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Topological phase transitions driven by next-nearest-neighbor hopping in two-dimensional lattices

W. Beugeling, J. C. Everts, and C. Morais Smith
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 3 August 2012; revised manuscript received 2 October 2012; published 19 November 2012)

For two-dimensional lattices in a tight-binding description, the intrinsic spin-orbit coupling, acting as a complex
next-nearest-neighbor hopping, opens gaps that exhibit the quantum spin Hall effect. In this paper, we study the
effect of a real next-nearest-neighbor hopping term on the band structure of several Dirac systems. In our model,
the spin is conserved, which allows us to analyze the spin Chern numbers. We show that in the Lieb, kagome, and
T3 lattices, variation of the amplitude of the real next-nearest-neighbor hopping term drives interesting topological
phase transitions. These transitions may be experimentally realized in optical lattices under shaking, when the
ratio between the nearest- and next-nearest-neighbor hopping parameters can be tuned to any possible value.
Finally, we show that in the honeycomb lattice, next-nearest-neighbor hopping only drives topological phase
transitions in the presence of a magnetic field, leading to the conjecture that these transitions can only occur in
multigap systems.
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I. INTRODUCTION

The study of topological states of matter has received a
large increase of interest since the theoretical formulation1,2

and experimental observation3 of the quantum spin Hall
effect. Besides the quantum Hall and quantum spin Hall
effects in two dimensions, several other topological states of
matter have been studied, e.g., topological insulators in three
dimensions4,5 and topological superconductors,6 and they have
been classified in a systematic fashion.7 This classification is
based on the notion of topological invariants; in the quantum
Hall and spin Hall systems, these invariants are closely related
to the quantized Hall and spin Hall conductivities, respectively.
These conductivities can be observed when the bulk is in an
insulating phase; they are edge properties that exist inside the
bulk gaps. Remarkably, these quantities are closely related
to the topological invariants of the bulk bands known as
the Chern numbers, a property known as the bulk-boundary
correspondence. Importantly, these Chern numbers make it
possible to classify the topological phases of the system,
without having to study the physics on the edges.

Phase transitions between these topological phases are
as appealing as the phases themselves. Topological phase
transitions are characterized by a change of the topological
invariants that classify the system. Because of the topological
protection, they can occur only when a gap closes. In that
case, the Chern numbers of the energy bands change.4 Several
mechanisms can give rise to these transitions. For instance,
in the model by Kane and Mele,1 it has been shown that
by increasing the Rashba spin-orbit coupling one can close
the quantum spin Hall gap and open a trivial one. Other
types of transitions, between different chiral states, occur
in the Hofstadter model, and are driven by variation of the
magnetic flux density.8 More recently, it has been shown that
the intrinsic spin-orbit coupling also drives phase transitions
in the honeycomb lattice in the presence of magnetic flux.9,10

In this work, we show that in several two-dimensional
lattices topological phase transitions can be driven by tuning
the strength of a real next-nearest-neighbor (NNN) hopping
term. Although in tight-binding models this term resembles

the intrinsic spin-orbit (ISO) coupling (which is a purely
imaginary NNN hopping term), it is often neglected, despite
the fact that in some systems it may be much stronger than the
ISO coupling.

Experiments incorporating ultracold fermionic atoms in
optical lattices are ideal candidates for the realization of
topological phase transitions, since the strengths of the
different hopping parameters can be tuned relatively easily. In
the mostly realized square optical lattices, the potential in the
x and y directions is usually separable and the NNN hopping
(along the diagonal) is zero. For nonseparable optical lattices,
the magnitude of the NNN hopping t ′ is small compared to
that of the nearest-neighbor (NN) hopping t . However, it has
been recently shown that by shaking the optical lattice the
effective ratio t ′eff/teff can be varied in the entire range from 0
to ∞. This occurs because, in a certain regime of parameters,
the shaking leads to a renormalization of the hopping, which
becomes multiplied by a Bessel function, i.e., teff = tJ0(K),
where K = V0/h̄ω is the shaking parameter, given by the ratio
between the amplitude V0 and the frequency ω of the periodic
shaking.11 Moreover, the NNN hopping may get renormalized
by a Bessel function with a different argument, thus leading to
a full range of possible values for the effective ratio t ′eff/teff .12

Here, we focus on tight-binding models, where we assume
that all particles loaded onto the lattice are in their respective
ground states, and we study topological phase transitions
driven by tuning the ratio13 t ′/t in the presence of ISO
coupling. In this aspect, we study several lattice geometries.
The honeycomb lattice (e.g., of graphene) is one of the most
famous systems exhibiting a Dirac dispersion,14 where ISO
coupling leads to the quantum spin Hall phase. However,
the fact that there are only two (spin-degenerate) bands, and
hence only one gap, greatly reduces the possible types of
topological phase transitions that could occur. In the kagome,
T3, and Lieb lattices, the spectrum consists of three bands, and
hence two gaps, increasing the number of possible topological
phase transitions. In this work, we discuss these three lattices
and compare the topological phases and topological phase
transitions that they exhibit.
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The general tight-binding Hamiltonian, that applies to all
lattices presented in this work, reads

Ĥ = ĤNN + ĤNNN + ĤISO, (1)

with

ĤNN = −t
∑

〈i,j〉;σ
ŝ
†
i,σ ŝj,σ , (2)

ĤNNN = −t ′
∑

〈〈i,j〉〉;σ
ŝ
†
i,σ ŝj,σ , (3)

ĤISO = +iλISO

∑
〈〈i,j〉〉;σ,σ ′

ŝ
†
i,σ (eij · σ σσ ′)ŝj,σ ′ . (4)

Here, ŝi,σ (ŝ†i,σ ) is the annihilation (creation) operator for a
particle on site i and with spin σ . The first two terms ĤNN and
ĤNNN describe NN and NNN hopping, respectively. The third
term ĤISO is the ISO coupling; in this term, we have defined
the unit vector eij = (dik × dkj )/|dik × dkj | in terms of the
bond vectors dik and dkj , that connects the sites i and j via
the unique intermediate site k. Finally, σ = (σx,σy,σz) is the
vector of Pauli matrices.

