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Excitons in cores of exciton-polariton vortices
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The inner structure of vortices in Bose-Einstein condensates of exciton polaritons is studied theoretically. We
show analytically that the healing lengths for the exciton and photon components of exciton-polariton condensate
are essentially different. Namely, the exciton healing length may be about two orders of magnitude smaller than the
photon healing length. Experimentally, in near-field photoluminescence, the photon part of the exciton-polariton
condensate is detected. The suggested theory shows that the cores of experimentally observed vortices are photon
cores, and there could be thousands of unobserved exciton polaritons with a strongly reduced photonic fraction
inside them.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) of exciton polaritons
in optical microcavities1 remains in the focus of both theo-
retical and experimental studies. Polaritons are quasiparticles
resulting from strong light-matter coupling between cavity
photons and excitons in a quantum well embedded inside a
cavity.2 Owing to their extremely light effective mass, BEC in
polariton systems can be achieved at very high temperatures
compared to BEC in systems of cold atoms. In experiments,
there are obstacles such as finite particle lifetime (due to
photon escape from the cavity) that prevent achieving thermal
equilibrium and therefore the implementation of real Bose
condensation. Nevertheless, in recent years there has been
great experimental success in the field3–11 despite the fact that
there has been a lot of discussion about clear experimental
evidence for BEC in the system.12 Stimulated scattering
of polaritons due to exciton-exciton interactions provides
arising of macroscopically large numbers of particles that
occupy the lowest energy state, which may be treated as
quasicondensation. Narrowing of the photoluminescence peak
in such systems has been reported3 as well as the nonlinear
dependence of the emission intensity, although both give no in-
formation about statistics of the particles. In 2006, a significant
increase in temporal and spatial coherence within the entire
polariton system was experimentally observed5 indicating that
the polaritons are indeed Bose condensed. Later a number
of experimental works appeared reporting observations of
spontaneous quantized vortices7,13,14 and soliton11 formation,
and methods to manipulate polaritons with different kinds of
traps;6,10 collective fluid dynamics and superfluidity of the
polariton condensate were also evidenced and discussed.8,9,11

A number of theoretical works followed, addressing half
vortices,15 vortices,16,17 solitons,18–20 polariton superfluidity,21

and fluid dynamics,22 as well as polarization features of the
condensate23,24 and spin-related phenomena.25,26 Recently,
there has been a lot of experimental activity on spontaneous
oscillations between the polariton condensates created by
multiple separate pump spots.27,28

Exciton polaritons in an optical microcavity represent a
quasi-two-dimensional (2D) system of bosons of two types,
photons and excitons, undergoing mutual transformations,

which leads to arising of the new type of particles in the strong-
coupling regime. These particles have a different dispersion
law consisting of the two branches, corresponding to the lower
and upper polariton states.29 At low temperatures only the
lower branch of the dispersion is macroscopically occupied.
Transition toward a superfluid state expected for Bose particles
in an extended 2D system is not BEC but a topological
Berezinskii-Kosterlitz-Thouless (BKT) transition.30,31 It is a
result of vortex-antivortex pair creation in the condensate.
A detailed analysis of creation and annihilation of polariton
vortex-antivortex pairs in the optical parametric oscillator
regime is presented in Refs. 32 and 33. Vortices are an
important subject for investigation not only regarding the BKT
transition; they also contribute to the phenomenon of turbu-
lence in nonequilibrium systems.34 So far theoretical works on
vortices15,23,32 have approached the problem by introducing the
Gross-Pitaevskii (GP) equation for the wave function of lower
polariton condensate, considering the structure of half vortices
and vortices from the viewpoint of polariton polarization
features.

In the present work we confine our consideration to equi-
librium polariton condensates (without pumping and photon
decay from the cavity), discussing mere stationary vortical so-
lutions. Instead of using the GP equation for the wave function
of lower polaritons we choose a more general two-component
approach deriving a set of two separate equations of the GP
type with sources for the exciton and photon components of the
polariton condensate (in the strong-coupling regime).21 This
approach proves to be especially useful in cases when spatial
profiles of the condensate components do not coincide (e.g., in
strong traps where the localization radii of photon and exciton
condensate wave functions differ essentially35).

