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Superconducting proximity effect on the edge of fractional topological insulators
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We study the superconducting proximity effect on the helical edge states of time-reversal-symmetric fractional
topological insulators (FTI). The Cooper pairing of physical electrons results in many-particle condensation
of the fractionalized excitations on the edge. We find localized zero-energy modes emerge at interfaces
between superconducting regions and magnetically insulating regions, which are responsible for the topological
degeneracy of the ground states. By mapping the low-energy effective Hamiltonian to the quantum chiral Potts
model, we determine the operator algebra of the zero modes and show that they exhibit nontrivial braiding
properties. We then demonstrate that the Josephson current in the junction between superconductors mediated
by the edge states of the FTI exhibit fractional Josephson effect with period as multiples of 4π .
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I. INTRODUCTION

Topological phases are often characterized by gapless
boundary excitations which do not arise in the low-energy part
of local lattice Hamiltonians with the same dimension. For
example, the integer/fractional quantum Hall states support
chiral edge excitations, which have only “half” the degrees
of freedom as particles moving in a one-dimensional lattice.
Recently discovered topological insulators (TI) with time-
reversal (TR) symmetry support gapless helical boundary
states in both two and three dimensions.1–8 These boundary
states can be gapped out by adding certain symmetry-breaking
perturbations (e.g., superconducting or magnetic order), which
in many cases lead to exotic phases. A notable example is the
px + ipy superconducting state created by superconducting
proximity effect on the surface states of three-dimensional TI
(Ref. 9) which exhibits non-Abelian Majorana zero modes in
vortices. Similar physics can also be realized on the edges
of two-dimensional quantum spin Hall insulators,10 where
Majorana zero modes appear at the interfaces between super-
conducting and magnetic gapped regions. The Majorana zero
modes exhibit unusual properties such as 4π -period Josephson
effect10–12 and non-Abelian statistics,13–15 which have impor-
tant application in quantum-information processing.12,16–18

On the other hand, strongly correlated topological phases,
such as fractional quantum Hall (FQH) states,19,20 are usually
associated with the fractionalization of quantum numbers. It
would be even more interesting to study the quantum phases
originated from symmetry breaking in the fractionalized
boundary states. In this paper, we study the superconducting
proximity effect on the edge of two-dimensional fractional
topological insulators (FTI),21–25 which can be regarded as
the TR-symmetric generalization of Laughlin states with
filling fraction ν = 1

m
. We focus on the properties of the

gapless edge states of FTI brought in contact with an s-wave
superconductor.

Our main finding is that the electron fractionalization
drastically changes the superconducting proximity effect on
the edge states, as opposed to the noninteracting quantum
spin Hall insulators. Most remarkably, domain walls between
the superconducting and magnetic gapped regions are found
to carry localized zero modes with quantum dimension d =√

2m. We also determine the operator algebra satisfied by the

zero modes, which can be regarded as a Z2m generalization
of Majorana fermions. We then argue that the zero modes
exhibit non-Abelian statistics upon adiabatic exchanging and
determine the braiding matrices. We also discuss possible
physical indications of the unusual zero modes and propose an
unconventional Josephson effect with period 4πm.

The paper is organized as follows: In Sec. II, we review
the effective edge theory of Sz-conserved FTI. In Secs. III and
IV, we study the gapped phase driven by s-wave pairing. We
reveal the topological degeneracy of the ground states and find
the localized zero modes. In Sec. V, we discuss the braiding
of the zero modes.

II. EDGE THEORY OF FTI

We start by reviewing the effective edge theory of
FTI.23,24,26 We mainly consider FTI with Sz conserved where
the two spin species each form Laughlin states with filling
fraction ν = 1

m
, where m is an odd integer, under a spin-

dependent magnetic field B = B0zσz. It supports gapless edge
states described by a helical Luttinger-liquid model. Levin and
Stern23 have recently shown that such edge states are protected
by TR symmetry if and only if σSH/e∗ is odd, where σSH is
the spin Hall conductance measured in units of e/2π and e∗
is the elementary charge. Here, the ratio σSH/e∗ = 1, implying
the robustness of the edge states protected by TR symmetry.
The effective Lagrangian density governing the dynamics of
the edge states is given by27,28

