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Covalency, double-counting, and the metal-insulator phase diagram in transition metal oxides
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Dynamical mean field theory calculations are used to show that for late transition metal oxides a critical
variable for the Mott/charge-transfer transition is the number of d electrons, which is determined by charge
transfer from oxygen ions. Insulating behavior is found only for a narrow range of d occupancy, irrespective
of the size of the intra-d Coulomb repulsion. The result is useful in interpreting “density functional + U”
and “density functional plus dynamical mean field” methods in which additional correlations are applied to a
specific set of orbitals and an important role is played by the “double counting correction” which dictates the
occupancy of these correlated orbitals. General considerations are presented and are illustrated by calculations
for two representative transition metal oxide systems: layered perovskite Cu-based high-Tc materials, an orbitally
nondegenerate electronically quasi-two-dimensional system, and pseudocubic rare earch nickelates, an orbitally
degenerate electronically three-dimensional system. Density functional calculations yield d occupancies very far
from the Mott metal-insulator phase boundary in the nickelate materials, but closer to it in the cuprates, indicating
the sensitivity of theoretical models of the cuprates to the choice of double counting correction, and corroborating
the critical role of lattice distortions in attaining the experimentally observed insulating phase in the nickelates.
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I. INTRODUCTION

The strong electronic correlations characteristic of transi-
tion metal oxides pose a problem of long-standing interest1,2

and great current importance.3–7 In transition metal ox-
ides the important low-energy electronic states are derived
from the transition metal d orbitals. In a simple ionic
picture the ground state corresponds to a dn configuration
for each transition metal ion, with d electron number n

depending on material. The correlation energy cost involved
in changing the d occupancy, conventionally denoted by
U , is defined as U = E[dn+1] + E[dn−1] − 2E[dn] and is
typically large. In a ground-breaking paper Mott1 argued
that if U were large enough relative to the bandwidth then
electron repulsion would prohibit conduction, at least at integer
valence.

Mott’s concept was refined in an important way by Zaanen,
Sawatzky, and Allen8 who noted that correlated electron
materials of interest typically contain ligands (for example
the O atoms in transition metal oxides) which are close
enough in energy to the chemical potential that one must also
consider the transfer of an electron from a ligand to a transition
metal site. Reference 8 defined the charge transfer energy
ECT = E[dn+1] − E[dn] − εp, with −εp being the energy
needed to create a hole in a ligand orbital, and demonstrated
that if U were large but ECT < U then the physics would
be controlled by ECT with U playing a relatively minor role.
Implicit in this argument is a neglect of correlations on the
oxygen sites; the justification is that the number of ligands is
large enough and the hole density on the ligands small enough
that configurations involving doubly occupied ligand sites
may be neglected. The resulting “charge transfer insulator”
paradigm is central to the conventional understanding2 of the
physics of transition metal oxides.

While density functional band theory (DFT) is the
workhorse of materials science,9 it does not capture the physics
of the Mott/charge-transfer insulator transition: theoretical
study of charge transfer insulators and other correlated
electron materials requires methods which include additional
correlations. Such “beyond-DFT” methodologies require the
identification of a set of orbitals whose correlations are to be
treated more accurately, an ansatz for the extra interactions
operating among these orbitals, a method of solution of corre-
lation problem, and a prescription for embedding the correlated
orbitals into the full electronic structure. In the beyond-DFT
studies of transition metal oxide materials published to date,
the correlated orbitals are taken to be all or a subset of the tran-
sition metal d states, the extra interactions are matrix elements
of the Coulomb interaction, projected onto the relevant part of
the d manifold and screened by the other degrees of freedom
in the solid, and the method of solution is either a Hartree
approximation, which gives the widely used “DFT + U”10

approach or dynamical mean field theory (DMFT), which gives
the “DFT + DMFT”3,4 approach. The crucial feature of the
embedding is the “double counting correction”,10–12 which re-
moves correlation contributions from the DFT single-particle
energies. The double counting correction plays a particularly
significant role in charge transfer insulators because it affects
the value of the p-d energy difference which is crucial to
the physics. However, the double counting correction is not
well understood theoretically: several different choices are
commonly used10–12 but no exact prescription is known.

In this paper we argue that the double counting problem
should be recast as a problem of determining the occupancy Nd

of the correlated orbitals. Expressing the problem in this way
reveals a dramatically simplified picture of the metal-insulator
transition in which the only important variables are the
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correlation strength and Nd . The complicated real-materials
effects of ligand dispersion and ligand–transition-metal hy-
bridization and the various theoretical issues related to double
counting and other embedding aspects are seen to affect the
phase boundary and spectra only via their effects on Nd , as long
as well localized orbitals are chosen. Expressing the problem in
this way also highlights an important but perhaps underappre-
ciated aspect of the DFT + DMFT procedure:3,4 The physics
predicted by this method is to a large degree controlled by
the choice made for the double-counting correction. The rest
of this paper is organized as follows. Section II outlines our
theoretical approach, Sec. III presents results obtained using
beyond-DFT methods for rare earth nickelates and cuprates,
and Sec. IV gives a discussion and conclusion.