The paper is organized as follows. In Sec. II we introduce
all necessary notations, present general equations, and discuss
characteristic spatial scales of the problem. Section III is
devoted to deriving the stationary vortical solutions for the
two components of the polariton condensate separately. The
outcome of the analytical investigation is presented in Sec. IV,
whereas the discussion of numerical calculation results for all
values of parameters is given in Sec. V. Section VI contains
our summary and concluding remarks.
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II. GENERAL EQUATIONS

Within the framework of the mean-field approximation mi-
crocavity exciton polaritons in equilibrium at zero temperature
can be described by a set of two coupled equations as employed
in Refs. 21 and 35 which take into account particle transfer

between the photon and exciton subsystems of the polariton
condensate. While photons are described by the Schrödinger
equation, we use the Gross-Pitaevskii equation for condensed
excitons, with both equations containing source terms. Thus,
the set of equations for photon and exciton condensate wave
functions ψ(r,t) and χ (r,t) reads

⎧⎪⎪⎨
⎪⎪⎩

ih̄
∂

∂t
ψ(r,t) = − h̄2

2mph
∇2 ψ(r,t) + h̄�R

2
χ (r,t),

ih̄
∂

∂t
χ (r,t) = − h̄2

2mex
∇2 χ (r,t) + g|χ (r,t)|2χ (r,t) + h̄�R

2
ψ(r,t),

(1)

where mph = πh̄
√

ε/Lc is the cavity photon (longitudinal)
effective mass, L is the microcavity width, ε is the dielectric
constant of media, h̄�R is the energy of Rabi splitting between
the photon and exciton modes, and mex = me + mh is the
exciton mass. In these equations we neglect the spin degree of
freedom and consider the polariton condensate in the absence
of external potential (for simplicity).

We introduce the current densities of the condensates:

jψ (r,t) = − ih̄

2 mph
(ψ∗∇ψ − ψ∇ψ∗) = nψ

h̄

mph
∇Sψ,

jχ (r,t) = − ih̄

2 mex
(χ∗∇χ − χ∇χ∗) = nχ

h̄

mex
∇Sχ,

where nψ,χ and Sψ,χ are the densities and phases of the photon
and exciton components of the condensate, respectively, and

ψ = |ψ |eiSψ = √
nψeiSψ , χ = |χ |eiSχ = √

nχeiSχ . (2)

One can easily derive the set of explicit equations for the
densities and phases of the condensates:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nψ

∂t
+ divjψ = �R

√
nψnχ sin(Sψ − Sχ ),

∂nχ

∂t
+ divjχ = −�R

√
nψnχ sin(Sψ − Sχ ),

h̄
∂Sψ

∂t
+ mphv

2
ph

2
− h̄2

2mph

∇2√nψ√
nψ

+ h̄�R

2

√
nχ

nψ

cos(Sψ − Sχ ) = 0,

h̄
∂Sχ

∂t
+ mexv

2
ex

2
− h̄2

2mex

∇2√nχ√
nχ

+ V + gnχ + h̄�R

2

√
nψ

nχ

cos(Sψ − Sχ ) = 0.

(3)

Here vph and vex represent the velocities of the condensate
flows:

vph = h̄

mph
∇Sψ, vex = h̄

mex
∇Sχ . (4)

Introducing the coupled equations for the two condensates
in the above form (analogous to the traditional Gross-Pitaevskii
approach) we disregard the depletion of the condensates (both
thermal and due to interactions) and assume the conservation
of the total number of polaritons N = ∫

(|ψ |2 + |χ |2)dr.
The first two equations in (3) together yield the continuity

equation for the polariton condensate from which dN/dt = 0
follows immediately. Those equations also reveal that in the
stationary case the relative phase of the two components of
the condensate Sψ − Sχ should equal 0 or π . The equilibrium
lower polariton state corresponds to the relative phase π , while
the upper polariton state corresponds to Sψ − Sχ = 0.

