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Spin transistors based on spatial control of electron spins in double quantum wells
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A system of two quantum wells (QWs), one made of HgCdTe and the other of HgCdMnTe, subjected to
electric and magnetic fields F and B parallel to the growth direction, is proposed and described theoretically. It
is shown that in such a system the spin g factor of mobile electrons strongly depends on the sign and magnitude
of the electric field. By adjusting F at a constant B one can transfer almost all the electrons into one or the
other QW and polarize their spins along the desired orientation. A change in B at a constant F can produce a
similar transfer and polarization effect. It is indicated that the above system can be used to construct electric and
magnetic spin transistors in the parallel-transport configuration.
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I. INTRODUCTION

Spin systems in semiconductors have always been an
important part of solid state investigations but in recent years
they have attracted great interest due to possible spintronic
applications. In order to process quantum information one
needs to manipulate the local spins quickly and coherently,
which could be done by applying external magnetic fields.
This, however, requires their precise control at small length
scales, which is not easy. Salis et al.1 demonstrated that one can
control the spin splitting and spin coherence using an external
electric field, employing parabolic Ga1−xAlxAs quantum wells
(QWs) and manipulating the electron wave functions within
such wells. The experiments of Salis et al. were described by
the present authors2 using the k · p theory for nonparabolic
bands. The k · p theory was adapted to heterojunctions in
which the effective mass and the spin g factor can depend
not only on the energy but also on the spatial variable along
the growth direction.

In the present work we propose and describe a system that
will manipulate electron spins in more sophisticated ways
that those realized in Ref. 1. Three additional possibilities
are envisaged. First, the electron spin will respond not only
to the intensity but also to the sign of the electric field F .
Second, the spins will respond in a nonconventional way
to the magnitude of the magnetic field B. Third, it will
be possible to create reservoirs of spin-polarized electrons
in specific spatial regions. The proposed system consists of
two rectangular semiconductor quantum wells separated by a
barrier. The left well is made of HgCdMnTe alloy, the right
one of HgCdTe alloy, and the barriers are made of CdTe. The
chemical compositions are chosen to make the well depths
exactly or almost equal to each other. The alloy HgCdMnTe is
a dilute magnetic semiconductor (DMS) in which an external
magnetic field creates an additional magnetization by ordering
the Mn ions. This additional magnetization results in a higher
spin splitting of electron energies characterized by a higher
effective spin-splitting factor g. By applying a positive or
negative external electric field parallel to the growth direction,
one can transfer free electrons to either the magnetic or
nonmagnetic well, which will strongly affect their overall spin
g factor. In this way, g will depend not only on the electric
field intensity but on its sign as well. The other properties will

become clear once the system is physically and mathematically
described below.

In the last part we consider the possibility of using the
spatial control of spins to construct an electric or a magnetic
spin transistor in the parallel-transport configuration. It is
shown that one should be able to change spin currents using
electric and magnetic fields.

II. THEORY

Since the proposed alloys are relatively narrow-gap ma-
terials, we use the three-level P · p model (3LM) for their
band structures. In our description the energy gap and other
band parameters are functions of z. The model explicitly takes
into account eight bands arising from the �v

7 , �v
8 (doubly

degenerate), and �c
6 levels at the center of the Brillouin zone

and treats the distant (upper and lower) levels as a perturbation.
The resulting bands are spherical but nonparabolic. Our
formulation includes external magnetic and electric fields
parallel to the growth direction. The multiband P · p theory,
which is the k · p theory generalized for the presence of
external magnetic B and electric F fields, has the form2

∑
l

[(
P 2

2m0
+ El + Hl

M + V (z) + eFz − E
)

δl′l

+ 1

m0
pl′l · P + μBB · σ l′l

]
fl = 0, (1)

where E is the energy, P = p + eA is the kinetic momentum,
A is the vector potential of the magnetic field B, and σ l′l =
(1/�)〈ul′ |σ |ul〉. Here σ are the Pauli spin matrices, � is the
volume of the unit cell, ul are periodic amplitudes of the
Luttinger-Kohn functions, μB = eh̄/2m0 is the Bohr mag-
neton, pl′l are the interband matrix elements of momentum,
and Hl

M is the exchange interaction between mobile electrons
and those localized around the Mn ions. The sum in Eq. (1)
runs over all bands l = 1,2, . . . ,8 included in the model,
l′ = 1,2, . . . ,8 runs over the same bands, and El are the
band-edge energies (see below). Within the 3LM there exist
the interband matrix element of momentum P0 and that of
the spin-orbit interaction �0 (see Ref. 3), as well as two
matrix elements related to the magnetic Mn ions: α and β

(see Refs. 4,5). The latter represent constants of the s-d and
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p-d exchange integrals related to the conduction band |S〉 and
valence bands |P 〉, respectively.

