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Model of ripples in graphene
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We propose a model of ripples in suspended graphene sheets based on plate equations that are made discrete with
the periodicity of the honeycomb lattice and then periodized. In addition, the equation for the displacements with
respect to the planar configuration contains a double-well site potential, a nonlinear friction, and a multiplicative
white-noise term satisfying the fluctuation-dissipation theorem. The nonlinear friction terms agree with those
proposed by Eichler et al. [Nature Nanotech. 6, 339 (2011)] to explain their experiments with a graphene resonator.
The site double-well potential indicates that the carbon atoms at each lattice point have equal probability to
move upward or downward off plane. For the considered parameter values, the relaxation time due to friction
is much larger than the periods of membrane vibrations and the noise is quite small. Then ripples with no
preferred orientation appear as long-lived metastable states for any temperature. Numerical solutions confirm this
picture.
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I. INTRODUCTION

The first visualizations of atoms in suspended graphene
sheets showed that they were covered with ripples.1 These
ripples are several nanometers long waves of the sheet without
a preferred direction.1,2 The initial preparation of a suspended
graphene bilayer may result in Ångstrom-sized ripples that
are absent in graphene monolayers.3 In experiments on
graphene sheets suspended on substrate trenches, there appear
much longer and taller waves (close to a micron scale)
directed parallel to the applied stress.4 These long wrinkles
are thermally induced and can be explained by continuum
elasticity.5 Ripples are expected to be important for electronic
transport in graphene,6 and there is active research about the
effects of ripples and strain on electronic properties, including
possible strain engineering.7,8

The earliest theoretical studies of ripples using Monte
Carlo9 or molecular dynamics simulations10 have shown that
ripples may be connected to variable length σ bonds of carbon
atoms and may be due to thermal fluctuations. Other studies
explored the connection between rippling and electronic
properties11,12 and suggested that, at zero temperature, the
electron-phonon coupling may drive the graphene sheet into
a quantum critical point characterized by the vanishing of
the bending rigidity of the membrane.13 There is a buckling
transition between the regimes of positive and negative tension
in graphene. Then the inherent tension in suspended graphene
produces ripples with a characteristic length and aspect ratio.13

Thus rippling already occurs at 0 K and it is due to the
strong interplay between the dynamics of the free electrons
in the membrane and its mesoscopic structure. While most of
rippling studies are focused in equilibrium behavior, in this
paper we want to analyze the dynamics of ripples using a
model based on discrete elasticity that incorporates nonlinear
friction and white-noise sources.

When observing ripples with a high-resolution transmission
electron microscope, the graphene sample is bombarded by
a low-intensity electron beam. Even though the electron
beam does not have sufficient energy to knock off carbon

atoms, it may create defects by inducing bond rotation and
certainly excite the atoms. Thus an observed graphene sample
is continuously excited and cannot be considered to be in
equilibrium.1,2 We have suggested that the electron beam
may push the carbon atoms vertically away from the planar
configuration of the graphene sheet in a random fashion
and its effect could be modeled by coupling each carbon
atom to an Ising spin that tries to move it off plane.14 In a
simpler context, one-dimensional (1D) mechanical systems
coupled to Ising spins that flip randomly according to Glauber
dynamics exhibit ripples at any temperature in the limit as the
spin-relaxation time is much longer than the vibration periods
of the mechanical system.15 In this spin-string system, the
ripples are metastable quasiequilibrium states about which the
mechanical system experiences rapid oscillations. Both the 1D
spin-string and the spin-membrane (graphene) models exhibit
a buckling transition at a critical temperature, above which the
string or the membrane is flat. Below the critical temperature,
the spins are polarized and the mechanical part of the system
(string or membrane) is buckled.

In the case of suspended graphene sheets, there is a large
degree of arbitrariness in the assignation of numerical values
to the spin-atom coupling constant and to the spin-flip rate14

and there is not yet unambiguous experimental evidence of
a buckling transition at finite temperature. Instead, quantum
theories point out that rippling due to the strong interplay
between the free-electron dynamics in the membrane and
its mesoscopic structure11,12 already occurs at 0 K.13 Thus
it is convenient to have a model exhibiting rippling at any
temperature and whose parameters can be calibrated with
experiments. In this paper we present such a model.