L = 1

4π

∑
σ=↑,↓

(Kσσ ′∂tφσ ∂xφσ ′ − Vσσ ′∂xφσ ∂xφσ ′). (1)

The K matrix is K = mσz and V is the renormalized charge
velocity matrix. The chiral bosonic fields φσ satisfy Kac-
Moody algebra

[φσ (x),φσ ′(x ′)] = (σz)σσ ′
iπ

m
sgn(x − x ′). (2)

To simplify our derivation, we define ϕ = m
2 (φR↑ + φL↓), θ =

1
2 (φL↓ − φR↑). They then satisfy the canonical commutation
relation [ϕ(x),∂x ′θ (x ′)] = iπδ(x − x ′). The Hamiltonian of
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the edge theory can be expressed as

H =
∫

dx
u

2π
[mg(∂xθ )2 + (mg)−1(∂xϕ)2], (3)

which describes a Luttinger liquid with Luttinger parameter
mg. Here, g = 1 if V↑↓ = 0, and g > 1 (<1) if V↑↓ < 0
(> 0).

In this bosonic theory, the electron density ρσ is ex-
pressed as ρσ = 1

2π
∂xφσ = 1

mπ
∂xϕ. The physical electron

creation operators are given by ψ† = 1√
2πα

eimσzφ . Here, α

is a regularization factor. Notice that proper Klein factors
should be included in the expression to ensure the correct
fermionic commutation relations, but it turns out that they
are not relevant for our discussion below, so we omit them
to simplify the notations. We also omit the spin indices of
the bosonic fields since they are locked to the chiral indices.
We adopt the convention that under TR transformation φ↑ →
φ↓,φ↓ → φ↑ − π

m
to guarantee that ψ↑ → ψ↓,ψ↓ → −ψ↑.

Consequently, θ → −θ − π
2m

. One can also define ψ
†
QP ∼

eiσzφ which creates a charge e/m quasiparticle (QP) on the
edge.

The proximity effect of an s-wave superconductor can be
taken into account by adding the following pairing term to the
edge theory:

HSC = 
eiχψ
†
R↑ψ

†
L↓ + H.c. (4)

Here, 
 is the induced superconducting gap and χ is the
superconducting phase. Using the bosonic representation, we
can write the pairing term as

HSC = 


2πα
eiχeim(φL−φR ) + H.c. = 


πα
cos(2mθ + χ ). (5)

We first assume 
 is a weak perturbation and study its fate
using perturbative renormalization group (RG) analysis. The
flow of the coupling 
 under RG is given by

d
(�)

d�
=

(
2 − m

g

)

(�). (6)

Here, � = ln(l/ l0) is the dimensionless flow parameter. The
pairing term is relevant when g > m

2 . For m � 3, in the
“noninteracting” case g = 1, the pairing is irrelevant. This is a
direct consequence of the electron fractionalization. However,
we should remark here that although the term is perturbatively
irrelevant when g < m

2 , it can still gap out the edge Luttinger
liquid if the bare value of 
 is large enough when the
perturbative RG analysis breaks down.

III. TOPOLOGICAL DEGENERACY IN THE GAPPED
PHASE

We now consider the gapped phase resulting from the
mass term cos(2mθ + χ ). We choose the gauge χ = 0.
Semiclassically, θ is pinned to the minima of 
 cos 2mθ

located at

θn = π

2m
+ nπ

m
, n = 0,1, . . . ,2m − 1. (7)

Therefore, there are 2m degenerate ground states which we
denote by |θn〉. We notice that when m = 1 it reduces to
the well-known topological degeneracy of one-dimensional

FM FMSC

FTI

FIG. 1. (Color online) Schematic illustration of superconductor-
ferromagnet junctions on the edge of 2D FTI. Localized zero modes
appear at the interface between the superconducting regions (SC) and
the magnetically insulating regions (FM).

Majorana chain.29–31 Since under TR θ goes to −θ , the
semiclassical ground states |θn〉 are not TR invariant when
m > 1.