For rectangular wells the potential V (z) describes
conduction-band offsets and barriers. The valence offsets are
automatically determined by the corresponding energy gaps.

Equation (1) represents an 8 × 8 system of equations for
eight envelope functions fl(r). Since we are interested in the
eigenenergies and eigenfunctions for the conduction band, we
express the valence functions f3, . . . ,f8 via the conduction
functions f1 and f2 for the spin-up and spin-down states,
respectively. The magnetic field B ‖ z is described by the
asymmetric gauge A = [−By,0,0] and the resulting enve-
lope functions have the general form fl = exp(ikxx)�n[(y −
y0)/L]χl(z), where �n are the harmonic oscillator functions,
and y0 = kxL

2, in which L = (h̄/eB)1/2 is the magnetic radius.
After some manipulation the effective Hamiltonian for the f1

and f2 functions is

Ĥ =
[

Â+ K̂

K̂† Â−

]
, (2)

where

Â± = V (z) + eFz ± AM

2
− h̄2

2

∂

∂z

1

m∗(E,z)

∂

∂z

+ P 2
x + P 2

y

2m∗
I (E,z)

± μBB

2
g∗(E,z), (3)

in which the effective mass is

m0

m∗(E,z)
= 1 + C − 1

3
EP0

(
2

Ẽ0
+ 1

G̃0

)
, (4)

and the g factor is

g∗(E,z) = 2 + 2C ′ + 2

3
EP0

(
1

Ẽ0
− 1

G̃0

)
, (5)

where Ẽ0 = E0 − E + V (z) + eFz and G̃0 = G0 − E +
V (z) + eFz. Here G0 = E0 + �0. The spin splitting is related
to the band structure [the last terms in Eq. (3)] and the
DMS interaction. Explicitly, g∗

M (B,z) = AM/μBB, where
AM = xα〈Sz〉 and x is the mole fraction of magnetic ions.
The average spin component parallel to the applied magnetic
field is 〈Sz〉 = −S0BS(y), the total Mn spin is S = 5/2, and
BS(y) is the Brillouin function. We take x = 0.08, S0 = 1.02,
α = 0.61 eV, and β = −0.62 eV.6 One can combine the band
structure and DMS contributions to the spin splitting in one
effective g∗

tot factor. The small off-diagonal matrix elements
K̂ and K̂† in Eq. (2) appear due to inversion asymmetry of
the system along the growth direction z, which results in an
additional Bychkov-Rashba spin splitting (see below). The
effective mass and the g factor in Eqs. (4) and (5), respectively,
are written neglecting small contributions of the semimagnetic
β terms in the valence bands. The equations Â+f +

n = E+
n f +

n

and Â−f −
n = E−

n f −
n are first solved separately for the system

of two QWs at fixed values of the fields B and F using
simple boundary conditions at the interfaces for the functions
and their derivatives χ |+ = χ |− and [(1/m∗)∂χ/∂z)]|+ =
[(1/m∗)∂χ/∂z)]|−. The transverse motion in the x-y plane
is quantized into the Landau levels h̄ωc(n + 1/2). The electric
field term eFz is small but not negligible compared to the
offsets of the QWs.
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FIG. 1. Calculated spin g factor for the n = 0 Landau level in
two quantum wells of equal depths versus external electric field F

parallel to the growth direction for fixed magnetic fields B. It is seen
that the g factor sharply depends on the magnitude and sign of F .
The widths of both wells are 9 nm; the barrier width is 4 nm.