II. THEORETICAL APPROACH

A. Formalism

In this paper we use the DFT + DMFT methodology.3,4,11,13

In this procedure one defines in each unit cell j (central
position Rj ) a set of “correlated orbitals” φa

j (r − Rj ) (we
discuss the mechanics of defining the φa below). Then, fol-
lowing the formal procedure outlined in Ref. 4 one constructs
a functional �[ρ,Ĝloc] of the charge density ρ(r) and an
auxiliary local Green function Ĝloc. � may be formally defined
in terms of the standard Kohn-Sham density functional and the
Luttinger-Ward functional of Ĝloc. Extremizing the functional
leads to the Kohn-Sham-Dyson equation relating the self
energy �̂ and Green function Ĝ, which are matrices in the
full single-particle Hilbert space:

Ĝ(ω) = (ω1 − Ĥks − �̂(ω))−1. (1)

The self energy is obtained as the functional derivative of
the Luttinger-Ward functional with respect to Ĝloc and the
equations are closed by a self-consistency equation relating
Ĝloc to the components 〈φa|Ĝ|φb〉 of Ĝ. For details see for
example Ref. 4.

We construct and solve the Kohn-Sham Hamiltonian using
the generalized gradient approximation (GGA) [typically via
the Vienna Ab-initio Simulation Package (VASP)14–17 but in
selected cases using the WIEN2K package].18

To obtain the self energy we use the single-site dynam-
ical mean field approximation.19 This is generally accepted
as containing the essence of the Mott and charge-transfer
metal-insulator transition physics and is widely used in
DFT + DMFT studies. Multisite (“cluster”) methods are too
computationally expensive to be practical for DFT + DMFT
calculations (particularly for orbitally degenerate situations
where Hunds interactions are important). In model systems,
cluster methods have been shown to provide a more refined
picture but confirm that the single-site approximation captures
the important high-energy physics of the metal-insulator
transition.20 In particular a reasonable working definition of
whether or not a material is “strongly correlated” is whether
the stoichiometric compound is on the metallic or insulating
side of the single-site DMFT phase boundary,21,22 and this
definition is widely used in DFT + DMFT studies of real
materials.

In the single-site dynamical mean field approximation we
write

�̂ → �̂DMFT − ÊDC (2)

with

�̂DMFT =
∑
jab

∣∣φa
j

〉
�ab(ω)

〈
φb

j

∣∣, (3)

and ÊDC the frequency-independent double counting con-
tribution, obtained from the derivative of the additional
interaction energy, which plays a crucial role in our subsequent
considerations. The need to include this term may be seen
from the argument that the underlying band theory includes
some aspects of the many-body physics within a static
approximation; the additional interactions that go into the
computation of �̂ in effect count these terms twice so a
correction is needed. In practical terms, the importance of
the double counting term is that any many-body computation
of �̂ will lead to a static Hartree-Fock (HF) contribution to
�̂ which will substantially shift the single-particle levels. The
double counting correction acts to compensate for this shift.
How to specify the double counting term ÊDC is an important
open problem in materials theory. Different prescriptions have
been proposed,10–12 but no clear consensus has emerged. We
therefore explore a range of double countings.

The self-energy matrix components �ab are obtained
from the solution of a quantum impurity model, which is
specified by the additional beyond-band-theory interactions
discussed in more detail below, and by a hybridization function
�ab obtained from the self-consistency condition, which in
the single-site approximation relates Gab(j,j,ω), the a-b
components of the unit-cell local G, to the same components
of the Green function Gloc of the quantum impurity model.
Explicitly [the inversion is in the orbital (a-b) space],

�ab(ω)(j,j,ω) = ω1 − �ab(ω) − [Gab(j,j,ω)]−1. (4)

For orientation we remark that the matrix of d level energies
determined, e.g., from the Wannier fit to the band structure is
equivalently given as the infinite frequency limit of �.

We solved the quantum impurity model using the hybridiza-
tion expansion quantum Monte Carlo (QMC) method;23–25

some results were cross-checked via the exact diagonalization
solver.26,27

Finally we note that to complete the formal solu-
tion one must compute the charge density from ρ(r) =∫

(dω/π )f (ω)ImG(r,r,ω) and ensure that this charge density
is used to obtain the Kohn-Sham Hamiltonian. We discuss
issues of “full charge self-consistency” below.

B. Choice of correlated orbitals and interaction

In this paper we focus on transition metal oxides. Following
common practice in the literature, we assume that the im-
portant beyond-band-theory correlations involve atomic-like
transition metal d orbitals. These are not uniquely defined.
The ambiguity has a physical origin: in a solid the overlap of
tails of wave functions defined around different atoms, along
with the need to introduce additional states to describe the
interstitial regions, means that there is no unique definition
of an atomic orbital. One must seek a practical definition
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which corresponds reasonably closely to the physical/chemical
intuition of an atomic orbital. In most of our calculations we
construct the d orbitals using the maximally localized Wannier
function procedure of Refs. 28–30 with a wide energy window
(typically −9 to 3 eV with the zero of energy chosen as the
Fermi level) which spans the entire p-d manifold of states. Use
of the wide energy window is essential to obtain reasonably
atomiclike d orbitals. In selected cases we used the projector
method11,31 with a correspondingly wide energy window.