In the search for topological defects such as vortices, one
should first analyze typical distances that characterize the
density variations taking place in the system. In the Thomas-
Fermi (TF) limit, that is, at the distances where the density
of the condensate changes slowly spacewise, the quantum
pressure terms (containing the gradients of densities) in the
third and fourth equations of the set (3) can be neglected
compared to the other terms. This happens when the distances
are much larger than the healing length, which for the
“exciton” equation [the fourth equation in (3)] yields a known
expression,36

ξex = h̄√
2mexgnχ

, (5)

while for the “photon” equation [the third equation in (3)]
it cannot be derived in the same way due to the absence of
the corresponding interaction term. The expression for photon
condensate healing length ξph will be obtained in Sec. III.
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III. STATIONARY VORTICES IN THE TWO-COMPONENT
POLARITON CONDENSATE

In the case of stationary solutions wave functions of the
condensate components evolve in time according to

ψ(r,t) = ψ(r)e−(i/h̄)(μ−E0)t , χ (r,t) = χ (r)e−(i/h̄)(μ−E0)t , (6)

where we imply zero detuning between the exciton and cavity
photon modes (E0 = πh̄c/L

√
ε) and assume the value of

chemical potential μ to be fixed by conservation of the full
number of particles in the system. The set of equations (1)
takes the simple form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− h̄2

2mph
∇2ψ(r) + (E0 − μ)ψ(r) + h̄�R

2
χ (r) = 0,

− h̄2

2mex
∇2χ (r) + (E0 − μ)χ (r) + g|χ (r)|2χ (r) + h̄�R

2
ψ(r) = 0.

(7)

The above set of equations admits different solutions,
including vortex states. For uniform condensates, the first
equation in (7) yields a simple algebraic relation between the
wave functions of the components which, being substituted to
the second equation, gives

g|χ |2 = gnχ = (h̄�R/2)2

(E0 − μ)

[
1 −

(
E0 − μ

h̄�R/2

)2
]

. (8)

Therefore all possible values of the chemical potential μ

(for lower polaritons) are enclosed within the limits E0 −
h̄�R/2 < μ < E0.

We are looking for vortical solutions of the equations (7)
which should be single valued and possess cylindrical sym-
metry relative to the rotation around the z axis. Hence, the
wave functions in cylindrical coordinates can be written in the
following form:

ψ(r) = √
nψ0 eisϕfψ

(
r

ξph

)
, (9)

χ (r) = √
nχ0 ei(sϕ−π)fχ

(
r

ξex

)
, (10)

where nψ0 and nχ0 are the unperturbed densities of the photon
and exciton condensates respectively and s is an integer
number.

The phases of the wave functions (9) and (10) correspond to
the circulation of the velocity fields over a contour around the z

axis
∮

vph,exdl = 2πsh̄/mph,ex which turns out to be quantized,
and it is also implied that the relative phase Sψ − Sχ remains
fixed and equal to π . At large distances from the vortex core
(in the TF approximation) the densities of the condensates
|ψ |2, |χ |2 must approach their uniform values nψ0, nχ0 and
the functions fψ and fχ tend to 1 while r → ∞. Since only
those vortical solutions are thermodynamically stable which
correspond to the lowest possible circulation value, hereafter
we consider the case s = 1 only:

ψ(r) = √
nψ0 eiϕfψ (η̃), χ (r) = −√

nχ0 eiϕfχ (η), (11)

where η̃ = r/ξph and η = r/ξex are the corresponding healing
lengths which can now be obtained from (7), and they are
given by [see also (5)]

ξph = h̄√
2mph(E0 − μ)

, ξex = h̄√
2mexgnχ0

. (12)