III. SPATIAL SPIN CONTROL

We will consider two structures. In the first, the chemical
compositions of the QWs are such that without external fields
their depths (conduction-band offsets VC) are identical and
equal to 0.7915 eV. In the second, the the depth of the left
HgCdMnTe QW is 0.7915 eV, while the depth of the right
HgCdTe QW is 0.7855 eV. The zero of energy E is taken
at the bottom of the left QW. In Figs. 1 and 2 we show the
calculated electron spin g values for the two structures versus
an external electric field F at fixed magnetic field intensities
B. It is seen that, indeed, the g values strongly depend not only
on the value of F but also on its sign. Generally speaking, if
the positive electric field pushes the electrons into the DMS
QW they experience the additional magnetization of the Mn
ions and the overall g value is higher. It is also seen that, by
changing the chemical compositions of the alloy (see Table I)
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FIG. 2. As Fig. 1 for two QWs of slightly different depths. The
overall picture is similar to that in Fig. 1 but the scale of the electric
fields is considerably shifted.
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TABLE I. Band parameters of alloys for different chemical
compositions x and y, as used in the calculations; C and C ′ are
far-band contributions to the band-edge values. The interband matrix
element of momentum P0 is taken to be independent of x and y:
EP0 = 2h̄2P 2

0 /m0 = 18 eV.

CdTe Hg.62Cd.3Mn.08Te Hg.53Cd.47Te Hg.525Cd.475Te

E0 (eV) −1.606 −0.495 −0.5125 −0.5211
G0 (eV) −2.516 −1.510 −1.5126 −1.5203

C −0.104 −0.104 −0.104 −0.104
C ′ −0.479 −0.479 −0.479 −0.479

VC (eV) 0.7915 0.7915 0.7855
m∗

0/m0 0.093 0.0343 0.0353 0.0359
g∗

0 −1.66 −15.25 −14.437 −14.093

and the corresponding depth of the right QW (without Mn
ions), one strongly shifts the scale of the electric fields, while
the overall pattern of the g behavior and its dependence on B

remain similar. Since we assume that the number of mobile
electrons is small and the temperature is low, so the electrons
will occupy the lowest Landau and spin levels, one can use
Figs. 1 and 2 to decide which spin level will be occupied for
given values of F and B. As far as the wave functions in the
system of two QWs are concerned, there are two factors that
determine where the wave function (WF) is predominantly
located. First, if the electron masses are the same for both
wells, the WF is located mostly in the deeper QW. Second, if
both QWs have the same depth, the WF is located mostly in
the QW with the higher electron mass. Qualitatively, a positive
electric field lowers the left well and raises the right one, which
tends to shift the wave functions to the left QW.

We consider first the case of two QWs of equal depths.
Taking F = 0 and 2 � B � 4 T, it follows from Fig. 1 that the
spin factor g is positive, so the electrons will occupy the lowest
level |0−〉. The calculated WF for this case is shown in Fig. 3,
and it is seen that the WF is almost entirely concentrated in
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FIG. 3. Calculated wave functions of |0+〉 and |0−〉 states for two
QWs of equal depths at vanishing electric field F and fixed magnetic
fields B (indicated by superscripts). Spin-up functions, solid lines;
spin-down functions, dashed lines. Electrons in the |0−〉 state are
located mostly in the left QW.
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FIG. 4. As Fig. 3 but for electric field F = −5 kV/cm. Electrons
in the lowest |0+〉 state are located in the right QW.

the left QW, which means that the electrons will be located
there and they will have the spin-down orientation. If now
one applies F = −5 kV/cm and 1 � B � 4 T, it is seen from
Fig. 1 that at these fields g is negative and the electrons will
occupy the |0+〉 state. The calculation for this situation is
shown in Fig. 4 and it is seen that the WF for the |0+〉 state is
strongly concentrated in the right QW. Thus, the application
of an electric field F at constant B transfers electrons from the
left to the right QW and changes their spin orientation from
spin down to spin up.