For the interactions among the d orbitals we assumed

H int
d = U

2
N̂ i

d

(
N̂ i

d − 1
) + HJ . (5)

Here, N̂ i
d = ∑

aσ d
†
iaσ diaσ is the number operator for d

electrons on site i and HJ represents the additional “Hunds-
rule” interactions which give the multiplet structure at fixed
Nd (for explicit forms see, e.g., Ref. 2). The “charging
energy” U couples to the total on-site charge, which is
strongly electrostatically coupled to the surrounding ions and
so is renormalized significantly by screening. The appropriate
values for different materials are not well determined the-
oretically, although interesting results have appeared.32 We
therefore consider a range of U values spanning the range
estimated from experiment. The configurations coupled by
HJ interact with the rest of the solid only via the electric
quadrupole field for which screening is negligble, so these
terms are well approximated by their gas-phase values, in
agreement with calculation.32

C. Relation to phenomenological models

In the literature2,8 the late transition metal oxides are often
described by a phenomenological “p-d” model, tight-binding
formulation in which the Hamiltonian includes correlated
(“d”) orbitals with appropriate on-site interactions, ligand
(oxygen) orbitals (assumed uncorrelated because the hole
density is small), and the relevant hybridizations. It may be
written as

Hpd =
∑
iaσ

εd,iaσ d
†
iaσ diaσ + Hint + Hhyb + Hligand. (6)

The maximally localized Wannier representation of the band
structure in an appropriately broad energy window can be
thought of as a derivation, from a first-principles band
structure, of the hybridization parameters Hligand and Hhyb

describing the embedding of the correlated orbitals into the
broader electronic structure. The actual band structure gives
a relatively involved form for these terms (see, e.g., Ref. 22
for cuprates) whereas many literature papers have considered
simpler models where for example oxygen-oxygen hopping
is neglected or treated in a simplified manner. However,
the important qualitative and quantitative aspects of the
many-body physics have been shown to be insensitive to
the details of Hligand and Hhyb,33 at least within the single-
site DMFT approximation. The reason, in essence, is that
the band structure enters the many-body physics only via
the hybridization function � [Eq. (4)], in which most of the
details are averaged over.

As shown first by Zaanen et al., the crucial parameter is
the difference ECT = εd − εp between an average ligand on-

site energy εp and the orbitally averaged d level energy εd =∑
a εa

d/norb. If ECT is small or negative the d level lies inside
the p band and the hybridization ensures that model is metallic
even at large U , whereas if ECT is large and positive the d

bands are well separated from the p bands and an insulating
state may occur if U is large enough.

While the qualitative dependence of the physics on ECT

is clear, four ambiguities arise in practice. First, if oxygen-
oxygen hopping is important (as is the case in known transition
metal oxides) the p states are spread over a wide energy range
even before hybridization to the d levels is considered, but only
some portion of these states are hybridized to the d levels. Thus
the “average ligand on-site energy” referred to above is not
clearly defined in realistic cases. Second, the double counting
correction enters Hpd as a shift of the d level and therefore
enters ECT directly. Thus the value of the double counting
correction directly affects the physics, and indeed uncertainties
in this parameter are a significant source of uncertainty in the
theoretical results. Third, the many-body interactions Hint will
shift the physical d level (as can be easily seen on the Hartree
level); thus the physical value of ECT also depends on U .
Finally, the self-consistent nature of the DFT + DMFT proce-
dure means that the band parameters (in particular the εd ) are
themselves affected by the solution to the many-body problem.

One important goal of the present paper is to show that
these ambiguities to a large extent disappear if the theory is
parametrized not by ECT but by the d occupany Nd .

D. d occupancy Nd

In the rest of this paper an important role is played by the
d occupancy Nd . This is a theoretically constructed quantity,
defined in terms of a representation φa

d (r) (here we define the
origin of coordinates to be centered on a transition metal ion
and consider only one unit cell) obtained by one of the methods
described above. The definition is

Nd =
∑
a,σ

∫
dω

π
f (ω)

∫
d3rd3r ′Im

[(
φa

d (r)
)∗

Gσ (r,r ′,ω)φa
d (r ′)

]
.

(7)

Note that in using Eq. (7) it is important to work with properly
normalized d orbitals φd . The maximially localized Wannier
method automatically provides these, but when using projector
methods one must typically normalize the resulting d orbitals.

In the tight-binding p-d model of Eq. (6), Eq. (7) becomes

Nd =
∑
aσ

〈d†
iaσ diaσ 〉, (8)

where the wave functions are implicitly included via their
effect on the hybridization parameters.

We shall see in the analysis to follow that for interactions
U in the physically reasonable range for late transition metal
oxides, and for well localized φd , all of the details of ligand
band structure, of choice of double counting, of full charge self-
consistency, of DFT + DMFT vs p-d model, and of the precise
definition (Wannier vs projector) of the φd , are important only
insofar as they affect Nd . Models with the same Nd give, to a
very good approximation, the same metal-insulator physics.

At this point one remark is important. The d orbital is
fivefold degenerate. In many cases of physical interest only a
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few of the orbitals are relevant (for example, the dx2-y2 orbital
in high-Tc cuprates); ligand field effects mean that others are
fully filled or empty. The d occupancy which is important is
that of the relevant partially filled orbitals. The other “filled”
orbitals are of course hybridized to the ligands and in any
band theory will have occupancies which deviate slightly from
integer values. The precise occupancies of these orbitals are
not important, but the presence or absence of these orbitals in
the definition of Nd may shift phase boundaries.