One can see now that since mph/mex ∼ 10−4, the healing
lengths of the condensate components in the general case may
drastically differ, depending on the number of particles in
the system [the relation between (E0 − μ) and gnχ0 is given
by (8)]. Thus, for most of the allowed values of chemical
potential, ξph � ξex (see Sec. IV) and the set of equations (7)
has two characteristic spatial scales. In the region r � ξex, the
substitution (11) yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

η

d

dη

(
η
dfψ

dη

)
− 1

η2
fψ − mph

mex

E0 − μ

gnχ0
fψ + mph

mex

h̄�R

2gnχ0

√
nχ0

nψ0
fχ = 0,

1

η

d

dη

(
η
dfχ

dη

)
− 1

η2
fχ − E0 − μ

gnχ0
fχ − f 3

χ + h̄�R

2gnχ0

√
nψ0

nχ0
fψ = 0,

(13)

while for the distances r � ξex the equations for the functions fψ,χ have the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

η̃

d

dη̃

(
η̃
dfψ

dη̃

)
− 1

η̃2
fψ − fψ + h̄�R

2(E0 − μ)

√
nχ0

nψ0
fχ = 0,

mph

mex

1

η̃

d

dη̃

(
η̃
dfχ

dη̃

)
− mph

mex

1

η̃2
fχ − fχ − gnχ0

E0 − μ
f 3

χ + h̄�R

2(E0 − μ)

√
nψ0

nχ0
fψ = 0,

(14)
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with the constraints fψ,χ (0) = 0 and fψ,χ (∞) = 1 in both
cases. The set of equations (13) describes a vortex in
the exciton component of the condensate, and the set of
equations (14) treats that of the photon component.

Another effect of the difference between the photon and
exciton effective masses is that the flow velocities (4) of
the two components inside the polariton vortex are different.
Since v(r) ∼ h̄/mr (depending on the distance from the vortex
center), the photon subsystem rotates much faster than the
exciton one.

IV. ANALYTICAL SOLUTION

For simplicity of further analysis we introduce a dimen-
sionless parameter a = 2(E0 − μ)/h̄�R which ranges from 0
to 1 depending on the value of μ. The ratio between the healing
lengths (12) is given by

ξph

ξex
=

√
mex

mph

√
1 − a2

a2
. (15)

According to the definition of the parameter a, Fig. 1 shows
that for all values of the chemical potential μ but the μmin =
E0 − h̄�R/2 the healing length of the exciton component is
much smaller than that of the photon condensate.

It is important to note here that the healing lengths (12)
were obtained analytically from the comparison of terms in
Eqs. (7) in reasonable assumption that the polariton system
contains enough particles for the interaction to play a role.
In dilute cases the term containing χ3 will be much smaller
than the linear terms containing χ , and the healing length for
the exciton component of the condensate may be expressed
in a different way. Accordingly the relation (15) should be
considered fully valid for systems with high pump power and
less applicable for rarefied gases.

The boundary condition at r → ∞ yields the relation be-
tween the unperturbed densities of the condensate components√

nχ0/nψ0 = a. Taking this into account along with (8), the set

FIG. 1. (Color online) Ratio between the healing lengths for the
exciton and photon components of the polariton condensate ξex/ξph

versus a = 2(E0 − μ)/h̄�R . As a increases, the ratio slowly grows
yet always remains much smaller than unity, and steeply rises to
infinity only when a approaches its limit 1 (see inset), which is never
physically realized (see the text).

of equations (13) can be rewritten for short distances r � ξex

as follows:⎧⎪⎪⎨
⎪⎪⎩

f ′′
ψ + f ′

ψ

η
− fψ

η2
− mph

mex

a2

1 − a2
(fψ − fχ ) = 0,

f ′′
χ + f ′

χ

η
− fχ

η2
− a2

1 − a2
fχ − f 3

χ + 1

1 − a2
fψ = 0.