This paper is organized as follows. In Sec. II, we apply the
tight-binding model to the Lieb lattice, study the spectrum,
and analyze the topological phase transitions using the Chern
numbers of the bands. In Sec. III, we repeat this discussion for
the kagome and T3 lattices. In Sec. IV, we study a honeycomb
lattice and show that contrarily to the other two examples, no
topological phase transitions driven by the real NNN hopping
can occur, unless a magnetic field is applied perpendicularly to
the lattice. Finally, we discuss the possibilities for experimental
realization of this model and we conclude in Sec. V.

II. THE LIEB LATTICE

A. Intrinsic spin-orbit coupling and
next-nearest-neighbor hopping

First, we investigate various topological phase transitions
on the Lieb lattice. In Fig. 1(a), we show the lattice geometry,
with three sites A, B, and C per unit cell, and lattice constant
a ≡ 1. The high-symmetry points of the first Brillouin zone
(1BZ) are shown in Fig. 1(b). Both in real space and in
reciprocal space, the system satisfies C4 symmetry. By ap-
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FIG. 1. (Color online) (a) The geometry of the Lieb lattice. The
square unit cell with lattice constant a ≡ 1 is indicated, together with
the three sublattices (A, B, C). An example of a NN (NNN) hopping
process t (t ′) is indicated by the red arrows. (b) First Brillouin zone
of the Lieb lattice. The high symmetry points �, X, Y , and M are
given. The red dashed lines indicate the path �XM� along which the
dispersions are displayed in the subsequent figures.

plying a Fourier transformation to the real-space Hamiltonian
[Eqs. (1)–(4)], we find the Hamiltonian in momentum space,

Ĥ =
∑

k∈1BZ

�̂
†
kHk�̂k, Hk = H0

k ⊗ 12×2 + HISO
k ⊗ σz, (5)

where �̂k ≡ (�̂k,↑,�̂k,↓) with �̂k,σ ≡ (ŝA,k,σ ,ŝB,k,σ ,ŝC,k,σ ),
and where the 3 × 3 matrices H0

k and HISO
k are given by

H0
k =

⎛
⎜⎝

0 −2tcx −2tcy

−2tcx 0 −4t ′cxcy

−2tcy −4t ′cxcy 0

⎞
⎟⎠ (6)

and

HISO
k = 4iλISO

⎛
⎜⎝

0 0 0

0 0 −sxsy

0 sxsy 0

⎞
⎟⎠, (7)

with cμ = cos(kμ/2) and sμ = sin(kμ/2) (μ = x,y). The
Hamiltonian matrix Hk consists of two uncoupled blocks
corresponding to the spin up and spin down projections, related
by time-reversal symmetry, i.e., H↓

k = (H↑
−k)∗. Due to the

time-reversal and inversion symmetries, the ISO coupling is
unable to lift the spin degeneracy. For the calculation of the
energy spectrum, it thus suffices to restrict our attention to
one spin component, while keeping in mind that the resulting
bands are doubly degenerate. In the following, we will restrict
ourselves to the spin-up part of the Hamiltonian. We note
that this Hamiltonian restricted to a single spin component
is formally equivalent to the three-band model presented in
Ref. 15 for a copper oxide system.

Let us first consider the case where only NN hopping is
included (t ′ = λISO = 0). The spectrum then consists of three
bands (per spin component), where two dispersing bands touch
the flat middle band via a conelike dispersion at the M point;
see Fig. 2(a). There is only one such point in the 1BZ.16 Since
the Nielsen-Ninomiya theorem does not apply here due to
the flat band, there is no fermion doubling.17 When the ISO
coupling is included (t ′ = 0 and λISO �= 0), a gap opens at
M; see Fig. 2(b). As shown in Refs. 18 and 19, the resulting
gaps are nontrivial, i.e., they exhibit helical edge states, and
the upper and lower bands have nonzero Chern numbers.
For the definition of the Chern numbers and for an analytic
derivation in the case of the Lieb lattice with ISO coupling,
we refer to the Appendix. In this case, the result of this
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FIG. 2. (Color online) (a) The upper and lower bands touch the
middle flat band at the M point if λISO = t ′ = 0. (b) A gap appears if
the ISO coupling is turned on (λISO �= 0 and t ′ = 0).
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computation is C↑ = (C↑
−,C↑

0 ,C↑
+) = (1,0,−1), for the Chern

numbers of the lower, middle, and upper band, respectively,
for the spin-up component. For the spin-down component, we
have C↓ = −C↑. From this property, we immediately obtain
the Chern numbers for λISO < 0 from those for λISO > 0 by
interchanging the roles for spin up and spin down. Since the
Hamiltonian is diagonal in spin space, we can define the spin
Chern number as Cspin = C↑ − C↓.20 Due to the symmetry
between the two spin components, it holds that Cspin = 2C↑.
By virtue of the bulk-boundary correspondence, the spin Hall
conductivity (in units of the spin conductivity quantum e/4π )
equals

σSH =
∑

α: εα<εF

Cspin,α, (8)

where the summation is over the filled bands (εF is the Fermi
energy). The Z2 index ν (defined as 0 for an even and 1 for
an odd number of edge-state pairs) is then related to spin
Hall conductivity by ν = σSH/2 mod 2. An alternative way
to derive the Chern numbers and the spin Hall conductivities
is by diagonalizing the system in a ribbon geometry, and to
count the number of edge states that appear inside the bulk
gaps.10,21 We remark that, for systems that respect inversion
symmetry, the Z2 invariant can also be calculated using the
parity eigenvalues at the time-reversal symmetric momenta.22

The advantage of computing the spin Chern numbers, as we
do here, is that they are directly related to the quantized spin
Hall conductivity in the band gaps.