We describe the position of carbon atoms by discrete
elasticity equations previously used to model defect dynamics
in graphene.16–18 Neighboring carbon atoms in a graphene
sheet attach to each other using three of their bonds. The fourth
bond is not saturated and, similar to the effect of the electron
beam, it may try to pull the atom upward or downward from the
flat sheet configuration. This trend may be modeled by placing
each atom in a double-well potential. This is reminiscent of
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the system of a soft spin coupled to elasticity used to study
two-dimensional (2D) melting mediated by dislocations.19

Without the double-well potential, our numerical simulations
of the time-dependent von Karman plate equations (discretized
on the honeycomb lattice) show that a suspended sheet that
is initially in a rippled state remains rippled whereas a flat
sheet remains flat. In the absence of longitudinal stretching,
the initial conditions of the plate equations select whether
the graphene sheet remains flat or it acquires curvature or
ripples. In experiments, rippling is always observed, so we
have to look for a mechanism to produce it spontaneously.
Theories including electron-phonon coupling indicate that, for
infinitesimal stress, ripples are spontaneously formed even
at 0 K,13 which introduces an extra length similar to that
in our double-well potential. In addition, we add nonlinear
friction and an appropriate white-noise forcing that satisfies
the fluctuation-dissipation theorem. The fundamental mode
of the equations of motion can be projected on a Duffing
oscillator with nonlinear friction and white-noise forcing. It
turns out that Eichler et al. have interpreted their measurements
of graphene resonators by using such a Duffing model (without
white-noise forcing).20 In this latter work, measurements of
carbon nanotube and graphene resonators are used to calculate
the coefficients of the Duffing oscillator. Assuming that the
minima of the potential are upward or downward a distance
w0 off plane, we use their coefficients to fit the parameters in
the equations of motion of our graphene model. The only free
parameter in our model is w0. While a more elaborated theory
could derive a temperature- and strain-dependent w0 from
first principles (for example, considering an electron-phonon
interaction),13 we have considered fixed values of w0 from 0.5
to 1 nm for the sake of simplicity. Quantum theories produce
lengths of this order.12,13 Numerical solutions of our model
yield ripples without preferred orientation in agreement with
experimental observations.1,2

The rest of the paper is as follows. The model we use is
described in Sec. II. In Sec. III, we calculate numerical values
of the coefficients used in our model by fitting it to one of the
graphene resonators studied by Eichler et al.20 In Sec. IV, we
discretize the equations of motion on the honeycomb lattice,
write them in primitive coordinates, and periodize them, so
that integer multiples of displacements on primitive directions
leave the lattice unchanged. We then solve numerically the
resulting stochastic equations of motion. We show that long-
lived ripples with no preferred orientation emerge after a short
transient even from random initial conditions. These ripples
correspond to those observed in experiments.1,2 Lastly, Sec. V
contains our conclusions.

II. MODEL

In the graphene sheet, carbon atoms have σ bond orbitals
constructed from sp2 hybrid states oriented in the direction
of the bond that accommodate three electrons per atom. The
other electrons go to p states oriented perpendicularly to the
sheet. These orbitals bind covalently with neighboring atoms
and form a narrow π band that is half filled. The presence
of bending and ripples in graphene modifies its electronic
structure.22 Out-of-plane convex or concave deformations of

the sheet have in principle equal probability and transitions
between these deformations are associated with the bending
energy of the sheet. A simple way to model this situation is
to consider that out-of-plane deformations are described by a
double-well site potential that tries to set vertical deflections
of the sheet, w(x,y), to ±w̃0 and contributes the free energy:

FDW = ϕ̃

4

∫
ρ2

[
1 −

(
w(x,y)

w̃0

)2
]2

dx dy, (1)

where ρ2 is the 2D mass density (mass per unit area) and ϕ̃ has
units of velocity square. The elastic free energy of the graphene
sheet in the continuum limit is that of a 2D membrane:21

