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Entanglement of electron spins and geometric phases in the diamond color center
coupled to the P1 center
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Impurity spins in semiconductors are potential quantum bits. Entanglement and topological phases are key
resources in quantum computation. We prove that the coupled electron spins carried by a diamond nitrogen-
vacancy color center (NV−) and a single substitutional nitrogen impurity (P1 center) are entangled in the
immediate vicinity of the level anticrossing that appears in the Zeeman energy diagram at about 500 G. We also
determine the Aharonov-Anandan, Berry, and marginal geometric phases that can be accumulated by the state
vectors of this spin system when it is magnetically transported around a closed path. At the resonance where the
gap between two energy levels is minimum, the geometric phases undergo discontinuities, and the entanglement
of the two electron spins is maximal.

DOI: 10.1103/PhysRevB.86.195316 PACS number(s): 03.65.Ca, 03.65.Xp, 03.67.Lx

I. INTRODUCTION

Since the proposal of Kane,1 impurity spins in solids
have received great attention as quantum bits (qubits) for the
realization of a solid-state quantum computer. The electron
spin 1 carried by the negatively charged nitrogen-vacancy
(NV−) color center of diamond is probably the most promising
candidate for a qubit.2 The control of the interactions with
its environment and, in particular, with the electron spin 1

2
carried by the P1 center, a nitrogen atom in a substitutional
position, is progressing.3,4 Modeling these interactions is a
major challenge.

In a previous work,5 an effective spin Hamiltonian was
built for investigating the energy spectrum of the NV−-P1
coupled defect pair subjected to an external magnetic field.
The occurrence of several level anticrossings (LAC) in the
Zeeman energy diagram has been reported. The LAC that
appear at about 500 and 1000 G had already been detected
experimentally.4,6 A LAC is a coupled two-level system that
can be studied rigorously in the framework of the Landau-
Zener theory.5 On approaching a resonance very slowly
(adiabatically), at which two energy levels are closest to one
another, the coupled spins can flip individually or in concert,
offering possibilities to implement quantum logic gates, which
are fundamental components of a quantum computer.4 Two-
qubit quantum gates have recently been realized using the NV−
electron spin coupled to the host N nuclear spin.7 Previous
achievements of quantum operations are recalled in Ref. 8.

In the present work, we prove that the electron spins
carried by this coupled defect pair are actually entangled in
the immediate vicinity of the resonances. This method of
generation of entangled states via LAC is well known. The
deep meaning of the entanglement was given by Schödinger
in a three-part series.9 Currently, this particular correlation
between quantum subsystems is highly desired because it is a
key resource in quantum information processing. Deutsch first
showed how to exploit this phenomenon to perform quantum
computation.10

It is well known that the state vectors of a spin system
may acquire phases of geometric character if it is magnetically
transported around a path in the parameter space.11 Despite the
strong anisotropy of the spin-spin interactions, a theoretical

effort has been made for computing both the geometric
phase accumulated by the whole spin system during a cyclic
evolution11,12 and the marginal geometric phases gained by the
subsystems.13 The motivation arose from the fact that logic
phase gates can form a robust basis of a geometric quantum
computer because they only depend on the areas in parameter
space.14 Any error leaves these areas invariant.

The outline of this paper is as follows. In the next section,
the theoretical framework is briefly reviewed. This step mainly
consists of building a Hamiltonian that includes the relevant
spin-spin interactions. This model is applied in Sec. III for
investigating the above-mentioned quantum phenomena, i.e.,
entanglement and topological phases.

II. MODEL

Diamond is a wide-band-gap material belonging to the
group IV semiconductors. The face-centered-cubic unit cell
contains eight carbon atoms. Each atom has four nearest neigh-
bors in a tetrahedral arrangement. The shortest interatomic
distance is 1.54 Å. During the last two decades, significant
progress has been made in the investigation of its optically
active structural defects (see, for example, Refs. 6 and 15). For
later use, the model developed in Ref. 5 is reviewed below.
The electron spin of the P1 center interacts with the nuclear
spin and with the electronic spin of the NV− color.