Now, let us investigate the effects of a purely real NNN
hopping (t ′ �= 0 and λISO = 0). Unlike the ISO coupling,
the real NNN term breaks the particle-hole symmetry of the
spectrum. This case is, in some sense, more complicated than
the previous one, because the Hamiltonian matrix cannot be
written in the form R̃ · L̃, with L̃ a three-component vector
of matrices that form a basis for a representation of su(2).
However, it is still possible to extend the components of
L̃ to a basis of su(3). This means that the Chern number
does not have a simple interpretation as a winding number
any longer. Moreover, the expressions for the eigenvalues
are more complicated, although one can still find them
analytically.

We will now focus on the qualitative behavior of the
dispersions as function of t ′. Let us start with t ′ = 0, for
which the middle band is flat, as was already discussed before
[see Fig. 3(a), dashed curves]. For t ′ > 0, the middle band
starts to develop a maximum at the � point [see Fig. 3(a),
solid curves], and ultimately, this maximum touches the
upper band for t ′/t = 0.5 [Fig. 3(b)]. For t ′/t > 0.5, the
middle and upper bands touch at four inequivalent points
in the 1BZ of the form Q = (±q,±q), where q is given by
the condition cos(qa/2) = t/2t ′ [see Fig. 3(c)]. Similarly, the
middle and lower bands touch for t ′/t < −0.5, as shown in
Fig. 3(d). The dispersion around these touching points Q

[see Fig. 3(e)] resembles a tilted anisotropic Dirac cone, as
shown in Fig. 3(f). The positions of the four touching points
reflect the C4 symmetry of the lattice. They do not coincide
with high-symmetry points in the 1BZ. Moreover, we observe
that the position of these cones in the 1BZ is tunable by t ′.
In the vicinity of the touching points, the dispersion can be
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FIG. 3. (Color online) Dispersions for various values of t ′ along
the high symmetry lines in the 1BZ. (a) The case where t ′ = 0 is
shown by the dashed curves. For 0 < t ′ < 0.5t the middle band starts
to develop a maximum at the � point (solid curves). (b) For t ′ = 0.5
the maximum at the � point touches the upper band. (c) When t ′ >

0.5t a tilted anisotropic Dirac cone forms at the Q point. (d) The
dispersion for t ′ < −0.5t . In (e), the four corners of the dotted square
indicate the positions of the four tilted anisotropic Dirac cones in the
1BZ. (f) A three-dimensional picture of the anisotropic tilted Dirac
cone at Q.

approximated by the generalized Weyl Hamiltonian23

Heff(p) = E012×2 + t̃

(
2

3
p+12×2 + 1√

3
σxp

+ + 1

3
σyp

−
)

,

(9)

where p± = px ± py with p = (px,py) = k − Q defined as
the momentum with respect to the touching point Q, t̃ =
t
√

1 − (t/2t ′)2, and E0 = t/t ′ is the energy of the bands at
Q. This expression may be found using the Luttinger-Kohn
representation24 of the bands at the band touching points. The
tilt comes from the term proportional to p+12×2. We remark
that the maximum-tilt condition as defined in Ref. 23 is not
satisfied for these cones. In addition, the Hamiltonian (9) is
only of limited interest for our purposes because by itself it
does not reproduce the topological properties that we analyze.

The most general case is when both the real and imag-
inary parts of the NNN hopping are included, t ′ �= 0 and
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FIG. 4. (Color online) (a) The black dashed curves indicate the
dispersions for λISO = 0 and the blue continuous curves indicate the
situation for λISO �= 0. There is no full gap when λISO is below a critical
value λc

ISO. (b) For a sufficiently large λISO > λc
ISO, the spectrum is

fully gapped.

λISO �= 0. In this case, the ISO term opens a gap at M .
Regarding the Chern numbers of the bands, we immediately
understand the case t ′ < 0.5t : Such a state is adiabatically
connected to the case for which t ′ = 0, and no gaps close
in this regime, so that the Chern numbers of the bands are
exactly the same as if one would put t ′ = 0. The situation is,
however, more subtle for t ′ > 0.5t . As mentioned previously,
a band touching point occurs at the � point for λISO = 0.
Interestingly, this still occurs in the presence of ISO coupling,
since its contribution to the Hamiltonian [see Eq. (7)] vanishes
at �. Thus, the � point is protected from the effects of the
ISO coupling. Because the upper and middle band do touch
when t ′ is increased to 0.5t , the Chern numbers of the bands
may change. An analytical evaluation of the Chern numbers
is in principle possible, but the expressions become tedious to
deal with. For this reason, we choose to compute the Chern
numbers numerically by resorting to the method proposed by
Fukui et al.25 For the case t ′ = 0, the analytical results from a
computation similar to the one presented in Ref. 15 coincide
with our numerical findings.

Before we present the results from this calculation, we
would like to point out a subtlety that arises in the interpretation
of the Chern numbers in terms of the spin Hall conductivity.
For the latter quantity to be quantized, there must be a full gap
in the spectrum, i.e., there must be a range of Fermi energies for
which there are only edge states and no bulk states. However,
as shown in Fig. 4(a), there may be no full band gap between
the middle and upper bands, although they are separated at
each point in the 1BZ. In this situation, i.e., if the minimum of
the upper band lies at a lower energy value than the maximum
of the middle band at a different momentum [ε0(�) � ε+(M)],
we say that the spectrum exhibits a negative indirect gap. The
Chern numbers of the bands are well defined, since they do not
touch anywhere, and no topological phase transition occurs.
In this example, a 2/3-filled system will always have both
the upper band and the middle band partially filled, which
would classify the bulk as a semimetal, preventing the helical
edge states to be observed. In the semimetallic regime, i.e.,
with partially filled bands, the spin Hall conductivity is not
quantized.26 For 1/3 filling, this problem does not occur since
in this case there is a full band gap. At this filling, the system
behaves as an insulator and the spin Hall conductivity carried
by the helical edge states can be experimentally observed. By
virtue of symmetry, a similar reasoning occurs for t ′ < 0, but
with the roles of the 1/3 and 2/3 filling, and of the lower
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FIG. 5. (Color online) Phase diagram as function of λISO and t ′.
The red (solid) lines indicate positions for which a band gap closes,
meaning that the Chern numbers can change. In the regions enclosed
by these lines the various (spin) Chern numbers C↑ = Cspin/2 are
indicated. The regions delimited by the blue (light gray) or green
(dark gray) dashed lines indicate the parameter regimes for which
there is no full gap between the middle and upper bands or middle
and lower bands, respectively.