As noted above, Nd is a theoretical quantity whose
definition involves a choice of an orbital. The quasi-universal
dependence of physics on Nd which we will demonstrate
below, however, suggests that it is interesting to attempt
to relate the calculated Nd to experiment and to other
calculations. Such a relation is of necessity not precise, but
may be informative.

Density functional band theory (without any additional
correlations) provides an estimate of Nd via one of the
constructions outlined above. In principle, if the exact density
functional were known, DFT would produce the exact charge
density ρ(r) = ∫

dω
π

f (ω)
∫

d3r ImGσ (r,r,ω), and existing ap-
proximate implementations are believed9 to provide very
accurate representations of ρ(r). This does not guarantee that
the DFT estimate of Nd [which as seen from Eq. (7) depends
on G at two different spatial points] is exact even given the
exact density functional, but the small spatial extent of the
d orbitals and the general success of DFT describing basic
charge properties suggests that it is reasonable to expect that
the physical Nd are not too far from the DFT estimates.

Experimental estimation of the d valence is possible via
analysis of transferred hyperfine couplings34 or magnetic
form factors.35 These experiments have indicated very strong
covalency effects in cuprates. Resonant x-ray scattering7,36 can
detect the density of holes on oxygen. Further, spectroscopic
measurements can in some cases identify the εp,d energies,
permitting more quantitative comparison to theory. These
issues will be discussed further below.

III. RESULTS

A. Formulation

Our specific calculations are performed for La2CuO4 and
LaNiO3. We consider only the idealized crystal structures;
simple cubic ABO3 perovskite for LaNiO3 (lattice constant
3.8366 Å); simple tetragonal (T) structure for La2CuO4 (lattice
constants 3.834 21 Å in plane and 13.1831 Å in the c direction)
with the z positions of apical oxygens at 0.186% and 0.814%
of the c-axis lattice parameter. (The lattice constants and
the atomic positions were determined using GGA relaxation
calculations and differ slightly from those used by other
groups; the differences are not important for present purposes).
For most of our calculations on La2CuO4 we treat one
correlated d orbital per Cu site (dx2-y2 ) with DMFT; the other
d orbitals are treated approximately, using Hartree-Fock or
density functional theory. For a few parameter values we
checked the one dynamically correlated orbital approximation
by solving the full five-orbital problem with DMFT (retaining
only the density-density terms in the interaction). We found
no significant difference in the results of the metal-insulator

transition. For LaNiO3 we chose two correlated orbitals per Ni
site, representing the x2-y2 and 3z2-r2 states. Recently Deng
and collaborators used a full five-orbital model (also retaining
only the density-density terms) to study the nickelates;37 their
results (apart from some details of excitation from the t2g

bands) are again essentially the same as those obtained from
the two-correlated-orbital model.

To define the correlated orbitals and determine the hy-
bridization function we typically used GGA calculations with
VASP to define the band structure and maximally localized
Wannier functions defined over an energy range of −9 to 3 eV
for La2CuO4 and −8 to 4 eV for LaNiO3 to fix the bare
hybridization function and the choice of d orbital. We also
cross-checked the La2CuO4 results with the WIEN2K/projector
method18,31 using the same energy window of −9 to 3 eV
for consistency. In our calculations for both materials we
followed the literature by using an orbital-independent double
counting correction, so ÊDC is the unit matrix in the space of
dynamically correlated d orbitals. We considered a range of
EDC , which we parametrized by the resulting Nd . In most
of our calculations we kept the Wannier fits (i.e., the bare
hybridization function) constant as we varied EDC . To test
this approximation for La2CuO4 we also performed fully
charge self-consistent DFT + DMFT calculations using the
WIEN2K/projector scheme.

For beyond-band-theory interactions we choose the Slater-
Kanamori/Hubbard type Hamiltonian2 parametrized by the on-
site Coulomb interaction and exchange term. In the beyond
band theory literature different definitions are used. In the
VASP/Wannier + DFT calculations Coulomb interaction u and
the Hund’s coupling j are defined in terms of Slater parameters
F 0, F 2, and F 4 as

u = F 0 + (4/49)(F 2 + F 4), (9)

j = (5/98)(F 2 + F 4). (10)

The WIEN2K/projector scheme always treats an entire five d

orbital interaction, and the full interaction tensor is also given
in terms of the Slater integrals F 0, F 2, and F 4. For sufficiently
symmetric situations such as those considered in this paper the
interaction can be parametrized in terms of interactions U and
J defined as

U = F 0, (11)

J = (1/14)(F 2 + F 4). (12)

Therefore, u and j defined in VASP/Wannier are related to U

and J in WIEN2K/projector: u = U + (8/7)J , j = (5/7)J . In
this paper, we present out the results in terms of U and J

parameters. In most of our calculations we used J = 0.7 eV
for both materials and varied U to map out the metal-insulator
phase diagram. For La2CuO4, we also present some results for
J = 0.