However, it is important to realize that the one-dimensional
system under consideration is already the boundary of a
two-dimensional (2D) system and thus it must be a closed
manifold without any boundaries. If the whole edge is gapped
out by the superconducting proximity effect, there is a unique
ground state fixed by the boundary condition. The ground-
state degeneracy only occurs in an open geometry.29 To
effectively create boundaries on the edge, we need to introduce
a different mass term, e.g., TR-breaking perturbations by
applying Zeeman field or proximity effect to a ferromagnetic
insulator to gap out some regions of the edge liquid. See Fig. 1
for an illustration of the setup. To be specific, we consider
inducing ferromagnetic (FM) order in some region of the edge
by adding the following mass term to the Hamiltonian:

HFM = 
FMψ
†
RψL + H.c. = 
FM

πα
cos 2ϕ. (8)

Now, consider a setup in which the edge is divided into 2n

segments, n of which are gapped out by the superconducting
proximity effect and the others by proximity to ferromagnets,
arranged in an alternating order. From our semiclassical
analysis, each superconducting segment has 2m ground states.
Superficially, there would be totally (2m)n-fold degeneracy.
However, due to the global conservation law of QP number
mod 2m (see below), the degeneracy is actually reduced
to (2m)n−1. Since the entire edge is gapped away from
the interfaces between different regions, the ground-state
degeneracy can only arise from zero modes localized at the
interfaces. Because there are 2n interfaces, each zero mode
has a quantum dimension d = √

2m.
To understand the nature of the degenerate ground states,

we notice that the total charge density on the edge is given by
ρ = 1

2πm
∂xϕ. Its commutation relation with θ is [ρ(x),θ (x ′)] =

iπ
m

δ(x − x ′). Therefore, the following relation can be derived:

e2πiQθe−2πiQ = θ + π

m
. (9)

Here, Q = ∫
dx ρ(x) which counts the number of QP’s

residing on the edge. We can then linearly superpose |θj 〉 to
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obtain eigenstates of e2πiQ:

|n〉 = 1√
2m

2m−1∑
j=0

ωnj |θj 〉, Q|n〉 = ωn|n〉. (10)

Here, ω = e
iπ
m . Therefore, the 2m degenerate ground states

have different mod 2m QP number. This is analogous to the
two-fold ground-state degeneracy of a one-dimensional class
D topological superconductor, distinguished by the global
fermion parity. Using the TR transformation of θ , one can see
that |n〉 → |2m − n〉 under TR. Therefore, except the states
|0〉 and |m〉, all other states are not TR invariant.

One may wonder whether the 2m-fold degeneracy is
protected, and if that is the case, what physical property
protects such degeneracy. First of all, the existence of gapless
edge modes requires TR symmetry in the bulk of the FTI.23

Given the TR symmetry, because the FTI state is fully gapped,
at energies well below the bulk gap, QP tunnelings through
the bulk are highly suppressed. Due to the fractional statistics
of the QP in FTI with statistical angle ±π/m, any external
physical perturbations must change the QP number of each
species by m since they have to be local with respect to
electrons. This fact, together with the conservation of the
total fermion parity in the gapped superconducting systems,
implies an emergent conservation of QP numbers mod 2m on
the edge. Therefore, the degeneracy of the 2m ground states
with different QP numbers mod 2m can not be lifted by any
physical perturbations. We therefore conclude that the 2m-fold
degeneracy is protected by the topological order in the bulk
FTI and the fermion parity conservation.

IV. LOW-ENERGY EFFECTIVE HAMILTONIAN AND
ZERO-ENERGY BOUNDARY MODES

In the previous section, we use semiclassical analysis to
study the ground-state properties of the gapped phase. We
argue that it is natural to relate the ground-state degeneracy
to localized zero modes on the SC-FM interfaces where the
spectra gap has to close. Heuristically, the zero modes are
transformations between the ground states. In this section,
we put these considerations on a firmer ground by deriving
an effective Hamiltonian to describe the low-energy quantum
fluctuations around the semiclassical ground states.

First, it will turn out to be convenient to regularize the
bosonic Hamiltonian on a lattice (after proper rescaling of
space):

H = u
∑

i

[
−g cos(θi − θi+1) + g

2
n2

i + 


πu
cos 2mθi

]
.

