane, we found that states that
are energetically dispersionless in a one-dimensional Brillouin
zone hardly contribute to the electron transport because of
the difference in the rotational symmetry of wave functions
with respect to the tube axis. This result indicates that the
real-space picture of the scattering wave function, which is not
necessary to be taken into account to calculate the transport
property in the NEGF formalism, helps us to interpret transport
phenomena in the transition region.

Since the OBM method is developed for the RSFD scheme,
the present technique allows us to efficiently obtain quantities
for the NEGF method in a real-space representation. In
particular, the RSFD scheme of first-principles calculations is a
method that has the advantage to scale with massively parallel
architectures and has this potential without compromise
on precision. Moreover, this scheme is free of problems
concerning the completeness of the basis set such as in the
methods using localized basis sets of either atomic orbitals
or Gaussians. Therefore, the present procedure opens the
possibility for executing large-scale RSFD NEGF calculations
using massively parallel computers with a high degree of
accuracy.

Compared with the improved OBM (IOBM) method,21,35

the computation of the Green’s function is O(N2
x × N2

y × Nz)
in the present procedure, while the order of the most time-
consuming part of the IOBM method is O(Nx × Ny × Nin),
where Nin is the number of the incident waves and is usually
much smaller than Nx × Ny × Nz. However, the product
between the self-energy terms and wave functions in the
IOBM is not easy to implement on the parallel computers
because the matrices of the self-energy terms are solid. On
the other hand, the computational cost for the calculation of
the Green’s function is the largest. However, the Hamiltonian
of the Kohn-Sham equation is very sparse matrix and the
algorithm for the computation of the Green’s functions can be
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easily parallelized. Therefore, the present method is suitable
for the massively parallel architecture.
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APPENDIX: GROUP VELOCITY

For completeness, we introduce the expression for the group velocity in this appendix. Group velocity is written as

vg = ∂E

∂k(E)
u†(E)u(E), (A1)

where k(E) is a Bloch wave vector with E being the Kohn-Sham energy and u(E) is an Nx × Ny × Nz-dimensional columnar
vector consisting of �j (ζM

l ,E) of the Mth unit cell (see Fig. 2):

u(E) = [
�j

(
ζM

1 ; E
)
,�j

(
ζM

2 ; E
)
, . . . ,�j

(
ζM
N ; E

)]t
. (A2)

The propagating wave obeys the Kohn-Sham equation

ĤM
per[k(E),k‖]u(E) = Eu(E), (A3)

where ĤM
per[k(E)] is the Nx × Ny × Nz-dimensional periodic Hamiltonian of the Mth unit cell,

ĤM
per

(
k(E),k‖

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(
ζM

1 ; k‖
)

B
(
ζM

1

)
0 . . . 0 e−ik(E)LzB

(
ζM
m

)†
B

(
ζM

1

)†
H

(
ζM

2 ; k‖
)

B
(
ζM

2

)
0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 B
(
ζM
m−2

)†
H

(
ζM
m−1; k‖

)
B

(
ζM
m−1

)
eik(E)LzB

(
ζM
m

)
0 · · · 0 B

(
ζM
m−1

)†
H

(
ζM
m ; k‖

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

Differentiating the eigenvalue equation of Eq. (A3) with respect to k(E) and multiplying u(E)† from the left-hand side of the
resultant equation yields

u(E)†
dĤM

per

dk(E)
u(E) = dE

dk(E)
u(E)†u(E). (A5)
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From Eq. (A4), one finds that

dĤper

dk(E)
=

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 −iLze
−ik(E)LzB(ζM

m )
†

0 0 . . . 0 0
...

...
...

...

iLze
ik(E)LzB

(
ζM
m

)
0 . . . 0 0

⎤
⎥⎥⎥⎥⎦ (A6)

and

u(E)†
dĤper

dk(E)
u(E) = iLze

ik(E)Lz�j

(
ζM
m ; E)

†
B

(
ζM
m

)
�j

(
ζM

1 ; E
) − iLze

−ik(E
)
Lz�j

(
ζM

1 ; E
)†

B
(
ζM
m

)†
�j

(
ζM
m ; E

)
= iLz�j

(
ζM
m ; E

)†
B

(
ζM
m

)
�j

(
ζM+1

1 ; E
) − iLz�j

(
ζM+1

1 ; E
)†

B
(
ζM
m

)†
�j

(
ζM
m ; E

)
= iLz�j

(
ζM−1
m ; E

)†
B

(
ζM
m

)
�j

(
ζM

1 ; E
) − iLz�j

(
ζM

1 ; E
)†

B
(
ζM
m

)†
�j

(
ζM−1
m ; E

)
. (A7)

Here, the second step follows from the Bloch condition

�j

(
ζM+1

1 ; E
) = eik(E)Lz�j

(
ζM

1 ; E
)
, (A8)

and the flux conservation is used in the last step. From Eqs. (A1), (A5), and (A7), group velocity is given by

vg = iLz

[
�j

(
ζM−1
m ; E

)†
B

(
ζM
m

)
�j

(
ζM

1 ; E
) − �j

(
ζM

1 ; E
)†

B
(
ζM
m

)†
�j

(
ζM−1
m ; E

)]
, (A9)

where the normalization of the Bloch states is defined as
∑

l �j (ζM
l ; E)†�j (ζM

l ; E) = 1.
Furthermore, making use of Eqs. (41), (46), and (47), we have a simpler expression for group velocity in terms of the coupling

matrix:

vg = Lz

[
�j

(
ζM

1 ; E
)†

	
(
ζM

1 ; E
)
�j

(
ζM

1 ; E
)]

. (A10)
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