We solved the impurity model using the fully rotationally
invariant hybridization expansion,24,25 except that for the
five-orbital La2CuO4 calculations we used the “segment
method”23–25 which means we omit the exchange and pair-
hopping interactions. This approximation is commonly used
in the literature (see, e.g., Ref. 37). Our cuprate calculations
were performed at temperature T = 0.02 eV and our nickelate
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calculations mainly at T = 0.1 eV, but in selected cases
cross-checked at temperature T = 0.05 eV. While these
temperatures are high compared to room temperature they are
very low compared to the energy scales relevant here. For the
one-orbital La2CuO4 calculations we cross-checked some of
the results using the exact diagonalization method.26,27

Previous work on La2CuO4
22,33 had used a published22

tight-binding parametrization of a band structure which led
to an Nd ≈ 1.65. Our calculations, in agreement with unpub-
lished work of Haule et al., lead to a band theory estimate
Nd ≈ 1.45 rather than the ≈1.63 presented previously. The
difference in band structure leads to small differences from
previous work.

B. Metal-insulator phase diagram

Figure 1 plots the metal-insulator phase diagrams calculated
for the two materials, in the plane of charging interaction U

and d occupancy Nd . Different values of Nd are obtained by
varying the double counting energy EDC keeping the rest of the
band structure fixed. When plotted in terms of ECT the results
for La2CuO4 are consistent with results previously presented
in the literature for cuprates.33,38

In single-site dynamical mean field theory the metal-
insulator transition is first order and is characterized by
two spinodal lines: one at which the insulating phase loses
stability and one at which the metallic phase loses stability.19

Because the limit of stability of the metallic phase has a
strong temperature dependence which is computationally very
expensive to capture, we present here the limit of stability of
the insulating phase Uc1/Nd,c1.

FIG. 1. (Color online) Metal-insulator phase diagram in plane of
charging energy U and d occupancy Nd [measured relative to the d8

(cuprates) or d6 (nickelates) core] indicating the limit of stability
of the insulating phase Nd,c1 for La2CuO4 [calculated from the
one-correlated-orbital model with VASP/Wannier (red empty squares)
and five-correlated model with WIEN2K/projector (green filled circles)
methods] and LaNiO3 [calculated from the two-correlated-orbital
model with VASP/Wannier (black filled diamonds)]. J = 0.7 eV is
used for all calculations. The U = 0 Nd values of La2CuO4 are 1.45
(WIEN2K/projector) and 1.47 (VASP/Wannier). The U = 0 Nd value of
LaNiO3 is 2.18 (VASP/Wannier).

At small U one might expect that the phase boundaries
extrapolate linearly towards U = 0, Nd = 1 because as Nd →
1 the d bands become far removed from the p bands so both
the d bandwidth and Nd − 1 ∼ 1/� (there will be some small
d-d hopping which will make U extrapolate to some small
nonzero value). We have not pushed our calculations into
this regime because accessing the small-U phase boundary by
tuning parameters so that Nd is moved closer to 1 corresponds
to placing the d bands at such a high energy relative to the p

bands that they would be mixed with rare earth f and d bands,
and oxygen 3p states, changing the physics qualitatively.

In the cuprates all of the d orbitals are filled except dx2-y2

and we measure Nd with respect to the d8 core so 0 � Nd � 2
with the physical range being 1 � Nd � 2. In the nickelates
all d orbitals are filled except the dx2-y2 and d3z2-r2 and we
measure Nd with respect to the d6 core so 0 � Nd � 4 with
the physical range being 1 � Nd � 4. The results are seen to
have a remarkably simple structure. For physically relevant U

values the phase boundary is essentially vertical and occurs
at Nd ∼ 1.2–1.25 in the two-dimensional (cuprate) case and
at Nd ∼ 1.25–1.35 in the three dimensional (nickelate) case.
The simplicity of the U -Nd phase diagram identifies Nd as
a critical variable for placing transition metal oxides on the
metal-insulator phase diagram. Further evidence is that the
VASP/Wannier (red empty square) and WIEN2K/projector (green
filled circle) calculations yield essentially the same cuprate
phase diagram although the orbitals are defined differently
and the band theory Nd are in fact slightly different. These
results are consistent with calculations of Ref. 33 which show
that the details of the oxygen band structure do not affect the
location of the metal-insulator transition if the Nd are tuned to
be the same.

We note that the band theory values of Nd are ∼2.16
(nickelates) and ∼1.45 (cuprates). The very large difference
observed in the nickelate case between the band theory
Nd and the value needed to drive a Mott/charge-transfer
transition raises questions about the relevance of conventional
Mott/charge-transfer physics to the nickelates. The band theory
Nd in the cuprates is closer to the phase boundary (although
still outside it), suggesting a more important role for Mott
physics in these materials.