A similar effect can be obtained in a system of QWs having
different depths. Taking F = 0 and 1 � B � 4 T, it is seen
in Fig. 2 that in this regime the spin g value is positive, so
the occupied state is |0−〉. It follows from Fig. 5 that the
calculated WF for the spin-down state is in the left QW and
the electrons will be located there. If now one applies the
fields F = −5 kV/cm andB = 1 T, the g value is negative
(see Fig. 2) and the occupied state is |0+〉. The calculated WF
for this situation is shown in Fig. 6; one can again see that
the WF for this state is almost completely concentrated in the
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FIG. 5. As Fig. 3 but for two QWs of different depths at F = 0.
Electrons in the lowest |0−〉 state are located in the left QW.
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FIG. 6. As Fig. 5, but for F = −5 kV/cm. At small magnetic
fields B the electrons are in the |0+〉 state and they are located in the
right QW, while for high B they are in the |0−〉 state and are located
in the left QW (see the text).

right QW. Thus, by changing the electric field one can move
electrons from the left to the right QW and change their spin
orientation from spin down to spin up.

Finally, we consider the case of unequal QWs, taking
F = −5 kV/cm at different magnetic fields. For B = 1 T
one reads from Fig. 2 that g ≈ −4.6, so the electrons will
be in the |0+〉 state and from Fig. 6 one concludes that they
will be concentrated in the right QW. If now for the same
F = −5 kV/cm the magnetic field is changed to 2 � B � 4 T,
it follows from Fig. 2 that g becomes positive, so the occupied
state is |0−〉. The wave function for this state at the above
fields is strongly concentrated in the left QW; see Fig. 6. Thus
by changing the intensity of B alone at a constant electric field
F one will reverse the electron spin and transfer electrons from
the right to the left QW. In other words, electrons will move
along the magnetic field, which is an unusual effect.

An asymmetric change of the spin g value by an external
electric field can be realized with one quantum well also, but
a one-well structure is less effective than the ones considered
above. In Fig. 7 we report our calculations for the structure
shown in Fig. 3, but with the middle barrier reduced to zero
width. The resulting well is asymmetric, and the electric field,
by displacing the wave function, makes the influence of the
DMS (left) part stronger or weaker. As follows from Fig. 7,
the g value depends in fact on the electric field, but not so
strongly as in Fig. 1. A physical reason is seen in the inset:
in the one-well structure the wave function is not as precisely
concentrated as in the two-well arrangement. Moreover, in the
one-well structure the spin-up and spin-down wave functions
are almost not separated spatially.

As mentioned above, an asymmetric structure of two QWs
with a nonvanishing electric field applied along the growth
direction z will result in an additional Bychkov-Rashba spin
splitting and spin mixing due to structure inversion asymmetry
(SIA).7,8 We considered this effect using Eq. (2). The SIA
terms couple |0+〉 and |1−〉 states. It turns out that the
additional spin splitting is quite small and an admixture of
opposite spin constitutes not more than 7.6% of the the total
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FIG. 7. Spin g factor for the n = 0 Landau level in one quantum
well versus the external electric field F parallel to the growth direction,
as calculated for two magnetic fields. The inhomogeneous well
corresponds to the structure shown in Fig. 3 with the middle barrier
reduced to zero width. Note the difference in scale for the electric
field, as compared to Fig. 1. The inset shows the well profile and
calculated wave functions. The two spin states almost coincide.

wave function squared at electric fields of our interest. It should
be mentioned that the same mechanism was used by Nowack
et al.9 to control a single-electron spin in a quantum dot by an
electric field.

Spin-polarized electrons were created in the past by optical
orientation (OO), exciting III-V semiconducting compounds
(mostly GaAs) with circularly polarized light. Fabricated
sources were subsequently used for experiments in various
domains of physics: electron collisions with atoms, surface
magnetism, parity nonconservation in inelastic scattering at
high energies, etc.10 The system we propose offers important
advantages in comparison with OO. First, it creates an
almost completely spin-polarized electron gas, while OO
gives 40%–50% efficiency. Second, due to spin splitting by
the magnetic field, electrons stay a long time in their spin
state, while in the OO regime they quickly recombine. Third,
the spin-polarized electrons are in spatial reservoirs which
should facilitate applications. Also, electrons with polarized
spins were spatially confined in so-called spin superlattices
(SSs) made of periodic layers of nonmagnetic and DMS
materials.11–13 In an external magnetic field the DMS layers,
characterized by higher spin g factors, have different energies
from the nonmagnetic layers, and the electrons with opposite
spins spatially separate, occupying lower energies for their
spin orientation. Compared to SSs, our system is considerably
more flexible due to the electric field. The latter allows one (1)
to reverse the spin g factor, and (2) to put the spin-polarized
electrons into the chosen QW. In addition, in SSs the spin
separation is not stable since the electrons will eventually
relax their spins and go to the contiguous layers in order to
arrive at the lowest possible energy. In our case the system
is stable because the electric field makes one QW lower than
the other.