and upper bands interchanged. Finally, the spectrum is fully
gapped if the ISO coupling is sufficiently strong, i.e., there is
a critical value λc

ISO(t ′), such that the system exhibits only full
gaps if the ISO coupling satisfies |λISO| > λc

ISO; see Fig. 4(b).
In Fig. 5, we display the phase diagram in the (t ′, λISO)

plane, where we indicate the regions with distinct Chern
numbers for the bands. The topological phase transitions, i.e.,
the values (t ′, λISO) where band touchings occur, are indicated
by solid lines. Moreover, we have shaded the parameter
regimes in blue (green) where the middle and upper (lower)
bands overlap in energy and the only full gap is at 1/3 (2/3)
filling. In all open gaps, the system behaves as a quantum spin
Hall insulator with spin Hall conductivity equal to σSH = ±1.
For |t ′/t | < 0.5, the conductivities in the lower (1/3 filling)
and upper (2/3 filling) gap are equal, since the middle band
has zero Chern number. For |t ′/t | > 0.5, the two bands have
opposite conductivities.

Every phase transition in the phase diagram may be
understood in terms of the difference in the Chern numbers
of the phases at both sides of the transition. For the transitions
defined by the lines t ′/t = ±0.5, either the lower or the
upper gap closes, and the system behaves as a metal at
the gap closing energy; the other gap is still helical. For
example, if t ′/t = 0.5 and λISO > 0, the difference of the
Chern numbers is �C↑ = (1,0,−1) − (1,−2,1) = (0,2,−2).
We observe that the change of the Chern numbers of the two
touching bands is ±2. This value can be understood from the
fact that the bands touch at �, and they behave quadratically
around this point, i.e., there is a Berry phase of 4π associated
to this touching point. For the transitions at λISO = 0 (i.e.,
between the topological phases for λISO > 0 and λISO < 0), we
distinguish two cases. First, for |t ′/t | < 0.5, the three bands
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touch at M , and the Chern-number difference between the two
phases is equal to �C↑ = (1,0,−1) − (−1,0,1) = (2,0,−2),
i.e., ±2 for the upper and lower bands, respectively. Secondly,
for t ′/t > 0.5, the three bands touch at M as before, but
also at the four Weyl cones. The change in Chern numbers
is therefore �C↑ = (1,−2,1) − (−1,2,−1) = (2,−4,2), with
the contributions (2,0,−2) from the M point and (0,−4,4)
from the four Weyl points, respectively. The transition at
λISO = 0 for t ′/t < −0.5 is similar.

B. The Lieb lattice with a dimerization term

In Ref. 18, it has been shown that a dimerization term,
defined by changing the hopping amplitude t in Eq. (2)
alternatingly to t ± α, leads to a trivial gap. In this section, we
investigate the effects of the dimerization term in combination
with the other terms in the Hamiltonian (1). The Hamiltonian
then reads

Hk = H0
k ⊗ 12×2 + HISO

k ⊗ σz + Hdim
k ⊗ 12×2, (10)

where the dimerization term is given by

Hdim
k =

⎛
⎜⎝

0 −2iαsx −2iαsy

2iαsx 0 0

2iαsy 0 0

⎞
⎟⎠ (11)

in momentum space. This term breaks the C4 symmetry of
the lattice. In principle, the signs before sy may be chosen
oppositely, but this choice does not affect the following results
qualitatively, since it amounts merely to the transformation
(kx, ky) → (kx,−ky) in momentum space.

The effect of the dimerization for α/t = 0.3 on the phase
diagram is shown in Fig. 6(a). We observe that, compared
to the case for α = 0 in Fig. 5, there are additional phase
transitions; in particular, the existing phase transitions have
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FIG. 6. (Color online) (a) Phase diagram as function of λISO and
t ′ for a nonzero dimerization term (α/t = 0.3). We indicate the phase
transitions by red (solid) lines, and the Chern numbers of the bands
C↑ = Cspin/2 are indicated in the regions delimited by these lines. In
the shaded regions, one gap is helical and the other is trivial. (b) The
regimes with indirect negative gaps (semimetallic behavior) at 1/3
or 2/3 filling are indicated by the green (dark gray) and blue (light
gray) regions. In the white regions, the system has full band gaps at
1/3 and 2/3 filling.

been split up. Comparing Figs. 5 and 6(a), we observe that in
both cases there are phase transitions at t ′/t = ±0.5. However,
for α �= 0, there is an additional phase transition close to the
one at t ′/t = ±0.5 (for |λISO/t | � 0.2). Let us compare the
difference in Chern numbers at these transitions as before:
For α = 0, this difference is �C↑ = (1,0,−1) − (1,−2,1) =
(0,2,−2). With nonzero α, there are two transitions, from
(1,0,−1) to (1,−1,0) and from (1,−1,0) to (1,−2,1); thus,
the dimerization term has created an intermediate phase with
C↑ = (1,−1,0), which has a helical structure in the lower gap
(unaffected by the transition), and a trivial upper gap. The first
transition [from (1,0,−1) to (1,−1,0) at |t ′/t | = 0.5] occurs
due to a band touching at the point �; expanding the bands
around this point, we observe that they are quadratic along one
diagonal [k = (q,q)] and linear along the other [k = (q,−q)].
The other phase transition [from (1,−1,0) to (1,−2,1) for
t ′/t slightly larger than 0.5] occurs due to a band touching
involving a single Weyl cone on the diagonal k = (q,q). Thus,
the original transition with a Chern-number difference of ±2
for the touching bands has been split up in two transitions with
a Chern-number difference of ±1.