(11)

Here, ni is the canonical conjugate operator to the phase
variable θi : [θi,nj ] = iδij . It can be regarded as the discrete
version of the QP density. In the limit of large 
, θ can only
take value in a discrete set given by θn,n = 0,1, . . . ,2m − 1.
We introduce a set of basis |θn〉 on each site and the first term
cos(θi − θi+1) becomes U

†
i Ui+1 where the Ui’s have matrix

representation

Ui = diag(1,ω,ω2, . . . ,ω2m−1), (12)

which is simply the operator eiθi projected onto the low-energy
sector.

The
∑

i n
2
i term causes transitions between the |θ〉 states.

We rewrite this term in the |θ〉 basis as (on one site)

n2 =
m∑

j=1

aj (V j + V j †), aj ∝
∑

k

k2ωkj . (13)

Here, the operator V is defined as

Vi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

We now make the approximation to keep only the j = 1 term
in the sum: n2

i ∝ Vi + V
†
i . This is justified in the limit of small

fluctuations of θ . It is worth mentioning that U and V form a
2m-dimensional representations of the Weyl group algebra:

U 2m = 1, V 2m = 1, V U = ωUV. (15)

So far, we have succeeded in mapping the model (11) to the
2m-states quantum Potts model32

HPotts = −
∑

i

[(U †
i Ui+1 + H.c.) + λ(Vi + V

†
i )]. (16)

Here, λ ∝ g2.
We now briefly discuss the symmetry of the Potts model.

The Hamiltonian (16) apparently has a global Z2m symmetry
given by

Q =
∏

i

V
†
i . (17)

To see the physical meaning of the Z2m symmetry, it is useful
to go to a “dual” basis |n〉 on each site which are the eigenstates
of n. In this basis, the global symmetry takes a very transparent
form: Q = ω

∑
i ni , which is nothing but the mod 2m QP

number we have mentioned in the previous section.
A crucial property of the Potts model is the self-duality,33

revealed by the duality transformation34

U
†
i−1Ui = Ṽ

†
i , Ṽi = U

†
i Ui+1, (18)

which maps HPotts into itself with g → g−1 up to an overall
rescaling. We can use the results in Refs. 34–36 to obtain the
explicit form of the zero modes at the special solvable point
g = 0. Notice the product of the original variable and the
neighboring dual variable γj = UiŨ

†
i−1 satisfies the following

algebra:

γiγj = ωγjγi, i < j, γ 2m
i = ±1, γ

†
i γi = 1. (19)

For m = 1, this is just the algebra of Majorana fermions. We
call the zero modes γ ’s which satisfy (19) as Z2m zero modes.
Using this result, the original model can be rewritten in terms
of the γi operators36

HPotts = e
πi
2m γ

†
1,i+1γ2,i + λe

πi
2m γ

†
1,iγ2,i + H.c. (20)
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The explicit expression of the γ ’s in terms of the original
variables are given as follows:

γ1,i = Ui

∏
j<i

V
†
j , γ2,i = e− πi

2m Ui

∏
j�i

V
†
j , (21)

which generalizes the Jordan-Wigner transformation for
fermions. Notice that we have multiplied a phase factor e

πi
2m to

make sure that γ 2m
i = 1.

For a finite chain with sites starting at i = 0 and ending
at i = N , γL ≡ γ1,i=0 and γR ≡ γ2,i=N are decoupled from
the Hamiltonian at λ = 0, similar to Kitaev’s Majorana chain
model.37 One can also check that γL,R commute with all other
terms in the Hamiltonian. In terms of the original bosons, the
two zero modes are expressed as

γL ∼ eiθi=0 , γR ∼ eiθi=N Q. (22)

When λ �= 0, the model in general can not be solved exactly.
However, since when λ = 0 the bulk is fully gapped, one
can imagine slowly turning on a small but finite λ without
closing the bulk gap. The finite λ phase should be adiabatically
connected to the gapped phase of the FTI edge theory. During
this adiabatic evolution, the zero modes are renormalized but
remain localized as long as the bulk gap is not closed. In
particular, we expect that relation (22) holds true, at least in
the low-energy sector. We also identify from Eq. (22)

Q = e
iπ
2m γ

†
LγR. (23)

Again, we expect it to be valid universally in the gapped phase.
We derive the expression of the zero modes γi within the

low-energy effective Hamiltonian which takes a nonlocal form
with a string operator attached. One may wonder whether they
are local objects in terms of the QP operators of the FTI edge
theory. Let us remark that the local fields Ui and Vi in the
effective Hamiltonian are themselves nonlocal in the original
edge theory. Although a formal proof is lacking at this stage,
we believe it is highly likely the zero modes are local in terms
of the quasiparticle operators.