Fg = 1

2

∫ [
κ̃(∇2w)2 + (

λ̃u2
ii + 2μ̃u2

ik

)]
dx dy, (2)

uik = 1

2
(∂xk

ui + ∂xi
uk + ∂xi

w∂xk
w), i,k = 1,2, (3)

where (u1,u2) = (u(x,y),v(x,y)) and κ̃ , λ̃, and μ̃ are the in-
plane displacement vector, the bending stiffness (measured in
units of energy), and the 2D Lamé coefficients of graphene
(measured in units of force per unit length), respectively. ∇ =
(∂x,∂y) is the 2D gradient and ∇2 the 2D Laplacian. In Eq. (3)
we have ignored the small in-plane nonlinear terms ∂xi

u∂xk
u +

∂xi
v∂xk

v.
From the total free energy F = Fg + FDW, we obtain the

equations of motion:

ρ2∂
2
t u = λ̃ ∂x

(
∂xu + ∂yv + |∇w|2

2

)
+ μ̃ ∂x[2∂xu + (∂xw)2]

+ μ̃ ∂y

(
∂yu + ∂xv + ∂xw∂yw

)
, (4)

ρ2∂
2
t v = λ̃ ∂y

(
∂xu + ∂yv + |∇w|2

2

)
+ μ̃ ∂y[2∂yv + (∂yw)2]

+ μ̃ ∂x(∂yu + ∂xv + ∂xw∂yw), (5)

ρ2∂
2
t w = P̃∇2w − κ̃ (∇2)2w +

(
1 − w2

w̃2
0

)
ϕ̃ρ2

w̃2
0

w

+ λ̃ ∇ ·
[(

∂xu + ∂yv + |∇w|2
2

)
∇w

]
+ μ̃ ∂x[2∂xu∂xw + (∂yu + ∂xv)∂yw + |∇w|2∂xw]

+ μ̃ ∂y[(∂yu + ∂xv)∂xw + 2∂yv∂yw + |∇w|2∂yw]

− (γ̃ + η̃w2)∂tw +
√

2θ̃ (γ̃ + η̃w2) ξ (x,y,t), (6)

〈ξ (x,y,t)〉 = 0,
(7)

〈ξ (x,y,t)ξ (x,y,t)〉 = δ(x − x ′)δ(y − y ′)δ(t − t ′),

where P̃ is the membrane stress, θ̃ is the temperature measured
in units of energy, and −(γ̃ + η̃w2)∂tw is a nonlinear friction
force used by Eichler et al.20 to interpret their experiments
with a forced damped graphene resonator. The intensity√

2θ̃ (γ̃ + η̃w2) of the white noise ξ (t) is related to the friction
by the fluctuation-dissipation theorem. All the parameters λ̃,
μ̃, ρ2, κ̃ , P̃ , w̃0, ϕ̃, γ̃ , η̃, and θ̃ are positive.
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TABLE I. Units used to nondimensionalize equations.

u, v, w, w̃0 t ξ θ̃ P̃

a

√
ρ2a2

λ̃+2μ̃

(
λ̃+2μ̃

ρ2a6

)1/4
(λ̃ + 2μ̃) a2 λ̃ + 2μ̃

Å 10−14 s m−1s−1/2 eV eV/Å2

1.42
√

3 1.11109 3.85723 × 1016 133.8688 22.13

III. PARAMETER IDENTIFICATION

To identify the parameters λ̃, μ̃, ρ2, κ̃ , P̃ , w̃0, ϕ̃, γ̃ , η̃, and
θ̃ , we shall consider the graphene resonator corresponding to
Fig. 3 in Ref. 20. The temperature is 4 K, so that we use
λ̃ = 3.25 eV/Å2 and μ̃ = 9.44 eV/Å2 corresponding to 0 K
in Table I of Ref. 23. The graphene resonator has length L =
1.7 μm, width W = 120 nm, and is pinned at x = 0 and x = L.
The sides at y = 0 and y = W are free.20 Let us assume that
u = v = 0, ignore bending and noise, and assume that w is in
the lowest possible eigenstate:

w(x,y,t) = �(t) sin
πx

L
. (8)

We now insert Eq. (8) into Eq. (6), multiply the result by
sin(πx/L), integrate, and divide by

∫ L

0 sin2(πx/L)dx = L/2.
We obtain

ρ2
d2�

dt2
= − P̃ π2

L2
� + ϕ̃ρ2

w̃2
0

� − 3ϕ̃ρ2

4w̃4
0

�3

− 3π4

8L4
(λ̃ + 2μ̃)�3 −

(
γ̃ + 3η̃

4
�2

)
d�

dt
. (9)