The transition at zero ISO coupling, originally between the
phase with (1,0,−1) and (−1,0,1) has also been split up by the
dimerization term. Going from λISO/t = 0.3 to λISO/t = −0.3
for 0 < |t ′/t | < 0.5 and α/t = 0.3, one encounters four gap
closures (and two for t ′ = 0), where the bands (the middle
and either the upper or lower) touch in one point (in a
Weyl cone-like behavior). At λISO = 0 there is no transition,
i.e., the system remains trivially gapped. For t ′/t > 0.5, the
dimerization splits the transition originally at λISO = 0 into
three: For α > 0, the middle and upper bands touch at two Weyl
cone-like points if λISO = 0, and the corresponding change of
Chern numbers is ±2. At λISO/t ≈ ±0.2 (for α/t = 0.3), the
middle and lower bands touch at one point, accounting for a
change of Chern numbers of ±1.

The dimerization term also modifies the parameter regimes
where one of the gaps is a negative indirect gap, as may be
observed by comparing the shaded regions of Figs. 5 and
6(b) (without and with dimerization term, respectively). There
are two qualitative differences: First, with the dimerization
term, the critical spin-orbit coupling λc

ISO(t ′), tends to infinity
for |t ′/t | → 0.5, whereas λc

ISO(t ′) remains finite if α = 0.
Secondly, with dimerization, there are no negative indirect
gaps if the NNN hopping amplitude satisfies |t ′| < |α|/√2
(i.e., |t ′/t | < 0.21, approximately, for α/t = 0.3). We remark
that for all topological phases indicated in Fig. 6(a), there is a
regime of parameters (t ′, λISO) for which it may be observed
in a system with two full band gaps, i.e., such that the spin
Hall conductivity is quantized in both gaps.

III. THE KAGOME AND T 3 LATTICES

The existence of topological phase transitions driven by the
NNN hopping t ′ in the Lieb lattice raises the question whether
they are specific to that lattice or whether they would also
appear in other lattices. In this section, we first investigate
the kagome lattice, which has the lattice structure shown in
Fig. 7(a). The unit cell consists of three sites, but these all
have the same number of NNs, unlike the Lieb lattice. From a
Fourier transformation of the real-space Hamiltonian (1)–(4)
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FIG. 7. (Color online) (a) The kagome lattice with the three
inequivalent sites A, B, and C inside the unit cell (dashed area).
The NN and NNN hoppings are indicated by the red arrows.
(b) First Brillouin zone of the kagome lattice with high-symmetry
points. (c) Dispersions along contour �KM� for λISO = 0 and
t ′ = 0 (dashed curves) and for λISO/t = 0.1 and t ′ = 0 (solid curves).
(d)–(f) Dispersions for λISO/t = 0.1 and t ′/t = 0.39, t ′/t = 0.443,
and t ′/t = 0.6, respectively. The upper gap closes for t ′/t ≈ 0.443.

for this particular lattice geometry, we find the Hamiltonian in
momentum space [for the structure of the 1BZ, see Fig. 7(b)],
which is given by

HK
k = HK,NN

k ⊗ 12×2 + HK,NNN
k ⊗ 12×2 + HK,ISO

k ⊗ σz,

(12)

in the basis �̂k = (�̂k,↑,�̂k,↓), where �̂k,σ = (ŝA,k,σ ,

ŝB,k,σ ,ŝC,k,σ ). The 3 × 3 matrices HK,NN
k , HK,NNN

k , and HK,ISO
k

are given by

HK,NN
k = −2t

⎛
⎜⎝

0 c1 c3

c1 0 c2

c3 c2 0

⎞
⎟⎠, (13)

HK,NNN
k = −2t ′

⎛
⎜⎝

0 b1 b3

b1 0 b2

b3 b2 0

⎞
⎟⎠, (14)

and

HK,ISO
k = −2iλISO

⎛
⎜⎝

0 b1 −b3

−b1 0 b2

b3 −b2 0

⎞
⎟⎠, (15)

where ci = cos(k · ei) and bi = cos(k · fi) are given in terms
of the NN vectors e1 = (1,0), e2 = (−1,

√
3)/2 and e3 =

(−1,−√
3)/2, and the NNN vectors f1 = e2 − e3, f2 = e3 −

e1, and f3 = e1 − e2.
In absence of NNN hopping and ISO coupling, the spectrum

consists of three bands: Two dispersing bands, which resemble
the dispersion of graphene, with two inequivalent Dirac points
inside the 1BZ, where the bands touch at E/t = −1, and a flat
band at E/t = 2, which touches the middle band at �;27 see
Fig. 7(c), dashed lines. If only real NNN hopping is included
(i.e., t ′ �= 0 and λISO = 0), then no gaps open between the
bands. If only ISO coupling is included [see the solid lines in
Fig. 7(c)], then gaps exhibiting helical states appear. Unlike
the Lieb lattice, varying the ISO coupling drives several phase
transitions, not just one for λISO = 0. For the case that both
the real and imaginary parts of the NNN hopping are nonzero
(t ′ �= 0 and λISO �= 0), we find many band touching points, see
Figs. 7(d)–7(f). For instance, one of the gaps closes at K and
K ′ for λISO/t = ±√

3(t ′/t − 1/2). Additional gap transitions
occur due to bands touching at points between � and K/K ′,
between � and M , and between M and K/K ′. Without explicit
computation of the Chern numbers, we can use the symmetry
properties of the 1BZ to predict the change of Chern number
in these transitions. The band touching points at �, at K/K ′,
between � and K/K ′, between � and M , and between M

and K/K ′ have multiplicities 1, 2, 6, 6, and 6, respectively.
The difference in the Chern numbers of the bands between
the phases at both sides of the corresponding transitions is an
integer multiple of this multiplicity. Although a phase diagram
like Fig. 5 can be made also for the kagome lattice, it is outside
the scope of this paper. The question of whether topological
phase transitions driven by real NNN appear in other two-
dimensional Dirac-like systems than the Lieb lattice has been
answered positively.