V. BRAIDING OF THE Z2m ZERO MODES

We now discuss the braiding statistics of the Z2m zero
modes. We need to specify what braiding means for the zero
modes localized at the domain walls in one dimension. In a
closely related context, it has been recently demonstrated13–15

that Majorana zero modes in one-dimensional wires can
be adiabatically exchanged either by forming networks out
of the wires and moving the Majorana zero modes using
the “T ”-junction geometry, or by a series of QP tunneling
processes. The non-Abelian braiding statistics resulting from
these operations take the same form as the one of the Majorana
fermions in two-dimensional px + ipy superconductors up to
an undetermined overall phase. This paves the way to perform
topological quantum computing in quantum wires. There are
no fundamental difficulties in exploiting these ideas to the
situations at hand and therefore we can discuss the braiding of
Z2m zero modes.

In the following discussion, we derive possible forms
of the braiding matrix based on general principles without
appealing to details of the implementation of braidings. We
will extensively use the language of the algebraic theory of

anyons (namely, modular tensor category theory) and assume
that the braiding matrices of the zero modes satisfy some of the
basic relations originally developed for anyons in topological
phases in two dimensions.38 Whether this description applies
to quasi-one-dimensional objects as those considered here is
not justified a priori. It is an important question to clarify
the relationship between the anyon model at hand and the
modular tensor category theory describing two-dimensional
topological phases. The information we need is the fusion
algebra of the anyons as well as the monodromy equation
relating the braiding matrices to the topological spins of the
particles.

We start from the fusion algebra of the Z2m zero modes.
There are 2m + 1 types of particles, denoted by σ,ψk where
k = 0,1, . . . ,2m − 1. Here, ψ0 ≡ 1 is the vacuum. The non-
trivial part of the fusion algebra is given by

σ × σ =
2m∑
k=0

ψk, σ × ψk = ψk,

(24)
ψp × ψq = ψp+qmod2m.

Here, σ represents the Z2m zero mode and ψn is the state with
n QPs, which are Abelian with quantum dimension 1. The
vacuum fuses trivially with everything else. The fusion of two
σ ’s follows straightforwardly from the topological ground-
state degeneracy discussed in Sec. III. The fusion of ψ particles
follows from the fact that they are labeled by the number of
QP’s mod 2m in the superconducting segment of the FTI edge,
and thus naturally form a Z2m structure.

Using the language of modular tensor category, we have
the following basis data from the fusion algebra:

Nψn

σσ ≡ dim V ψn

σσ = 1. (25)

We have already counted the quantum dimensions of the
anyons: dσ = √

2m, dψn
= 1.

Now, let us consider braiding a pair of σ particles labeled
as 1 and 2, and for simplicity we assume that physically they
belong to the same topological segment. As discussed in the
previous analysis, such a segment has in fact only one ground
state within a given mod 2m QP number sector. This translates
into the one dimensionality of the fusion space as given in
Eq. (25). Therefore, the result of an adiabatic exchange is
essentially Abelian: the ground states in different mod 2m QP
number sector can not mix and each acquires an Abelian Berry
phase. Let us assume that the ground state with mod 2m QP
number n acquires a phase αn. In more abstract terms, the
R matrix encoding the effects of braiding Rσσ

ψn
is actually one

dimensional since Nψn
σσ = 1. Choosing a proper normalization,

it is exactly the phase factor eiαn .
Without knowing how the braidings are implemented, one

can actually determine the R matrix to a large extent using the
monodromy equation in our case when fusion spaces are all
one dimensional. The operation of two consecutive braidings,
being equivalent to moving one anyon around another, is
termed as a monodromy. It is known that the monodromy
is fully characterized by the topological spins of the anyons.
Using the fusion algebra (24), we have the following relation
between the R matrix and the topological spins of the anyons
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σ and ψn (Ref. 38):

(
Rσσ

ψn

)2 = θψn

θ2
σ

. (26)

To figure out the topological spin of ψn, we notice that ψn can
be regarded as a composite of n QP. Each QP, being an Abelian
anyon in a ν = 1/m Laughlin FQH liquid, has topological spin

e
isπ
m where s ∈ Z. Thus, the topological spin θψn

= e
isn2π

m .39

Since (Rσσ
ψn

)2 = e2iαn , we find

eiαn = ±θ−1
σ e

iπn2s
2m . (27)

Therefore, we have determined eiαn up to a global phase ±θ−1
σ .