(16)

The factor mph/mex is of the order of 10−4 which for most
values of a but unity reduces the first equation in (16) to
f ′′

ψ + f ′
ψ/η − fψ/η2 = 0. At the scales r � ξex the nontrivial

solution for the photon condensate wave function tends to zero
as fψ (η → 0) ∼ η. The second equation for the function fχ

describes a vortex in the exciton subsystem. At larger distances
η � ξex, the spatial derivatives can be neglected which leads
to a nonlinear algebraic equation connecting fχ with fψ :

− a2

1 − a2
fχ − f 3

χ + 1

1 − a2
fψ = 0. (17)

Besides, at these distances the function fχ should approach
its limiting value 1; therefore it may be supposed that fχ =
1 − δ, δ 
 1, and an approximate relation between the exciton
and photon functions may be obtained:

fχ = 2 − 2a2 + fψ

3 − 2a2
, (18)

which should be valid for all distances much larger than ξex,
which means everywhere far from the exciton vortex core.

In the region ξex 
 r � ξph one ought to solve the set of
equations (14) which reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′′
ψ + f ′

ψ

η̃
− fψ

η̃2
− fψ + fχ = 0,

mph

mex

(
f ′′

χ + f ′
χ

η̃
− fχ

η̃2

)
− fχ − 1 − a2

a2
f 3

χ + 1

a2
fψ = 0.

(19)

It is easily seen that with the derivative terms neglected,
the second equation of this set is equivalent to (17), while the
first one with the substitution (18) yields the equation for the
function fψ :

f ′′
ψ + f ′

ψ

η̃
− fψ

η̃2
− 2a(1 − a2)

3 − 2a2
fψ + 2a(1 − a2)

3 − 2a2
= 0,

which with the given boundary condition has an analytical
solution:

fψ (η̃) = π

2
[I1 (α η̃) − L1 (α η̃)] , (20)

where I1(αη̃) and L1(αη̃) represent modified Bessel and Struve
functions, and α =

√
2a(1 − a2)/(3 − 2a2).

Equations (20) and (18) give accurate solutions of the
initial set of equations (7) for everywhere in space except the
region r � ξex around zero where the photon function fψ tends
linearly to zero while the exciton function fχ is a solution of the
second equation in (16). The results of analytical calculation
are shown in Fig. 2.
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FIG. 2. (Color online) Analytical solution of the set of
equations (19) for a = 0.1 (for this value, η̃ = 5 corresponds to ≈15
μm). The function fψ (blue dotted line) is given by (20). The function
fχ (red solid line) is calculated as an exact solution of the cubic
Eq. (17). Black dashed line represent the approximation for fχ given
by the formula (18) which appears to be invalid in the region of the
exciton vortex core (grey field); therefore these dependencies can be
considered correct only starting from the region of the photon vortex
core characteristic size and further.

V. RESULTS OF NUMERICAL CALCULATION
AND DISCUSSION

We solved the problem numerically on the exciton scale in
order to obtain the solutions which are valid at all distances.
Thus, we have solved the set of equations (16) for different
values of the parameter a. The results of the calculations are
shown in Fig. 3.

For small values of a which correspond to large values of
the chemical potential and therefore to the large number of
polaritons in the system, the effect is most pronounced (as
was anticipated above in Fig. 1): The vortex in the exciton
condensate heals about one hundred times faster than that of
the photon subsystem [Fig. 3(a) and the relation (15)].

As the number of particles decreases (i.e., a is growing)
we find that the healing lengths become closer to each
other; therefore the components are less separated in space
[Fig. 3(b)], although the difference between ξex and ξph remains
about one order of magnitude [see (15)], and it becomes really
small only in the case when the number of polaritons tends
to zero, the chemical potential μ approaches its minimal
value E0 − h̄�R/2, and a increases up to almost unity
[see Fig. 3(c)].

It can be also seen from the results of the numerical
calculation that, as was predicted in the formula (12), the
size of the photon vortex core grows with increasing of the
chemical potential (i.e., decreasing a). Therefore the polariton
vortex should be expected to become larger with the increase
of the pump power in the experimental setups, as it is the
photon component of the polariton vortex that is detected on
experiment.