The stress P̃ in the sheet is due to the inherent stretching
of a stressed planar membrane, P̃0 = E2ε0 [where ε0 is the
homogeneous strain and E2 = 4μ̃(λ̃ + μ̃)/(λ̃ + 2μ̃) is the 2D
Young’s modulus], and an additional stress �P̃ due to its
bending. The latter is proportional to the variation of the
membrane area:

�S

S
=

∫ L

0

∫ W

0

√
1 + |∇w|2 − 1

LW
dxdy

≈ 1

2LW

∫ L

0

∫ W

0
|∇w|2dxdy = π2

4L2
�2, (10)

in which Eq. (8) has been used. Thus the total stress P̃ is

P̃ = E2

(
ε0 + π2

4L2
�2

)
, E2 = 4μ̃(λ̃ + μ̃)

λ̃ + 2μ̃
, (11)

FIG. 1. (Color online) Neighbors of a given atom A in sublattice
1 (dark blue). The primitive vectors are a, b, and c that connect atom
B to three different next-nearest neighbors in its same sublattice.

which inserted into Eq. (9) produces

d2�

dt2
= −

(
P̃0π

2

ρ2L2
− ϕ̃

w̃2
0

)
� −

(
3ϕ̃

4w̃4
0

+ 3π4

8ρ2L4
(λ̃ + 2μ̃)

+E2
π4

4ρ2L4

)
�3 −

(
γ̃

ρ2
+ 3η̃

4ρ2
�2

)
d�

dt
. (12)

This should be identified with the nonlinearly damped Duffing
oscillator used by Eichler et al.20 as a model of their graphene
resonator:

ẍ = − k

m
x − α

m
x3 − γ ∗ + η∗x2

m
ẋ, (13)

where k/m = π2T0/(mL) is the resonant frequency squared,
m = 3.9 × 10−19 kg is the mass of the sheet, T0 = 110 nN is
the intrinsic tension, α = 1.4 × 1016 kg m−2 s−2, γ ∗ = 8.7 ×
10−14 kg/s, and η∗ = 1.5 × 107 kg m−2 s−1. We find

ϕ̃

w̃4
0

= 4α

3m
− π4(λ̃ + 2μ̃)

ρ2L4

(
1

2
+ 4μ̃(λ̃ + μ̃)

3(λ̃ + 2μ̃)2

)

= 4.3142 × 1034 m−2s−2. (14)

Setting w̃0 = 5 Å, we obtain ϕ̃ = 2.6964 × 10−3 m2 s−2,
an intrinsic strain ε0 = 0.0010067, and stress P̃0 =
0.3492 kg s−2. The friction coefficients are γ̃ /ρ2 = 2.2308 ×
105 s−1 and η̃/ρ2 = 5.1282 × 1025 m−2 s−1.

TABLE II. Dimensionless parameters for Fig. 3 of Ref. 20 with w̃0 = 5 Å. The numbers in the last row correspond to a shorter computational
lattice with L = 80a.

w0 θ κ γ η ϕ
w̃0
a

θ̃

(λ̃+2μ̃)a2
16κ̃

(λ̃+2μ̃)a2
γ̃ a√

ρ2(λ̃+2μ̃)

η̃a3√
ρ2(λ̃+2μ̃)

ρ2ϕ̃

λ̃+2μ̃
ε0

2.032 92 2.574 84 × 10−6 0.095 616 0.003 425 36 0.047 633 8 5.502 8 × 10−12 0.001 006 7
2.032 92 2.574 84 × 10−6 0.095 616 0.295 949 4.115 53 3.066 36 × 10−4 0.001 006 7
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IV. NUMERICAL RESULTS

Following the same procedure as in Refs. 16–18, we
discretize the equations of motion on the honeycomb lattice of
graphene. Atoms belonging to the two sublattices comprising
the lattice are distinguished in Fig. 1 with light and dark colors,
although they are all identical carbon atoms. The three nearest
and six next-nearest neighbors of the atom A with coordinates
(x,y) in Fig. 1 are

n1 =
(

x − a

2
,y − a

2
√

3

)
, n2 =

(
x + a

2
,y − a

2
√

3

)
,

n3 =
(

x,y + a√
3

)
, n4 =

(
x − a

2
,y − a

√
3

2

)
,

n5 =
(

x + a

2
,y − a

√
3

2

)
, n6 = (x − a,y), (15)

n7 = (x + a,y), n8 =
(

x − a

2
,y + a

√
3

2

)
,

n9 =
(

x + a

2
,y + a

√
3

2

)
.