This result is derived from very general consideration and
should be independent of the implementations of the braiding
operations. One can see that if m = 1 and s = 1, Eq. (27)
gives the well-known Berry phases for the even and odd parity
ground states of two Majorana zero modes40 if we choose all
the unspecified sign factors in Eq. (27) to be 1.

We go on to consider four zero modes γ1,2,3,4 arranged such
that γiγj = e

iπ
m γjγi for i < j . We assume that γ1 and γ2 belong

to the same topological segment and the same to γ3 and γ4.
Naturally, we choose the Fock basis formed by the degenerate
ground states of the two segments, labeled by mod 2m

QP number Q1 ≡ Q12 ∝ γ
†
1 γ2, Q2 ≡ Q34 ∝ γ

†
3 γ4: |n1,n2〉 =

γ
n1
1 γ

n2
3 |0〉,n1,n2 = 0,1, . . . ,2m − 1. Braiding γ1 and γ2 (or γ3

and γ4) just generates an Abelian phase on the Fock states. The
nontrivial one is braiding γ2 and γ3, which belong to different
topological segments. To derive the non-Abelian Berry phase
acting on the ground-state manifold, we make use of the Z2m

conservation of QP number. After braiding, the QP number
Q′

1 ∝ γ2γ
†
3 as well as Q′

2 ∝ γ
†
1 γ4 should remain the same. This

implies that if one rotates the Fock basis to one in which Q′
1,2

becomes diagonal, the braiding results in an Abelian Berry
phase as discussed above. Then, one can unwind the basis
transformation to obtain the braiding matrix in the original
basis. Similar procedures can be carried out for any 2n zero
modes, although our method for determining the braid matrix
quickly becomes very inefficient.

So far, our discussion of braiding has been general. A
realistic scheme could possibly be developed exploiting the
idea of measurement-only topological quantum computation41

in which braidings are carried out by a series of measurements
of the fusion outcomes for pairs of anyons in the presence of
additional topological qubits that are properly initialized.

VI. FRACTIONAL JOSEPHSON EFFECT

In this section, we discuss the manifestation of the topo-
logical degeneracy in Josephson transport. We show that the
Josephson current has a period of 4πm, thus generalizing the
4π Josephson effect in topological superconductor.10,11 Before
we proceed, it is useful to understand the gauge transformation
on the state |n〉. Assuming that we change the phase χ

by 2π : χ → χ + 2π , then θj → θj + π
m

= θj+1. Therefore,
|n〉 → ω−n|n〉, implying γ → ωγ .

In terms of the localized modes, we can write the general
form of the effective Hamiltonian in the tunneling regime to

leading order in the tunneling amplitude t :

Heff = �(χ )γ †
LγR + H.c. (28)

Here, γL and γR are localized zero modes at the two ends
of the junction. Notice that here it is crucially important that
the Josephson current is carried by quasiparticles instead of
electrons. Although the junction is gapped out by TR-breaking
field (e.g., ferromagnet), it is still part of the fractional quantum
spin Hall fluid. Since they carry charge e/m, the period of the
Josephson current should become 4πm. In the following, we
will provide a more rigorous calculation of the 4πm period of
the Josephson current.

The dc Josephson current is then given by

I (χ ) = 2e
d〈Heff〉

dχ
= 4e Re

[
d�

dχ
〈γ †

LγR〉
]

. (29)

Here, 〈γ †
LγR〉 is the conserved mod 2m QP number. Therefore,

the periodicity of I is completely determined by the periodicity
of the phase-dependent coupling �(χ ).