In order to check how generic this behavior is, we attempt
to reproduce it in more lattice geometries. The lattice structure
shown in Fig. 8(a) is known as the T3 lattice.28,29 In momentum
space, the Hamiltonian for this lattice can be written as

HT3
k = HT3,NN

k ⊗ 12×2 + HT3,NNN
k ⊗ 12×2 + HT3,ISO

k ⊗ σz,

(16)

A H B

t

t

(a)

kx

ky

Γ

K
M

K(b)

FIG. 8. (Color online) (a) The T3 lattice with the three inequiva-
lent sites A, H , and B inside the unit cell (dashed area). The NN and
NNN hoppings are indicated by the red arrows. (b) First Brillouin
zone of the T3 lattice with high-symmetry points.
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in the basis �̂k = (�̂k,↑,�̂k,↓), where �̂k,σ = (ŝA,k,σ ,ŝH,k,σ ,

ŝB,k,σ ), with

HT3,NN
k = −t

⎛
⎜⎝

0 g∗(k) 0

g(k) 0 g∗(k)

0 g(k) 0

⎞
⎟⎠, (17)

HT3,NNN
k = −t ′

⎛
⎜⎝

h(k) + h∗(k) 0 0

0 0 0

0 0 h(k) + h∗(k)

⎞
⎟⎠, (18)

and

HT3,ISO
k = −iλISO

⎛
⎜⎝

h(k) − h∗(k) 0 0

0 0 0

0 0 −h(k) + h∗(k)

⎞
⎟⎠,

(19)

where we define g(k) = eik·e1 + eik·e2 + eik·e3 and h(k) =
eik·f1 + eik·f2 + eik·f3 , with ei and fi the same as given for the
kagome lattice. We remark that there are other possibilities for
real NNN terms as well, but we restrict ourselves to the one
given here, because it models hopping between the same pairs
of sites as the ISO coupling does, namely between two A sites
or two B sites. It has been proved earlier that the ISO coupling
leads to the opening of gaps between the middle (flat) band
and the two other bands, both exhibiting two helical edge-state
pairs.29 With inclusion of the real NNN term given by Eq. (18),
it may be derived analytically that the gap between the middle
band and one of the other bands closes at the BZ points K

and K ′ [see Fig. 8(b)] when |t ′/t | = √
3|λISO/t |. At such a

transition, the Chern numbers of the three bands typically
change from (2,0,−2) to (0,2,−2). Thus, the T3 lattice also
accommodates topological phase transitions driven by real
NNN hopping. Next, we also investigate the honeycomb
lattice, aiming at checking the prerequisites for this behavior.

IV. THE HONEYCOMB LATTICE

The honeycomb lattice [see Figs. 9(a) and 9(b)] is one of
the most intensively studied Dirac systems because it models
the electronic structure of graphene very well. Since the work
by Kane and Mele,1,30 it is known that ISO coupling in the
honeycomb lattice gives rise to the quantum spin Hall phase.
The real NNN hopping has been neglected in this model,
although it is several orders of magnitude stronger than the
ISO coupling: In pure graphene, |t ′/t | ∼ 0.1 and λISO/t ∼
10−6–10−4.31 Here, our aim is to study the dispersions, and
the possibilities for phase transitions if both ISO coupling and
real NNN hopping are included in the tight-binding model for
the honeycomb lattice.

The Hamiltonian in momentum space for the honeycomb
lattice is given by

HH
k = HH,NN

k ⊗ 12×2 + HH,NNN
k ⊗ 12×2 + HH,ISO

k ⊗ σz,

(20)

in the basis �̂k = (�̂k,↑,�̂k,↓), where �̂k,σ = (ŝA,k,σ ,ŝB,k,σ ).
The 2 × 2 matrices HH,NN

k , HH,NNN
k , and HH,ISO

k are given

A B

t

t

(a)

kx

ky

Γ

K
M

K(b)

Γ K M Γ
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2

E/t

(c)
1.7

1.8

1.9

E/t

k

(d)

1.7

1.8

1.9

E/t

k

(e)
1.7

1.8

1.9

E/t

k
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FIG. 9. (Color online) (a) The honeycomb lattice with the two
inequivalent sites A and B inside the unit cell (dashed area). The
NN and NNN hoppings are indicated by the red arrows. (b) First
Brillouin zone of the honeycomb lattice with high-symmetry points.
(c) Dispersions for λISO = 0, t ′ = 0, and 1/3 flux quantum per unit
cell, along the contour �KM� of the magnetic Brillouin zone (1/3 of
the size of the 1BZ). (d)–(f) Edge-state plots in the energy regime of
the two highest bands for λISO/t = 0 and t ′/t = −0.18, t ′/t = −0.2,
and t ′/t = −0.22, respectively. For these plots, the dispersions have
been computed for the system in a cylindrical geometry (see Ref. 10).
The light gray curves are the bulk bands. The red (dark gray) and blue
(medium gray) curves are the edge states on the two opposite edges of
the cylinder. The variation of t ′ closes the gap between these bands,
and changes the Hall conductivity in this gap from −2e2/h to 4e2/h.

by

HH,NN
k = −t

(
0 g(k)

g∗(k) 0

)
, (21)

HH,NNN
k = −t ′

(
h(k) + h∗(k) 0

0 h(k) + h∗(k)

)
, (22)

and

HH,ISO
k = −iλISO

(
h(k) − h∗(k) 0

0 −h(k) + h∗(k)

)
, (23)

where g(k) = eik·e1 + eik·e2 + eik·e3 and h(k) = eik·f1 + eik·f2 +
eik·f3 as defined in the previous section. For this model, it
is straightforward to derive the dispersion of the two bands
analytically, as

E = t ′[h(k) + h∗(k)] ±
√

|tg(k)|2 + λ2
ISO[ih(k) − ih∗(k)]2.