In Refs. 4, 5, 15, and 16, these magnetic interactions have
been grouped in the following Hamiltonian:

H1 = D
[(

SNV
z

)2 − 1
3 (SNV)2

] + SNV · J · SN

+ SN · A · IN , (1)

where SNV, SN , and IN are, respectively, the electron spin-1
operator of the color center, the electron spin- 1

2 operator, and
the nuclear spin-1 operator of the P1 center. D = 2.88 GHz
is the zero-field splitting of the electronic triplet, J is the
fine-structure tensor, and A is the hyperfine tensor. The
independent components of J and A are given below. Due to
the smallness of some parameters,17 the corresponding parts of
the spin Hamiltonian will be neglected. These are the N-related
hyperfine coupling constant in the NV− defect compared with
that of the isolated P1 center (less than 3 MHz instead of about
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97 MHz) and the quadrupole splitting (−5 MHz). The color
center lies along the threefold symmetry axis, i.e., the 〈111〉
crystallographic direction of the diamond structure, which is
chosen as the z axis. We assume that this axial symmetry
is preserved despite local strain-induced deformations of the
diamond lattice.18 The origin of the Cartesian coordinates x,
y, and z is halfway between the vacancy (V) and the nitrogen
impurity (N). The two defects lie within the yz plane.16 With
respect to the crystallographic axes, if the nitrogen atom is
placed at the site (0, 0, 0), the vacancy will be at ( 1

4 , 1
4 , 1

4 ),
and the P1 center will be at (2, 2, 2). The Hamiltonian that
describes the interaction between the spin system and an
external magnetic field H applied along the direction defined
by the unit vector n is of the form

HZ = ωLn · (SNV + SN ), (2)

where ωL = gμB‖H‖ is the Larmor frequency, g is the
isotropic electronic factor, and μB is the Bohr magneton. The
nuclear Zeeman energy is negligible (see Ref. 17).

The relative distance between the two defects varies from
sample to sample but does not drastically change the Zeeman
energy diagram. Nevertheless, the number, the position, and
the tunnel splitting of the LAC can vary. In Ref. 5, the P1
center was placed at a distance r = 12.12 Å and a polar angle
of 106◦. In this configuration, the symmetric tensor J has four
nonzero components:15,16

Jyy = ξ

(
1 − 3y2

r2

)
, Jzz = ξ

(
1 − 3z2

r2

)
, Jyz = −ξ

3yz

r2
,

(3)

with ξ = Jxx = g2μ2
B/r3. Due to the axial symmetry, the

tensor A has only two independent components: A‖ =
Azz = 114.0 MHz and A⊥ = Axx = Ayy = 81.3 MHz.6

The 18-dimensional energy matrix is obtained by rewriting
the total Hamiltonian (H1 + HZ) in the basis {|mNV

S mN
S mN

I 〉}.
The three quantum numbers mNV

S , mN
S , and mN

I are eigenvalues
of the z component of the spin operators. The Hermitian energy
matrix is almost block diagonalized in three six-dimensional
blocks, which differ only by the value of mN

I . It also contains
12 off-block elements equal to A⊥/2. In the absence of an
external magnetic field, the low triangle of a block is of the
form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⇑↑ mN
I ⇑↓ mN

I ⇓↑ mN
I ⇓↓ mN

I 0 ↑ mN
I 0 ↓ mN

I

a + e

d b − e

0 0 b + e

0 0 −d a − e

d ′ f −d ′ g c + e

g −d ′ f d ′ 0 c − e

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with a = 1
3D − 1

2Jzz, b = 1
3D + 1

2Jzz, c = − 2
3D, d =√

2d
′ = i 1

2Jyz, e = 1
2mN

I A‖, f = 1
2
√

2
Jzz and g = 1

2
√

2
(Jxx −

Jyy). The state of a spin is represented by an arrow. A single
upward (downward) arrow stands for the spin state 1

2 (− 1
2 ),

and a double upward (downward) arrow stands for the state 1
(−1).

We used different methods to solve this large sparse
eigenvalue problem.19 We found that the hyperfine coupling
constant A⊥ changes the energy levels only slightly. The
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FIG. 1. (Color online) (top) Level anticrossings of the NV−-P1
coupled defect pair around 500 G.5 The spin flips are shown. A single
upwards (downwards) arrow stands for the spin state 1

2 (− 1
2 ), and a

double upwards (downwards) arrow stands for state 1 (−1). (bottom)
The von Neumann quantum entropy S 1

2
(=S1) of the electron spins

with respect to the strength of the magnetic field. The two electron
spins are maximally entangled at the resonances.

omission of A⊥ leads to the Zeeman energy diagram shown
in Fig. 1 of Ref. 5. The magnetic field was applied along the
direction n = (0,0,1), i.e., parallel to the z axis. It lifts the
twofold degeneracy of the energy levels. The energy spectrum
exhibits several LAC where two energy levels approach a
minimum distance. For later use, the LAC that occur around
500 G are reported in Fig. 1.