Now, we consider the coupling �(χ ). We assume a gauge
choice in which the superconducting phase to the left of the
junction is fixed and the phase on the right is χ . Now, we
increase the superconducting phase by 2π : χ → χ + 2π . As
we just demonstrated, the zero modes γL → γL, γR → ωγR .
Equivalently, this extra phase factor can be absorbed into the
coupling �:

�(χ + 2π ) = ω�(χ ). (30)

Consequently, the Josephson current

I (χ + 2π ) = 4e Re[ω�′(χ )〈γ †
LγR〉], (31)

which is in general different from I (χ ). It is easy to see that
for I (χ ) to return to its initial value, χ has to advance by 4πm

since ω2m = 1. So, in summary we have derived that

I (χ + 2π ) �= I (χ ), I (χ + 4πm) = I (χ ). (32)

Although we have not determined the precise functional
dependence of I (χ ), it is sufficient to conclude that the
Josephson current has a period 4πm.

We now briefly discuss the ac Josephson effect. The
conventional ac Josephson current at finite voltage V has
frequency 2eV

h̄
. In our case, since the Josephson current is

transported by a single fractionalized QP, the ac Josephson
current has frequency eV

mh̄
. When the Josephson junction is

irradiated by microwaves with frequency ω, the Shapiro steps
in dc current are observed at Vn = nmh̄ω

e
, i.e., we only see

Shapiro steps at multiples of 2m. However, the missing steps
are filled in by higher-order tunneling terms in the junction. A
recent proposal of a three-leg Shapiro-step measurement may
also be adopted here to overcome this obstacle.42

VII. CONCLUSION AND DISCUSSION

In conclusion, we have investigated the exotic gapped phase
formed on the edge of FTI under superconducting proximity
effect. This phase is characterized by topological degeneracy
determined by the electron fractionalization. The degenerate
ground states are distinguished by the mod 2m QP number. We
relate the degeneracy to Z2m zero modes on the boundary of the
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fractionalized topological superconducting region. We derive
an effective Hamiltonian to describe low-energy physics,
which maps to a quantum Potts model and allows for explicit
construction of the zero modes. We then discuss the braiding
of these zero modes. We also propose fractional Josephson
effect as a signature of this unusual phase.

It will be very interesting to work out the complete
algebraic description of the non-Abelian excitations found in
this work in the framework of tensor category theory. One
may wonder, based on the relation to the chiral Potts model,
that the zero modes discussed in this work can be regarded
as one-dimensional analog of Z2m parafermions arising in,
e.g., Read-Rezayi fractional quantum Hall states.43 However,
as non-Abelian anyons, they have apparently different fusion
rules and braiding statistics and therefore should not be
confused with each other. It is indeed true that both of
them have close relation to Z2m clock models. The wave
functions of parafermionic fractional quantum Hall states
are constructed from the correlation functions in parafermion
conformal field theory,44 which describes the critical point of
a certain Z2m-symmetric statistical model. The zero modes
studied in this work are related to the ordered phase of
the chiral Potts model. In both cases, the zero modes and
parafermions are expressed by the order and disorder variables
of a Z2m-symmetric model.35 However, they should be placed
properly in very different phases of the model.

We also notice that non-Abelian anyons with quantum
dimension d = √

N where N > 1,N ∈ Z have been found
as lattice dislocations in ZN gauge theory45 and also lattice
fractional quantum Hall states.46 The topological field theory

of non-Abelian phases containing these anyons has not been
found. Some candidates include the SO(N )2 Chern-Simons
theory,47 and U(1) × U(1) � Z2 Chern-Simons theory studied
by Barkeshii and Wen48 may be relevant in this context.

We now discuss possible future directions. We have
considered the edge states of 2D FTI. A natural question is
whether the approach taken in this work can be generalized to
fractional topological insulators in three dimensions,49,50 the
surface states of which are fractionalized, helical non-Fermi
liquid. In contrast to the 2D case where at least theoretically
the existence of FTI has been firmly established, in 3D the
situation becomes much more complicated, and so far, apart
from one exactly solvable model,51 other attempts are all
based on parton constructions and gauge theories. However,
one could expect that the superconducting proximity effect
on such exotic surface states would lead to very interesting
phenomena. In particular, one can suspect that there may be
unusual zero modes localized in the cores of superconducting
hc/2e vortices.

Note added. Recently, we became aware of several
preprints52–54 on closely related topics.
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