There is one more peculiar feature of the two-component
condensate considered. As was mentioned before, the unper-
turbed densities of the components are not equal but relate to

(a)

(b)

(c)

FIG. 3. (Color online) Vortical solutions of the set of GP-like
equations for the two-component polariton condensate as functions of
the radial coordinate measured in the units of the exciton condensate
healing length η = r/ξex for (a) a = 0.1, (b) a = 0.5, (c) a = 0.9.
Red circles represent fχ (η); black squares represent fψ (η).

each other as nχ0/nψ0 = a2. The condensate density profiles
possess not only different healing lengths but also efficiently
different uniform values at infinity (depending on the value
of chemical potential). We plot nψ and nχ in Fig. 4 for the
intermediate value a = 0.5. For lower values of a (higher
μ), the effect becomes even more dramatic: For a = 0.1 the
difference between the densities is of two orders of magnitude.
On the contrary, as a increases (smaller μ), the densities tend
to heal at similar radius and to similar uniform values.

We would like to note that in the case of resonance
the Hopfield coefficients29 are equal and the equilibrium
concentrations of photons and excitons in the system should
seemingly be equal as well. The result demonstrated above can
be explained by the presence of exciton-exciton interactions (in
the case of no interactions g → 0 in our framework one gets
nψ0 = nχ0). This remark suggests an experimental method
to evidence the different spatial distribution of the photon
and exciton components of the polariton condensate: In the
case of resonant pumping, the increase in pump power should
lead to the decrease of the exciton fraction in the system and
therefore the nonlinear optical properties of the condensate
should vanish.
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(a)

(b)

FIG. 4. (Color online) (a) The (normalized) densities of the
photon and exciton components of the condensate as functions of
distance from the vortex center for a = 0.5. The densities are given
by nχ (r) = nχ0f

2
χ and nψ (r) = nψ0f

2
ψ , respectively, where nχ0 and

nψ0 are the densities of the uniform condensates which ratio equals
a2 (see the text). The distance r is calculated from the dimensionless
value η = r/ξex for parameter values h̄�R = 5 meV, mex = 0.153me.
(b) The core region.

VI. CONCLUSIONS

In the presented study, we have demonstrated that the
approach based on the two separate Gross-Pitaevskii-like
equations for the photon and exciton components of the
polariton condensate allows us to obtain the results concealed
from the traditional one-component GP approach for lower
polaritons. Here we analyzed the impact of the sufficiently
high ratio between the effective masses of an exciton and cavity
photon on the structure of the polariton vortex. We have shown
that it leads to the distinctive difference between the healing
lengths of the vortices in the exciton and photon subsystems

of the condensate. The core size of an excitonic vortex appears
to be much smaller than that for the photons in almost all
regimes (at almost all values of the chemical potential); hence
unobserved excitons exist inside the photon vortex core at
almost all pump powers. The uniform values of the exciton
and photon densities at infinity are also shown to be essentially
different. Thus, while the exciton and photon components are
coupled to each other in the momentum space, they may have
essentially differently scaled distributions in the coordinate
space. From the polaritons point of view, the particles with
the small wave vectors (far from the vortex core) become
more photonic as the density is increasing, while the particles
with the growing excitonic fraction appear in the vortex center
which corresponds to higher polaritons’ wave vectors.

This being shown, we would like to emphasize that while
the photonic component of the polariton condensate is detected
in near-field photoluminescence, the effects demonstrated
in the present paper could be experimentally observed by
measuring local nonlinear optical properties of the exciton
component of the condensate (see, e.g., Ref. 37), and the
exciton decay could also be locally observed in the near field.

It is also important to note that the solutions for vortices
found in this work should also be valid for half vortices,7,15

with the difference that only one spin component of the
polariton condensate will be perturbed while the other one
will remain uniform in space.

In view of the demonstrated results we would like to make
a link to the other systems with multiple coherence lengths
such as multiband superconductors with different coherence
lengths for different bands (see Ref. 38 and references therein).
The relation between these systems and the two-component
polariton condensate will be discussed elsewhere.
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