To discretize the equations of motion using the honeycomb
lattice, we define the following operators acting on functions
of the node A coordinates (x,y):

T u = [u(n1) − u(A)] + [u(n2) − u(A)]

+ [u(n3) − u(A)] ∼ (
∂2
xu + ∂2

yu
) a2

4
, (16)

Hu = [u(n6) − u(A)] + [u(n7) − u(A)] ∼ a2∂2
xu, (17)

D1u = [u(n4) − u(A)] + [u(n9) − u(A)]

∼
(

1

4
∂2
xu +

√
3

2
∂x∂yu + 3

4
∂2
yu

)
a2, (18)

D2u = [u(n5) − u(A)] + [u(n8) − u(A)]

∼
(

1

4
∂2
xu −

√
3

2
∂x∂yu + 3

4
∂2
yu

)
a2, (19)

�hu = u(n7) − u(A) ∼ (∂xu) a, (20)

�vu = u(n3) − u(A) ∼ (∂yu)
a√
3
, (21)

FIG. 2. (Color online) Ripples formed in a suspended 80 × 80 honeycomb graphene sheet (with 12 800 atoms). (a) Density plot of the
off-plane displacement as a function of in-plane coordinates at t = 1. (b) The same at t = 50. (c) The same at t = 100. (d) Average density
plot over all times from t = 1 to 100 with unit time step. Parameter values are as in the second row of Table II.
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Bw = [T w(n1) − T w(A)] + [T w(n2) − T w(A)]

+ [T w(n3) − T w(A)] ∼ a4

16

(
∂2
x + ∂2

y

)2
w, (22)

with similar definitions for points B in sublattice 2. Taylor
expansions of these finite difference combinations about (x,y)
yield the partial derivative expressions written above as a → 0.
We now replace the derivatives in Eqs. (4)–(6), ∂2

xu, ∂2
yu,

∂x∂yu, ∂xw, ∂yw, and (∇2)2w by the operators Hu/a2,
(4T − H )u/a2, (D1 − D2)u/(

√
3a2), �hw/a,

√
3�vw/a,

FIG. 3. (Color online) Ripples in the central part of a 160 × 160
graphene lattice (with 51 200 atoms).

and 16Bw/a4, respectively, with similar substitutions for the
derivatives of v and w. The resulting equations at each point
of the lattice are

ρ2a
2∂2

t u = 4μ̃ T u + (λ̃ + μ̃) Hu + λ̃ + μ̃√
3

(D1 − D2)v + λ̃ + μ̃

a
[�hw Hw + �vw (D1 − D2)w] + 4μ̃

a
�hw T w, (23)

ρ2a
2∂2

t v = 4(λ̃ + 2μ̃) T v + λ̃ + μ̃√
3

(D1 − D2)u − (λ̃ + μ̃)Hv + 4
√

3

a
(λ̃ + 2μ̃)�vw T w

+ λ̃ + μ̃

a
√

3
[�hw (D1 − D2)w − 3�vw Hw], (24)

ρ2a
2∂2

t w = λ̃ + 2μ̃

a

{[
Hu + 2�vw

a
(D1 − D2)w + �hw

a
Hw

]
�hw +

[√
3(4T − H )v + 3�vw

a
(4T − H )w

]
�vw

}

+ λ̃ + μ̃

a
(D1 − D2)u�vw + λ̃�hw√

3a
(D1 − D2)v + μ̃�vw

a
[
√

3(4T − H )u +
√

3Hv + (D1 − D2)v]