Far from the resonances, the spin system can be initially
prepared in the separable state |ψ−〉 = |0↑mN

I 〉 (see the
experimental details in Refs. 3 and 4). On approaching the
resonances the spin states become mixed: |ψ±〉 = c1± |⇓↓
mN

I 〉 ± c2±|0↑mN
I 〉. The + (−) sign refers to the upper (lower)

energy level (Fig. 1). Above the resonances, the spin flips
occur only if the quantum system is transported infinitely
slowly (adiabatically). The probability transition ‖cJ± ‖2,
J = 1–2, can be predicted rigorously in the framework of
the Landau-Zener model.5

Below, we show that the two electron spins are actually
entangled in the immediate vicinity of the resonances. This is a
theoretical demonstration of entanglement of electron spins in
diamond. Of course, its practical realization is a challenge. The
previous experimental demonstration of bipartite and tripartite
entanglement in diamond is due to the Stuttgart group.20 The
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authors used a register of three qubits: two 13C nuclear spins 1
2

and the electron spin 1 of the NV− center. Nevertheless, some
doubts have been raised by Lovett and Benjamin21 (see also
the response to the comment).20

We also investigate the geometric phases accumulated by
the whole system subjected to a rotating magnetic field and
extract those acquired by the subsystems. A few months ago,
Maclaurin et al.22 proposed two scenarios for measuring the
geometric phases accumulated by the mNV

S = ±1 states of a
single nitrogen-vacancy defect.

Entanglement and topological phases are two distinct
phenomena. Indeed, a geometric phase may be generated
magnetically in a single spin state while entanglement is a
correlation between at least two subsystems. Nevertheless, the
two phenomena can coexist in a spin system, as shown in the
present work. Studies that attempt to establish a connection
between them are progressing (see, for example, Ref. 23).

III. APPLICATIONS

A. Entanglement

In the literature, several methods are used to characterize
the degree of entanglement between quantum subsystems:
Schmidt number, tangle, concurrence, etc. An overview about
the entanglement measures can be found in Ref. 24. Here,
we consider the von Neumann quantum entropy, which is a
generalization of the classical Shannon entropy. For a tripartite
system ABC, the entropy of the subsystem A is defined as
follows:

SA = − Tr(ρA log2 ρA), (4)

where ρA = TrBC(|ψABC〉〈ψABC |) is the reduced matrix den-
sity of A. If A and B denote the two electron spins, their
entropies are equal for both spin functions |ψABC〉 = |ψ±〉
while the entropy SC of the nuclear spin is null. The calculation
of log2 ρA requires the diagonalization of the representative
matrix of ρA. Figure 1 plots the variations of the entropy
S 1

2 (1) with respect to the strength of the magnetic field. On
approaching the resonances, their degree of entanglement
increases and finally reaches a maximum at the resonances at
which the two pure states are equally probable, i.e., |cJ± |2= 1

2 ,
with J = 1–2 (see Fig. 3 in Ref. 5). Taking into account the
hyperfine coupling constant A⊥ does not significantly reduce
the degree of entanglement. Similar results have been found
by the authors of Ref. 25, who studied the energy spectrum of
hydrogen and sodium atoms.

B. Geometric phases

1. Tripartite system

The existence of phases of geometric character has been
verified experimentally in various fields: Josephson-junction
devices, quantum dots, ion traps, etc. A geometric phase is
independent of how the transportation is executed. It can be
adiabatic, nonadiabatic, cyclic, or noncyclic.26 Quantum phase
gates are expected to be robust against decoherence and have
built-in fault tolerance features. They are the basis of geometric
computation.14