We now turn to a more detailed examination of the metal-
insulator transition phase diagram predicted for cuprates at
different Hund’s coupling values (J = 0.7 and 0 eV) using
different calculational schemes. Figure 2 compares the metal-
insulator phase boundaries obtained using VASP/Wannier and
WIEN2K/projector schemes with Hunds coupling J = 0 and
0.7 eV. All the calculational schemes show very similar phase
diagrams, with insulating behavior confined to a very narrow
Nd region, Nd � 1.2. The VASP/Wannier calculation treats
only the dx2-y2 orbital dynamically (with DMFT), treating the
other orbitals by Hartree-Fock, while the WIEN2K/projector
calculation treats the full five d orbitals with DMFT (in the
Ising approximation). We also verified (not shown) that use
of the full five orbitals in the VASP/Wannier scheme does not
change the phase boundary appreciably. Also presented as
vertical lines in Fig. 2 are the Nd values obtained from the two
underlying band theory methods: these are somewhat larger
than the Nd required to drive an insulating phase, although
in contrast to the nickelate case the displacement of the band
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FIG. 2. (Color online) Metal-insulator phase diagram indicating
limit of stability of insulating phase Nd,c1 for cuprates calculated for
the one-orbital model of cuprates using the VASP/Wannier method (red
filled squares and blue empty squares) and for the five-orbital model
using the WIEN2K/projector method (green filled circles and purple
empty circles) at Hunds coupling values indicated. Also indicated as
vertical lines are the WIEN2K/projector and VASP/Wannier band theory
estimates for the d occupancy and the value obtained from the fully
charge self-consistent DFT + DMFT WIEN2K/projector procedure at
J = 0 eV (green pentagons).

theory Nd from the critical Nd needed for insulating behavior
is not large. The similarity between the results demonstrates
again that Nd is the theoretically important parameter and that
the results are robust to choice of computational method.

The phase diagrams presented in Figs. 1 and 2 are obtained
by use of a fixed band structure and a varying double counting
correction. We have also performed calculations for the
cuprates using the fully charge self-consistent DFT + DMFT
procedure implemented in the WIEN2K/projector method, with
EDC = U (Nd − 0.5) − 0.5J (Nd − 0.5) and U = 7 eV and
10 eV. In this procedure the Kohn-Sham band structure is made
self-consistent with the density produced by the interacting
Green function. The results are shown as green pentagons in
Fig. 2 and correspond to Nd (1.47–1.5) slightly higher than the
band theory value (1.45) and well within the metallic regime.
The self-consistently determined Kohn-Sham band structure is
only slightly changed from the DFT band structure at the same
Nd , as will be seen from the spectral functions to be discussed
below.

C. Spectra

Further insight into the role of Nd may be obtained from
examination of the electron spectral function (many-body
density of states) obtained by maximum entropy analytical
continuation from our imaginary time QMC data using the
approach in Ref. 39. Figure 3 shows the spectral functions
for the LaNiO3 calculation for several different combinations
of interaction strength and charge transfer energy (double
counting correction), here defined in terms of the energy
difference � between � point pσ and dx2-y2/3z2-r2 states. The

0

0.1

0.2

0.3

0.4

-12 -8 -4 0 4

A
(ω

) 
[e

V
-1

]

ω [eV]

(a) (b)

(c) (d)

U=6eV

U=9eV

Nd=1.4

Nd=1.4

U=6eV

U=9eV

Nd=2

Nd=2

-12 -8 -4 0 4
0

0.1

0.2

0.3

0.4

A
(ω

) 
[e

V
-1

]

ω [eV]

(a) (b)

(c) (d)

U=6eV

U=9eV

Nd=1.4

Nd=1.4

U=6eV

U=9eV

Nd=2

Nd=2

0

0.1

0.2

0.3

0.4

A
(ω

) 
[e

V
-1

]

ω [eV]

(a) (b)

(c) (d)

U=6eV

U=9eV

Nd=1.4

Nd=1.4

U=6eV

U=9eV

Nd=2

Nd=2

0

0.1

0.2

0.3

0.4

A
(ω

) 
[e

V
-1

]

ω [eV]

(a) (b)

(c) (d)

U=6eV

U=9eV

Nd=1.4

Nd=1.4

U=6eV

U=9eV

Nd=2

Nd=2

Δ = −2.2eV

Δ = 1.1eV

Δ = 4.6eV

Δ = 8.8eV

FIG. 3. (Color online) Local spectral functions computed for the
nickelates at different values of charging energy and bare charge
transfer energy � (see main text for precise definition) as indicated.
Solid blue lines show the d density of states and the dashed red lines
show the p density of states.

similarity of spectra with similar Nd but different � and
U is evident. In particular, the distance between the Fermi
surface (d dominated) peaks and the nonbonding oxygen
peaks (appearing as near-delta-function contributions) depend
only on Nd . Differences of detail are evident; in particular a
U -dependence of the width of the Fermi surface quasiparticle
peaks (i.e., a difference in mass) is clearly evident in the left
panels, and occurs also at the larger Nd calculations shown in
the right-hand panels.

Figure 4 shows the local spectral functions for La2CuO4

calculated using both the VASP/Wannier and WIEN2K/projector
calculations at the same Nd values. The top panel shows the
one-orbital result of VASP/Wannier in which only the dx2-y2

orbital is treated with DMFT while other d orbitals are treated
by HF. Four d orbitals approximated by HF are fully filled
and the spectra are concentrated mostly at low energies below
−6 eV. The dx2-y2 orbital treated with DMFT shows a gap with
a size of nearly 1 eV. The middle panel shows the VASP/Wannier
result for the case in which entire five d orbitals are treated by
DMFT. The four orbitals except dx2-y2 are still fully filled but
the spectra are broadly distributed over the wide energy range
below the Fermi energy. The spectral gap of the dx2-y2 orbital
has a size similar to the top panel result. The bottom panel
displays the five-orbital result of WIEN2K/projector and the
filled four d orbitals show a broad spectral distribution similar
to the five-orbital VASP/Wannier result. However, the dx2-y2

orbital gap is rather smaller compared to the VASP/Wannier
results. This is the only difference we have found between
results computed at the same Nd and is presumably due to the
different definitions of correlation strength following from the
different definitions of correlated orbitals.