+ 2�hu

a
(2λ̃T + μ̃H )w + 2

√
3�vv

a
[2λ̃T w + μ̃(4T − H )w] + 2μ̃

a

(
�vu + �hv√

3

)
(D1 − D2)w

+ (�hw)2 + (�vw)2

a2
(2λ̃T + μ̃H )w + 4μ̃

a
T w(4T − H )w + 4P̃ T w − 16κ̃

a2
Bw

+
(

1 − w2

w̃2
0

)
ϕ̃ρ2a

2

w̃2
0

w − a2(γ̃ + η̃w2)∂tw +
√

2a2θ (γ̃ + η̃w2) aξ (x,y,t). (25)

Here

P̃ = 4μ̃(λ̃ + μ̃)

λ̃ + 2μ̃

(
ε0 + 1

2Na2

∑
x,y

[(�hw)2 + 9(�vw)2]

)
, (26)

is the stress in the membrane (see Sec. III) and N = ∑
x,y 1 is the total number of atoms in the graphene sheet. In the limit

a → 0, the continuous delta function δ(x − x ′) becomes δxx ′/a, where δxx ′ = 1 if x = x ′ and 0 otherwise. Then the discretized
white noise in Eq. (25), aξ (x,y,t), has zero mean and correlation

〈aξ (x,y,t) aξ (x ′,y ′,t ′)〉 = δxx ′δyy ′δ(t − t ′). (27)

Possible defects inserted in the graphene sheet are the cores of dislocations. To account for them, we have to write these equations
of motion in primitive coordinates and periodize all difference operators appearing in them along primitive directions. The
resulting equations of motion become those in Ref. 17 for w = 0. If there are not defects in the graphene sheet, the equations of
motion Eqs. (23)–(25) or their periodized versions produce the same results.

It is convenient to write the previous equations of motion in nondimensional units. Using Table I, we obtain the following
nondimensional equations of motion:

∂2
t u = 4μT u + (λ + μ)

(
Hu + (D1 − D2)v√

3

)
+ (λ + μ) [�hw Hw + �vw (D1 − D2)w] + 4μ�hw T w, (28)

∂2
t v = 4T v + (λ + μ)

(
(D1 − D2)u√

3
− Hv

)
+ 4

√
3 �vw T w + λ + μ√

3
[�hw (D1 − D2)w − 3�vw Hw], (29)

∂2
t w = [Hu + 2�vw (D1 − D2)w + �hw Hw] �hw + [

√
3(4T − H )v + 3�vw (4T − H )w]�vw

+ (λ + μ)(D1 − D2)u�vw + λ√
3

�hw (D1 − D2)v

+μ�vw [
√

3(4T − H )u +
√

3Hv + (D1 − D2)v] + 2�hu (2λT + μH )w

+ 2
√

3�vv [2λT + μ(4T − H )]w + 2μ

(
�vu + �hv√

3

)
(D1 − D2)w
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+ [(�hw)2 + (�vw)2](2λT + μH )w + 4μT w (4T − H )w + 4P T w

− κBw + ϕ

(
1 − w2

w2
0

)
w

w2
0

− (γ + ηw2) ∂tw +
√

2θ (γ + ηw2) �(x,y,t), (30)

where u, v, w, and t are now nondimensional and

P = 4μ̃(λ̃ + μ̃)

(λ̃ + 2μ̃)2

(
ε0 + 1

2N

∑
x,y

[(�hw)2 + 9(�vw)2]

)
, (31)

λ = λ̃

λ̃ + 2μ̃
, μ = μ̃

λ̃ + 2μ̃
, (32)

〈�(x,y,t)〉 = 0, 〈�(x,y,t) �(x ′,y ′,t ′)〉 = δxx ′δyy ′δ(t − t ′). (33)

The dimensionless parameters appearing in these equations
are listed in Table II. We have used the values of the 2D Lamé
moduli at 0 K given in Ref. 23: λ̃ + 2μ̃ = 22.13 eV/Å2,
μ̃ = 9.44 eV/Å2. The bending rigidity κ̃ = 0.8 eV has
been extrapolated from Fig. 7 of Ref. 24. The 2D mass
density is ρ2 = 7.236 × 10−7 kg/m2, and the parameters
identified in Sec. III are ϕ̃/w̃4

0 = 4.3142 × 1034 m−2 s−2

and, for w̃0 = 5 Å, we have ε0 = 0.0010067, P0 =
0.3492 kg s−2, γ̃ /ρ2 = 2.2308 × 105 s−1, and

η̃/ρ2 = 5.1282 × 1025 m−2 s−1. In our simulations, we
have considered shorter samples than in Eichler et al.’s
experiments for the sake of computational expediency. To
keep the same frequency, we need to rescale ϕ as L−4 and
both η and γ as 1/L. For a 80 × 80 lattice, this yields the
parameters in the second row of Table II.