In order to generate geometric phases, the sample is placed
in a rotating magnetic field H (t), directed along the unit
vector n = [sin θ cos ϕ(t), sin θ sin ϕ(t), cos θ ]. θ and ϕ = ωt

are the azimuthal and polar angles in spherical coordinates,
respectively. The angular frequency ω is assumed to be
constant. In practice, one can use two magnetic fields, one
parallel to the z axis and the other perpendicular to the z

axis. The latter must be rotating. Below, we consider that the
two defects are now lying along the same direction 〈111〉 and
are separated by a slightly smaller distance than that given
above, i.e., 11.58 Å (see also Ref. 4). The nitrogen atoms
occupy substitutional positions. In this new configuration, the
fine-structure coupling constant Jyz vanishes [see Eq. (3)].
The positions of the LAC in the Zeeman diagram depend
on the relative position of the two defects and the additional
parameters of the magnetic field, i.e., ω and θ . Since any
initial state vector can gain a geometric phase, its general
form |ψ(0)〉 = ∑

mNV
S ,mN

S ,mN
I

(cmNV
S ,mN

S ,mN
I

)|mNV
S mN

S mN
I 〉 is then

considered below.
Under these conditions, the magnetically transported state

vectors of the whole system ψ(t) = eiφ(t)ψ(0) are solutions
of the time-dependent Schrödinger equation, H[H (t)]ψ(t) =
i d

dt
ψ(t) (h̄ = 1). H is still the sum of H1 and the Zeeman

operator HZ [Eqs. (1) and (2)]. The total geometric phase
acquired by the whole spin system can be obtained by
removing the dynamical phase −i

∫ t

0 〈ψ(t ′) | d
dt ′ ψ(t ′)〉dt ′ from

the total phase φ(t) = arg 〈ψ(0) |ψ(t)〉.27 In order to obtain the
exact solutions ψ(t), an appropriate time-dependent unitary
transformation R(t) is required. In the case of isotropic or
weak anisotropic spin-spin interactions (Breit-Rabi model,
Heisenberg XY model, etc.) it is more convenient to consider
transformations that lead to a diagonal and time-invariant
Hamiltonian.25,28,29 Here, the aim is to avoid the appearance of
new off-block elements in the 18-dimensional energy matrix.
We then consider a simple rotation through an angle ϕ about
the z axis: R(t) = eiϕ(t)(SNV

z +SN
z +IN

z ).30

The transformed state vectors, ψ ′(t) = R(t)ψ(t), are also
solutions of a Schrödinger equation, H′ψ ′(t) = i d

dt
ψ ′(t),

but the new Hamiltonian H′ = RHR−1 − iR d
dt

R−1 is time
independent:

H′ = H1 − ωIN
z + 	e · (SNV + SN ) (5)

In other words, the spin system feels an effective magnetic
field He = 	/gμB , with 	 = (ω2

L + ω2 − 2ωωL cos θ )
1
2 . It

is directed along the unit vector e = (ex,0,ez) and makes an
angle ϑ = arccos(ωL

	
cos θ − ω

	
) with the z axis. If the spin

system evolves adiabatically (ω  ωL), the frequency 	 tends
towards the Larmor frequency and the effective angle ϑ tends
towards θ , the actual inclination of the magnetic field with
respect to the z axis.

The eigenstates of the time-invariant Hamiltonian are of the
form ψ ′(t) = e−iE′tψ ′(0), and those of H are given by ψ(t) =
U (t)ψ(0), where U (t) = R−1(t)e−iE′tR(0) is the transport
operator. The energy E′, expressed in frequency units, and the
initial state vector ψ ′(0) = ψ(0) are, respectively, the eigen-
value and eigenvector of the Schrödinger equation H′ψ ′(0) =
E′ψ ′(0). Since R(0) = −R(T ) = I , where T = ω/2π is a
period and I is the identity operator, one can readily obtain the
total geometric phase gained during a 2π rotation, namely, the
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FIG. 2. (Color online) Variations of the cyclic geometric phases
(in units of π ) with respect to the strength of the magnetic field. ω

and θ are, respectively, the rotational frequency of the magnetic field
about the z axis and its inclination with respect to the same axis. ωL is
the Larmor frequency. (top) Nonadiabatic Aharonov-Anandan (AA)
geometric phase. (bottom) The Berry phase.

nonadiabatic cyclic Aharonov-Anandan (AA) phase:

φAA = 2π

⎛
⎝−1

2
+

∑
mNV

S ,mN
S ,mN

I

(
mNV

S + mN
S + mN

I

)∥∥cmNV
S mN

S mN
I

∥∥2

⎞
⎠

(6)

The coefficients cmNV
S mN

S mN
I

of the state vector depend on the
coupling constants involved in Eq. (1) and on the parameters
of the magnetic field but not on ϕ, which is time dependent.
It is not difficult to check the validity of Eq. (6): if only the
spin 1