(24)

The bands touch if and only if the square root equals
zero. Since both terms in this square root are positive, the
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bands touch only when g(k) = 0 (i.e., at k = K or k = K ′)
and λISO Im h(k) = 0; because Im h(K) �= 0 �= Im h(K ′), the
bands can only touch for λISO = 0. The real NNN hopping
has no effect on the touching of the bands; it merely shifts the
energies of both bands up or down. Thus, the conclusion is
that, in the honeycomb lattice, there are no phase transitions
driven by the real NNN coupling. The only topological phase
transition in this model is the one at λISO = 0, which forms
the boundary between two helical phases with opposite signs
of the spin Hall conductivity.

However, for the honeycomb lattice in a magnetic field,
the results are different. (For the framework of a honeycomb
lattice in a magnetic field, see, e.g., Refs. 9 and 10.) The Chern
numbers C↑ and C↓ are well defined because of the absence
of a coupling between the spin components, but they do not
satisfy the condition C↑ = −C↓, which applies only if there is
time-reversal symmetry.

In the case that ISO coupling is absent, there are no
terms that break the spin symmetry, so that one observes
spin-degenerate chiral (i.e., quantum Hall) phases only. Due
to the spin degeneracy, the Chern numbers satisfy C↑ = C↓,
and the Hall conductivity is quantized in steps of 2e2/h.
In Fig. 9(c), we have displayed the band structure for the
honeycomb lattice under a flux of 1/3 flux quantum per unit
cell. In this case, there are six bands per spin component, rather
than two. Here, in the absence of ISO coupling, the variation
of the real NNN hopping induces phase transitions between
chiral states. In Figs. 9(d)–9(f), we show that the gap between
the two highest bands closes when varying t ′/t . In Figs. 9(d)
and 9(f), there are one and two edge-state pairs in the relevant
gap, respectively. In addition, the direction of the edge states
is flipped. Thus, the Hall conductivity inside this gap changes
from σH = −2 to σH = 4 (in units of e2/h; recall that the spin
degeneracy yields an additional factor of 2). Here, we note that
the change of 6 is explained from the fact that there are three
inequivalent band touching points in the 1BZ due to the fact
that there is 1/3 flux quantum per unit cell, and from the
twofold spin degeneracy.

In presence of ISO coupling together with the magnetic
field, more exotic phase transitions can be expected. In that
case, the spin degeneracy is lifted and the condition C↑ = ±C↓

is generally not satisfied. As a consequence, more types
of topological phases can be observed than the helical and
spin-degenerate chiral phases, e.g., chiral phases which are
not spin degenerate, and even phases which are neither chiral
nor helical, but a mixture of both. In Refs. 9 and 10, it has been
shown that variation of the ISO coupling leads to a topological
phase transition between a chiral and a helical state, as well as
several transitions between other types of topological phases.
If additionally real NNN hopping is present, this picture
remains qualitatively unaltered. In conclusion, topological
phase transitions in the honeycomb lattice subjected to a
perpendicular magnetic field can be driven by ISO coupling
as well as by real NNN hopping. This conclusion is not only
valid for the honeycomb lattice in a magnetic field, but also
for the Lieb, kagome, and T3 (among other) lattices. In case of
a magnetic field, there are chiral phases.29,32 If the magnetic
field is combined with the ISO coupling, also helical phases
and nonchiral-nonhelical phases appear. As in the case of
the honeycomb lattice, there are topological phase transitions

between them, driven either by ISO coupling or by real NNN
hopping.

V. DISCUSSION

The theoretical results presented above raise the question
whether the transitions driven by real NNN hopping appear
in an experimentally accessible regime. We envisage systems
with cold atoms in an optical lattice to be the most promising
candidates for observation of these phase transitions, because
of the possibility of tuning the hopping parameters. In
a static optical lattice, t ′/t is typically of the order of
10−2,12 far from the transitions that happen at t ′/t = 0.5.
However, shaken optical lattices exhibit renormalized hopping
coefficients, where the bare values become multiplied by a
Bessel function.11 In the most studied case, one applies a
periodic shaking to the lattice with the effective potential
V = V0 cos(ωτ )

∑
i,j (i + j )n̂ij , where V0 is the amplitude and

ω is the frequency of the shaking. Here, (i,j ) labels the lattice
sites in the two-dimensional lattice, τ is real time, and n̂ij

denotes the density operator at site (i,j ). In the high-frequency
limit h̄ω � V0,t , the effective hopping may be determined by
applying Floquet theory. One finds that teff = tJ0(K), where
the shaking parameter K = V0/h̄ω. Moreover, the argument of
the Bessel function generally differs for NN and NNN hopping
(see, e.g., Ref. 12 for the case of a nonseparable square lattice),
thus allowing one to tune the ratio t ′eff/teff in the entire range
of possibilities (0 to ∞). Recently, it has been demonstrated
that in the shaken kagome lattice, the band parameters can be
controlled such that band touching points are reached.33

The detection of topological phases in optical-lattice ex-
periments presents a challenge because it is impossible to
perform (Hall) conductivity measurements in such systems.
First of all, the atoms are neutral, so that there are no
electric currents. Therefore, different detection methods must
be envisaged to image the edge states and to determine the
topological properties. Recently, there has been a proposal
to detect chiral edge states in a Hofstadter optical lattice
by using angular-momentum sensitive Bragg spectroscopy.34