The model equations produce spontaneous ripple genera-
tion in which ripples have no preferred orientation and their

FIG. 4. (Color online) Same as in Fig. 1 for a 200 × 200 honeycomb lattice with w0 = 1 nm (180 000 atoms). Times are (a) t = 10,
(b) t = 250, and (c) t = 510. (d) Average density plot from t = 410 to 510, using a t = 10 time step. Parameters are as in Table I except for
the rescaled γ = 0.11838, η = 1.64621, ϕ = 1.25598 × 10−4.
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size is comparable with that observed in experiments. We have
considered that the graphene sheet has a strain similar to that in
Ref. 20. This subjacent strain flattens the ripples as compared
to those in an unstrained sheet. Initially the graphene sample
is flat. As shown in Fig. 2(a), random forcing pulls atoms
off plane and randomly oriented ripples that are very small
in size and height form. After a short transient stage, the
ripples have reached a quasistationary state in which they
are domains of atoms displaced by variable distances either
upward or downward off the horizontal plane [cf. Figs. 2(b)
and 2(c) and Fig. 3 (the latter, for a 160 × 160 lattice)]. Ripple
domains change slowly in height and size, essentially due to
displacements of the atoms in their boundaries. This is seen
when plotting the time-averaged density plot of Fig. 2(d). More
clearly, the averages between more advanced times (between
300 and 400) do not change much from the instantaneous
time resolved density plots, as shown in Fig. 4 for a larger
300 × 300 graphene lattice.

In the quasistationary state, ripple size and height increase
with sample size and with w0. For instance, in a 80 × 80
lattice, ripples are 2.5-nm long and 0.1-pm high for w0 = 5 Å.
Increasing w0 by a factor of ten does not change the ripple
height that much but there appear long connected domains with
atoms either up or down the horizontal plane. For longer 160 ×
160 samples with w0 = 1 nm, as in Fig. 3, the ripple length
has increased to about 10 nm with a height of about 0.5 pm.
Increasing sample size to 300 × 300 results in longer ripples
(15 nm) and height about 1 pm, as shown in Fig. 4. As graphene
sheets are suspended on holes that have 1-μm diameter, the
effects of boundaries are felt comparatively less by atoms far
from them and the ripple heights increase correspondingly to
several Ångstroms.1,2

V. CONCLUSIONS

We have proposed a mechanism to spontaneously produce
ripples in a suspended graphene sheet. Besides the membrane
free energy, carbon atoms are placed in a double-well potential

at each lattice site. Thus they experience a force that tries to
displace them vertically off plane, either up or down with equal
probability. Inspired by experiments with graphene resonators,
we assume that the atoms undergo a nonlinear friction force
and are subject to the corresponding multiplicative white-
noise force satisfying the fluctuation-dissipation theorem.
The resulting time scale of friction is much larger than the
vibration periods of the membrane. Both the site double-well
potential and the site nonlinear friction should be considered
as simple mechanisms that provide a nonlinearly damped
Duffing oscillator equation for the amplitude of the leading
membrane normal mode. Extra soft-spin fields19 or a viscous
component of the stress tensor plus a white-noise source as in
fluctuating hydrodynamics25 may prove better options and yet
yield a similar Duffing oscillator equation. We have solved
numerically the equations of the model using parameters
obtained from ab initio calculations and from experiments
in the literature on graphene resonators. Even from initial
conditions corresponding to a flat membrane, the nonlinear
force created by the double-well potential and the white-noise
forcing produce stable rippling after a short transient. The
ripples are formed by domains whose atoms are displaced
upward or downward off plane. Once they have acquired a
sufficient size, of the order of experimentally observed ripples,
the domains vary slowly by annexing or losing atoms in
their periphery. In this scenario, randomly oriented nanometer-
sized ripples with no preferred direction appear as long-lived
metastable states for any temperature.
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