2 is subjected to the rotating magnetic field, φAA reduces
to the well-known result, i.e., half of the solid angle � =
2π (−1 ± cos ϑ). If the spin system evolves very slowly (ω →
0), the AA phase tends to be identified with the Berry phase.
Figure 2 shows the variations of the total geometric phases with
respect to the magnetic field. Both the AA and Berry phases
undergo almost 4π jumps at the resonances. Nevertheless,
the geometric phase is 2π modular, and the experimentally
detected jumps will not exceed 2π . According to some authors,
the AA phase is more advantageous than the Berry phase
in quantum computing.31 The Berry phase has at least two
drawbacks: it has a very slow evolution (while the coherence

time is usually short), and it is accompanied by a dynamic
component which is more fault tolerant.

2. Subsystems

The concept of geometric phase has been generalized to
mixed states by two groups.13,32 The Uhlmann geometric phase
requires a purification and an attachment of an ancilla to the
system. Below, we follow the approach of Sjöqvist et al.13

which naturally extends the formalism developed above. For
the initial state vector of the tripartite system ψ(0) = ψ ′(0) =
ψ ′

ABC(0), the marginal mixed-state geometric phase of the
subsystem A is given by13

γA = arg

⎛
⎝∑

j

λj e
iβj

⎞
⎠ , (7)

where the argument function returns an angle that lies between
±π . λj are the eigenvalues of the reduced density operator
ρA(0) = TrBC(|ψ ′(0)〉〈ψ ′(0) |) = ∑

j λj | Vj (0)〉〈Vj (0) |, with

|Vj (0)〉 = ∑
m a

j
m |m〉. The ket |m〉 stands for the orthonormal

basis of the subsystem A, i.e., |mNV
S 〉 or |mN

S 〉. The marginal
density operator ρA(0) evolves unitarily under the (unitary)
transformation RA(ϕ) = eiϕSA

z .29,33 The geometric phase βj of
the individual pure state |Vj 〉 can be obtained as shown above,
i.e., by removing the dynamical phase from the total phase.27

Consequently, the phase βj is given by an equation similar to
Eq. (6):

βj = 2π

(
−1

2
δS, 1

2
+

∑
m

m
∥∥aj

m

∥∥2

)
, (8)

where δS, 1
2

is the Kronecker symbol. It is equal to 1 for spin 1
2

and 0 for spin 1. Figure 3 plots the variations of the marginal
geometric phases γ1 and γ 1

2
with respect to the magnetic field.

Once more, discontinuities occur at the resonances. On both
sides of the jumps, the sum of γ1 and γ 1

2
is rigorously equal

to the Berry phase shown on Fig. 2. This equality is expected
since we set gN = gNV in Eq. (2).29 The two independent
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FIG. 3. (Color online) Variations of the marginal geometric
phases (in units of π ) acquired by the electron spins with respect
to the strength of the magnetic field. The sum of γ1 and γ 1

2
gives the

Berry phase shown in Fig. 2. ω and θ are defined in the text and in
Fig. 2.
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components of gN are equal to 2.0024 and differ only slightly
from that of gNV : gNV

‖ = 2.0029 and gNV
⊥ = 2.0031 (see

Refs. 17 and 34). Using the simplest Hamiltonian, i.e., an
isotropic coupling between two spins, J · S1 · S2, the authors
of Ref. 29 showed that the above-mentioned equality is not
verified if the g factors are different. We also note that the
difference between the jump of (γ1 + γ 1

2
) and that of the Berry

phase is equal to a multiple of 2π .

IV. CONCLUSION

We investigated the entanglement of the electron spins
carried by the diamond NV−-P1 coupled defect pair. We
found that they are entangled in the immediate vicinity of

the resonances at which two energy levels are closest to
one another. The total geometric phase and the marginal
geometric phases acquired, respectively, by the whole spin
system and its subsystems have also been computed. At
the resonant magnetic fields, entanglement is maximal, and
the geometric phases undergo discontinuities. The interest in
entanglement and topological phases is motivated by their
applications in quantum information processing. This work
extends a previous one which was focused on the spin flips
that occur by quantum tunneling beyond the resonances. The
next step is the investigation of the degree of entanglement of
the spins at different LAC and for different relative positions of
the two centers. The study of the properties of a large number
of coupled centers is another goal.
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