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Density of states and magnetic correlations at a metal-Mott insulator interface
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The possibility of novel behavior at interfaces between strongly and weakly correlated materials has come under
increased study recently. In this paper, we use determinant quantum Monte Carlo to determine the interpenetration
of metallic and Mott-insulator physics across an interface in the two-dimensional Hubbard Hamiltonian. We
quantify the behavior of the density of states at the Fermi level and the short- and long-range antiferromagnetism
as functions of the distance from the interface and with different interaction strength, temperature, and hopping
across the interface. Induced metallic behavior into the insulator is evident over several lattice spacings, whereas
antiferromagnetic correlations remain small on the metallic side. At large interface hopping, singlets form between
the two boundary layers, shielding the two systems from each other.
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I. INTRODUCTION

Recently, advances in synthesis techniques have made
possible the construction of well-defined interfaces involv-
ing strongly correlated materials, notably transition metal
oxides.1–4 Indeed, the early discovery that the interface
between two insulating oxides, LaAlO3 and SrTiO3 is a
high-mobility two-dimensional (2D) conductor5 or even a
superconductor6 has emphasized that novel physics can arise
at such boundaries, beyond a simple interpolation between
materials properties on either side. Subsequently, numerous
heterostructure interfaces have been shown to exhibit unique
phenomena that are not present in their bulk constituents. In
particular, Munakata et al. presented a subtle proximity effect
that arises between a normal metal and an antiferromagnetic
Mott insulator, which can be understood in the framework of
Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions.3

Advances in characterization techniques are also expanding
the horizon of the field. It was shown recently that by setting
up a standing wave of the incident x rays and adjusting the
position where the intensity is peaked inside the sample,
one can measure electronic excitations as a function of
location in the sample. This standing wave angle resolved
photoemission spectroscopy (SW-ARPES)7 method allows a
depth selective probe of buried layers and interfaces, and hence
the construction of chemical and electronic structure profiles
within the sample.

Various numerical methods have been employed to model
qualitative features of these experiments. Early attempts
include the study of LaAlO3 and SrTiO3 systems in which the
electric fields arising from the La3+/Sr2+ charge difference
and the on-site interactions are treated within the Hartree-
Fock approximation.8 A metallic interface between band
and Mott insulators in a quasi-one-dimensional lattice was
explored with the Lanczos method.9 Important insights into
electronic properties at interfaces have also been gained by
dynamical mean field theory (DMFT).10 For example, it has
been suggested that the Kondo effect governing the interface
between metal and Mott insulator is inefficient so that Mott

insulators are impenetrable to the metal.11 More specifically,
the quasiparticle weight decays as 1/x2 with distance x from
the metal, but the prefactor of this decay was found to be
very small. Zenia et al., however, emphasized that even a
small proximity effect can induce density of states to open
up a metallic channel inside an insulator sandwiched between
metals at sufficiently low temperatures,12 leading to perfect
conductance. This Fermi liquid is “fragile”: finite temperature,
disorder, or frequency rapidly return the behavior to that of
a conventional N-I-N junction. Possible device applications
were suggested as a consequence of this sensitivity.1–4 In
a related work,13 a Gutzwiller approximation approach was
extended to inhomogeneous systems. The decay length of the
exponential fall-off of the penetration of metallic character into
the insulator region was shown to diverge as the metal-insulator
transition is approached.

A further interesting set of studies involves the dynamical
response of strongly correlated systems with an interface, for
example the possibility of the suppression of charge transport,
current rectification, and the behavior of holon-doublon pairs,
which are important for devices.14 So far, such dynamic
phenomena have been explored primarily for one-dimensional
systems, where time-dependent Hartree-Fock15 and density-
matrix renormalization group (DMRG) methods are especially
effective.16

In this paper, we address the metal-insulator interface prob-
lem by using determinant quantum Monte Carlo (DQMC),17,18

a numerically exact approach, to treat correlated electron
models. Here we focus on an inhomogeneous Hubbard model
on a single two-dimensional lattice divided by a linear interface
in two regions, one weakly correlated (with U = 0), and one
at intermediate coupling (with U nonzero). The chemical
potential is chosen to maintain particle-hole symmetry, so
that all sites of the lattice are on average half filled. This
choice avoids the fermion sign problem19 and enables the
evaluation of magnetic correlations and the density of states at
low temperature.