Another illustration of the key role played by Nd is obtained
from the comparison shown in Fig. 5 of the spectral functions
obtained from different cuprate calculations. The lower panel
shows the spectral functions obtained using the fully charge-
self-consistent procedure described above with the standard
double counting formula, while the upper panel shows the
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FIG. 4. (Color online) Local d spectral functions for the cuprates
obtained for U = 10 eV and J = 0 eV from the VASP/Wannier
one-orbital (top) and five-orbital (middle) calculations and from
the WIEN2K/projector five-orbital calculation (bottom). The spectral
function is computed by analytically continuing self energy data
using the method given in Ref. 31. The dx2-y2 spectral functions
obtained by maximum entropy analytical continuation are also shown
for comparison (blue dashed lines). The resulting Nd values are the
same (1.17) for all panels .

spectral functions obtained from a DFT + DMFT calculation
based on the WIEN2K/projector band theory with ECT adjusted
so the final Nd matches the fully self-consistent one. As
the dx2-y2 orbital gets renormalized in the self-consistent
DFT + DMFT charge density, the d orbital energy levels
except dx2-y2 move slightly away from the Fermi energy by
very small amounts of order 0.03 eV. But the basic similarity of

FIG. 5. (Color online) Local d spectral functions for the cuprates
obtained using the WIEN2K/projector method without (top panel) and
with (bottom panel) full charge self-consistency. The charge-self-
consistent result was obtained using the standard double counting as
described in the text; the double counting correction in the non-self-
consistent calculation was adjusted to yield the same Nd .

the two calculations shows again that Nd is the crucial variable
and also indicates that the renormalization of the band theory
by the fully charge-self-consistent procedure is small.

IV. DISCUSSION

The generally accepted Zaanen-Sawatzky-Allen theory of
late transition metal oxides describes the metal-insulator
transition physics of transition metal oxides in terms of
two parameters: U , a charging energy associated with the
transition metal d orbitals, and �, an energy difference
between transition metal d and oxygen p levels. The quantity
� is difficult to define precisely for two reasons. First, the
oxygen states in typical transition metal oxides are spread out
into a band, so it is not clear what energy to use for εp. Second,
the physical d level energy has a substantial contribution from
the many-body interactions of interest, both directly and via the
charge transfer energy ECT . In physical terms � parametrizes
the degree of covalence between the ligand and transition
metal orbitals. The results presented in this paper indicate
that it is very useful to parametrize this covalence instead
by the d occupancy Nd , which is a single-valued function of
�. We show that the Zaanen-Sawatzky-Allen metal-insulator
phase diagram takes a very simple, quasi-universal form when
expressed in the U -Nd plane, and that the main features
of the calculated many-body spectra depend mainly on Nd :
different combinations of U , band parameters, and EDC give
very similar spectra if they yield the same Nd . Expressing
the phase diagram in the U -Nd plane reveals an interesting
and apparently previously unnoticed phenomenon: the Mott-
Zaanen-Sawatzky-Allen insulating state is only obtained if Nd

is relatively close to an integer value (low covalence) and at
larger U the phase boundary is nearly vertical. Thus within
the Zaanen-Sawatzky-Allen picture local correlations cannot
drive a metal-insulator transition unless the physical covalence
is quite small.

Nd is a theoretical quantity, precisely defined only within
a specific calculational scheme. The values obtained for Nd

depend on the method which is used, so the U -Nd phase
diagram is in principle specific to a given calculational method.
In most of the results presented in this paper we have defined
the correlated orbitals using a maximally localized Wannier
function construction11,29 with an energy window taken large
enough to include all of the d-p complex of bands. The
resulting d-Wannier functions are highly localized. We have
also investigated other prescriptions, for example the projector
methods used in the VASP DFT + U and the projector-based
DFT + DMFT methods.31 We find that, if the same energy
window is used, all of the procedures employed in current
literature give very similar answers (for examples, see Figs. 1
and 2).

Although Nd is a model-dependent quantity, it is interesting
to compare the values of Nd obtained by different methods
and to use the results to place materials on the metal-insulator
phase diagram. Density functional band theory methods (in
combination with a definition of the d orbital) yield predictions
for Nd which are indicated in Figs. 1 and 2) for La2CuO4

and LaNiO3. The theoretical status of these results requires
some discussion. If the exact density functional were known
and the Kohn-Sham equations could be solved exactly, the
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exact density ρ(r) = ∫
dω ImG(r,r,ω)/π would be obtained.9

However, the exact Nd for the transition metal centered at
position R is given in terms of the defined d wave functions
φd (r) via Eq. (7). This cannot be derived directly from any
projection of ρ(r) and as a matter of principal need not be given
exactly even by exact density functional theory. However,
the small size of the atomic orbitals along with the general
success of DFT methods in obtaining charge densities and
basic band structures9 suggests that the DFT estimates for
Nd may be reasonable. It is important to point out that there
is at present no solid-state benchmark for the quantitative
reliability of the results of present state-of-the-art functionals,
and some experimental results indicate that density functional
methods overestimate covalency.40 Thus it might be that
density functional results for Nd are substantially in error in
correlated materials. A systematic evaluation of the reliability
of DFT estimates of transition-metal–ligand covalency is also
indicated.