Additionally, the edge states are probed in a clever way using
Raman transitions, in order to isolate the edge-state signal from
the background. A second potential problem is the harmonic
trap in which the atoms are confined. The lack of sharp edges
means that the notion of edge states is no longer well defined.
This phenomenon is visible in the spectrum of a system in a
harmonic background potential: The ordered structure of the
spectrum, consisting of the bulk bands and a few edge states
in the gaps, is destroyed by this potential.35 However, it has
been shown that the topological invariants remain well defined
in the case of a system with soft edges. In other words, sharp
edges are not necessary in order to observe the topological
phases.34,35

Besides the more complex optical lattices with multisite
unit cells considered here, interesting topological phases may
also occur in simpler square lattices loaded with bosons in
higher excited states, e.g., p, d, and f orbitals (see Refs. 36, 37,
and 38, respectively). Indeed, for a square superlattice with
deeper and shallower wells arranged on a checkerboard
pattern, it is possible to realize relatively long-lived Bose-
Einstein condensates in the deeper wells which are locally in
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a metastable px or py state, whereas the ones in the shallower
wells are in an s-orbital state. The single-particle spectrum
of this system is then very similar to the one of the Lieb
lattice, which is understood from the formal equivalence of
the Hamiltonians involving three orbitals per unit cell.36

In conclusion, we have shown that in several Dirac-type
tight-binding models, it is possible to drive topological phase
transitions with the real NNN hopping. In the Lieb, kagome,
and T3 lattices, it drives transitions between helical phases with
different values of the spin Hall conductivity. This is not true
for the honeycomb lattice in zero magnetic field. In a magnetic
field, the phase transitions are possible. In this aspect, we
conjecture that it is necessary to have at least two gaps (three
bands) in order for these phase transitions to appear. Our results
could be observed with state-of-the-art shaken optical lattices
loaded with fermions.
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APPENDIX: EVALUATION OF THE CHERN NUMBERS

By virtue of the bulk-boundary correspondence,8,21 the
Chern numbers of the bands yield information about the (spin)
Hall conductivity inside the bulk gaps. The Chern number Cn

associated to the band n is an integer topological index defined
as the integral of the Berry curvature over the 1BZ,39

Cn = 1

2π

∫
1BZ

dk
[
∂kx

Ay
n(k) − ∂ky

Ax
n(k)

]
, (A1)

where A
μ
n (k) = −i〈ψn,k|∂kμ

|ψn,k〉 (μ = x,y) is the Berry
connection, defined in terms of the eigenstates |ψn,k〉 of band
n. We remark that, for this Chern number to be well defined,
degeneracies in the spectrum are forbidden. Thus, if two bands
touch at a point, the Chern numbers of these bands are ill
defined. The problem of the spin degeneracy of the bands in
our model is resolved by projecting the system to a single spin
component. Thus, we obtain separate Chern numbers for the
spin-up and the spin-down bands, which we write as C↑

n and
C↓

n , respectively.

In the case of the Lieb lattice with only imaginary NNN
hopping (i.e., t ′ = 0 and λISO > 0), we can evaluate the
Chern numbers of the bands analytically. Without loss of
generality, let us focus on the spin-up component and assume
λISO > 0. The Hamiltonian can then be written as H↑

k =
R · L, where R = (R1,R2,R3) with R1 = −2t cos(kx/2), R2 =
−2t cos(ky/2) and R3 = 4λISO sin(kx/2) sin(ky/2) and L ≡
(L1,L2,L3) is the vector of the Gell-Mann matrices

L1 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠, L2 =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠,

L3 =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠. (A2)

These matrices satisfy the commutation relations [Li,Lj ] =
iεijkLk , so they form a basis for the spin-1 representation of the
Lie algebra su(2). This particular structure of the Hamiltonian
allows one to calculate the Chern numbers analytically since
here they have a simple interpretation as a winding number.
With a computation analogous to the one presented in Ref. 15,
it may be shown that the Berry curvature for the upper and
lower band equals

F± = ∂kx
A

y
± − ∂ky

Ax
± = ∓R̂ · (

∂kx
R̂ × ∂ky

R̂
)
, (A3)

with R̂ = R/R, while for the middle band the Berry curvature
vanishes. The integer value of the Chern number then follows
from interpretation of the integral of the Berry curvature as the
winding number associated to the vector field R. The result of
this computation is C↑

± = ∓1 and C↑
0 = 0.15

In many cases, an analytic computation of the Chern
numbers is unfeasible due to the complicated dependence of
the eigenvectors on the momentum k. In such a case, the Chern
numbers can be computed numerically from the eigenstates on
a discretized lattice of momenta in the 1BZ.25 It is shown that
in order to obtain the correct values of the Chern numbers,
a small number of discretization steps generally suffices. In
this paper, we have used the method explained in Ref. 25,
and we have confirmed the results with those from analytic
computations wherever possible.
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3M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

4M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
5X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
6L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
7A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); S. Ryu, A. P. Schnyder,
A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).

8Y. Hatsugai, Phys. Rev. B 48, 11851 (1993).
9N. Goldman, W. Beugeling, and C. Morais Smith, Europhys. Lett.
97, 23003 (2012).

10W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86,
075118 (2012).

11A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95,
260404 (2005); H. Lignier, C. Sias, D. Ciampini, Y. Singh,
A. Zenesini, O. Morsch, and E. Arimondo, ibid. 99, 220403
(2007); A. Zenesini, H. Lignier, D. Ciampini, O. Morsch,
and E. Arimondo, ibid. 102, 100403 (2009); A. Hemmerich,
Phys. Rev. A 81, 063626 (2010); J. Struck, C. Ölschläger,
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37M. Ölschläger, G. Wirth, T. Kock, and A. Hemmerich, Phys. Rev.
Lett. 108, 075302 (2012).
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