Finally, our system offers the following interesting possi-
bility. If the temperature is raised, so that both |0−〉 and |0+〉
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HgCdTe CdTeCdTe

Fd
Fs
B

CdTe HgCdMnTe

FIG. 8. A scheme for electric and magnetic spin transistors
in the parallel-transport configuration based on the double-well
heterostructures shown in Fig. 3 or 5. Electron trajectories in the
ballistic regime are indicated. If the left and right electrodes in the
back can drain only spin-down or spin-up electrons, respectively, the
spin currents in each well can be controlled by the intensities of the
electric field Fs and magnetic field B.

levels are populated, it follows from Figs. 3 and 6 that, for
3 � B � 4 T, the spin-down electrons will be in the left QW
while the spin-up electrons will be in the right QW. Thus the
system spatially separates electrons with opposite spins, which
amounts to an effective Stern-Gerlach experiment. The latter
is, as is well known, not possible with electrons in a vacuum;
see Ref. 14.

IV. SPIN TRANSISTORS

The two-well structures proposed above may be used
to control spin currents via electric and magnetic fields in
the parallel-transport configuration. The proposed scheme is
shown in Fig. 8. In addition to the electric field Fs parallel to the
growth direction, as considered above, one needs an electric
field along the interfaces which will drive the parallel currents.
Suppose the left electrode in the back of the structure can
drain only the spin-down electrons, while the right electrode
can drain only the spin-up electrons. For the small number of
electrons only the lowest spin state is occupied. Thus for a
positive g value we are interested in the spin-down current. If
now, for example, B and Fs are the field intensities indicated
in Fig. 3 (in particular Fs = 0), the left well will conduct the
spin-down parallel current. If one applies a small negative
field Fs, the probability of finding the spin-down electrons

in the left QW diminishes. As a result the spin-down current
in the left QW becomes smaller. The same reasoning applies
to the spin-up current in the right QW for different values of
Fs. If one raises the temperature or sends enough electrons
to populate both the spin-up and spin-down lowest states,
one can have a spin-up parallel current in one well and a
spin-down current in the other. As follows from the above
reasoning in Sec. III, one can also control the probability of
finding the electron wave function in a given QW using a
magnetic field alone at a constant electric field. Consider as
an example the case shown in Fig. 4 at higher temperatures,
when both spin states are populated. It can be seen that the
spin-down wave function in the left QW strongly diminishes
with increasing magnetic field. This means that one can change
the corresponding spin-down parallel current in the left QW
using the magnetic field intensity. Thus the above configuration
can lead to both electric and magnetic spin transistors.

If the driving parallel field Fd is much stronger than the Fs

field, one has the standard crossed-field Fd ⊥ B configuration.
The electron orbit in this case represents a cycloid parallel to
the interfaces, as indicated in Fig. 8. One then deals with the
standard transverse magnetoresistance situation. If the field
intensities Fs and Fd are comparable, one deals with a resultant
field which is not perpendicular to the magnetic field and the
electron trajectory will be more complicated. After a scattering
event, the electron begins to move along the electric field. If the
relaxation time is very short, it could be more advantageous
to direct Fd along the direction of the wells. As to electron
mobilities in the parallel transport, it has been demonstrated
that, in good samples, they are comparable to the bulk values.15

For short devices one will then deal with the ballistic regime.

V. SUMMARY

A heterostructure of two interacting quantum wells is
devised that can spatially contain spin-polarized electrons by
means of electric and magnetic fields parallel to the growth
direction. It is proposed to make one QW of the dilute magnetic
semiconductor HgCdMnTe and the other of the nonmagnetic
material HgCdTe, which will allow one to strongly influence
the overall spin g factor, including its change of sign. It is
indicated how in such a system one can put spin-polarized
electrons into one or the other QW and control their spin
orientation. By employing the proposed scheme one can
construct an electric or magnetic spin transistor by driving
spin-polarized electron currents in each QW parallel to the
interfaces.
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