An important question for beyond-DFT calculations is the
extent to which many body effects (including the double
counting correction) change Nd from the band theory value.
In many cases the standard fully charge-self-consistent imple-
mentations of DFT + U and DFT + DMFT change Nd only
slightly from the band theory value. For example, our recent
studies of LuNiO3

41 reveal a GGA values of Nd = 8.21 and
8.20 for the two inequivalent Ni sites, whereas GGA + U

with U = 5 eV and J = 1 eV gives Nd = 8.24 and 8.22.
An example for cuprates is shown in Fig. 2. However, other
calculations use a double counting procedure which gives a
larger change. For example Ref. 22 modeled La2CuO4 using
a double counting correction which shifted Nd from ∼1.65
to ∼1.1. Determination of the most correct double counting
correction is an important open problem in materials theory;
the results of this paper suggest that the issue may usefully be
addressed by consideration of the interaction-induced shifts
in Nd .

Experimental estimation of the d valence is also of interest.
Indirect measurements, for example of the transferred hyper-
fine couplings34 or the magnetic form factor in ordered states35

have indicated very strong covalency effects in cuprates. The
estimates given in these papers are Nd ∼ 1.6, somewhat larger
than the band theory values using well localized orbitals. A
more direct approach would be to detect the density of holes
on oxygen via resonant x-ray scattering techniques as in Refs. 7
and 36. As indicated in Fig. 3, spectroscopic measurements of
the relative position of p and d features in the many-body
density of states would also be revealing.

Finally, we discuss some consequences of our results. We
first observe that if one chooses a double-counting which
fixes Nd at the DFT value, then both La2CuO4 and LaNiO3

would, within single-site DMFT, be predicted to be metals.
The nickelate estimate Nd ∼ 2 is so far from the value ≈1.3
needed to drive a Mott/charge-transfer metal-insulator tran-
sition that it seems likely that standard Mott/charge-transfer
physics is simply not relevant to the rare-earth nickelate
family of materials. LaNiO3 is a moderately correlated metal
in experiment,42 but replacing La with other rare earths
drives a metal-insulator transition43,44 sometimes interpreted
in the Mott/charge-transfer paradigm.2,45 We have verified that
within GGA band theory (and using the Wannier prescription

defined in this paper) the d occupancy is nearly the same for
strongly insulating LuNiO3 in the experimental structure as
it is for LaNiO3. In fact, the insulating members of the rare-
earth nickelate series are characterized by a large-amplitude
lattice distortion44,46 which plays a key role in the insulating
behavior.41

Band structure calculations place high-Tc cuprates rather
closer to the metal-insulator transition than are the rare-earth
nickelates, but still on the metallic side of the phase boundary.
It is therefore not unreasonable that the correct double counting
correction would move the materials across the phase boundary
into the insulating state (as assumed, e.g., in Ref. 22).
Alternatively, physics beyond the simple Mott/charge-transfer
picture may drive the insulating state. For example, cluster
dynamical mean field and other calculations in the Hubbard
model at moderate interaction strengths reveal a crucial effect
of intermediate-ranged antiferromagnetic correlations.20,47–50

More broadly our findings raise an important issue in
current materials theory. In a beyond-DFT calculation one
chooses a subset of orbitals which are subject to additional
correlations. The point of view expounded by Zaanen,
Sawatzky, and Allen,8 implemented in most DFT + U and
DFT + DMFT codes3,4 and used here is that for transition
metals the correlated orbitals are atomic-like transition metal
d orbitals; and that the remaining states (in particular the
O p orbitals), are included in the calculation but with
correlations treated only on the DFT level. In the discussion
below we refer to this approach, somewhat imprecisely, as
the “p-d model” approach. An alternative approach, also
widely adopted in the literature, is that one should define
the correlated orbitals by downfolding the band structure
to include only the frontier orbitals (in the transition metal
oxide context, the p-d antibonding bands which cross the
Fermi level), which are then treated as a multiorbital Hubbard
model. The two approaches can lead to different physics. For
example, if the total number of electrons per unit cell is an
odd integer, increasing U in the multiorbital Hubbard model
always leads to a metal-insulator transition, whereas in the p-d
model increasing U may or may not lead to a metal-insulator
transition, depending on the covalency. Different results are
also found for orbital polarization and Fermi surface in
Ni-based oxide superlattices.51,52 Which approach provides the
most reasonable modeling of actual materials is not completely
clear, although the fact that as presently implemented the
DFT + DMFT approximation captures only local correlations
suggests that one should favor approaches based on well
localized orbitals.4 Further investigations are warranted into
the questions of which orbitals to correlate and of how to
downfold the fully interacting model to an effective low-energy
model which can be studied numerically.
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