Such DQMC simulations are at present limited to lattices
of 400–1000 sites (depending on the interaction strength and
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temperature). By focusing on a linear interface in a 2D lattice,
we are able to explore systems with a fairly large linear extent.
Most of our results will be for 20 × 20 lattices. This enables
us, for example, to evaluate the penetration depth across the
boundary, since the interface effects have sufficient room to
heal before the lattice edge. The behavior of the Hubbard
model across a planar interface in a 3D material on systems
of smaller linear extent has been explored by Euverte et al.20

The key finding is that up to an interface hopping V , which
is on the order of the bulk hybridization t , the effects of the
interface can extend well past the two layers immediately at
the interface. That is, the interface affects properties 3–4 layers
deep on both the strongly and weakly correlated sides of the
boundary. When V � 2t , however, there is a return to the
values characteristic of decoupled materials with V = 0. This
“revival” of magnetic order on the insulating side is driven by
the formation of singlets between fermions on the two layers
immediately adjacent to the interface which acts to decouple
the two materials.

This paper is organized as follows: In Sec. II we explicitly
write down the Hamiltonian and provide a very brief overview
of DQMC. Section III focuses on the magnetic properties of
the 2D lattice with a linear interface, both the near-neighbor
spin correlation and the structure factor. Here the interaction
strength U and temperature T are varied at fixed interface
hopping V . The key result is a determination of the penetration
depth as a function of T and U . Section IV extends these results
to the density of states. Section V examines the variation with
V , and Sec. VI summarizes our results.

II. MODEL AND METHODOLOGY

We consider the two-dimensional Hubbard model

Ĥ = −t
∑

〈ij〉,L,σ

(c†iLσ cjLσ + c
†
jLσ ciLσ ) − μ

∑
i,L,σ

niLσ

−
∑

i,〈LL′〉,σ
tLL′(c†iLσ ciL′σ + c

†
iL′σ ciLσ )

+
∑
i,L

UL

(
niL↑ − 1

2

)(
niL↓ − 1

2

)
. (1)

Here c
†
iLσ (ciLσ ) are fermionic creation (destruction) operators

of spin σ at site i in line L. While i,L can also be regarded as
the x and y site labels ix,iy , the current notation emphasizes
the broken rotational symmetry (the interface is parallel to the
x axis). Our labeling convention is L = . . . ,−3,−2,−1 for
the U = 0 lines and L = 1,2,3, . . . for the U �= 0 lines, so
that the interface connects L = ±1. t and tLL′ are the intraline
and interline nearest-neighbor hoppings. tLL′ = t except at the
interface where t−1,1 = V . The geometry is shown in Fig. 1.

The DQMC approach provides an exact solution to the finite
temperature properties of H by decoupling the interaction
term U through the introduction of an auxiliary Hubbard-
Stratonovich (HS) field. The resulting action is quadratic in
the fermion operators, so that the trace over those coordinates
can be performed, leaving determinants (one for spin up and
one for spin down) of matrices whose dimensions are the
spatial lattice size, and whose entries depend on the HS field.
The auxiliary field is sampled stochastically, and the values

FIG. 1. (Color online) Geometry of the two-dimensional lattice
with a one-dimensional interface (dashed red box). The metallic lines
(negative L) have U = 0 while the insulating lines (positive L) have
U �= 0. The lattice has periodic boundary conditions in the x direction
and open boundary conditions in the L direction. V denotes the
hopping/hybridization (heavy lines) across the interface. We adopt
the lattice size N = 20 × 20 throughout the paper, unless otherwise
indicated.

of the up and down spin fermion Green’s function for the
configurations generated are used to construct the various
observables. The CPU time for the algorithm scales as the cube
of the lattice size and linearly21 with inverse temperature β.

At low temperatures, the fermion determinants can become
negative, precluding their use as a probability for sampling
the HS field. To avoid this “sign problem”, we consider
the half-filled case, μ = 0. Here particle-hole symmetry
(PHS) implies that 〈niLσ 〉 = 0.5 for all temperatures and
interaction strengths, even if UL vary spatially with L and
the hybridizations are not all equal. PHS can also be used to
demonstrate that the up and down spin determinants, although
they can individually become negative, always have the same
sign. As a consequence, their product is always positive,
allowing the study of the low-temperature behavior at the
metal-insulator interface.

III. MAGNETIC PROPERTIES

We gain quantitative information concerning the spin
correlations in different lines by measuring the spin correlation
CL(x) = 〈S−

i,LS+
i+x,L〉, with S−

i,L = ci↑c
†
i↓, parallel to the inter-

face. Figure 2 shows that antiferromagnetism in the insulating
layer L = 1 immediately adjacent to the metal is diminished
by 20–30% relative to larger positive L, which are deeper in
the Mott insulator. Data are shown for boundary hybridization
V = t and interaction U = 4t in the insulator. Despite a
somewhat smaller amplitude, the correlations in L = 1 appear
to remain long ranged. Induced antiferromagnetic long-range
order22 in the metallic region is also evident, although its
amplitude is an order of magnitude smaller than that on the
insulating side.

Compact information on the antiferromagnetic long-range
order for each line L can be obtained by measuring the
antiferromagnetic (AF) structure factor,

SAF(L) = 1

N

∑
x

(−1)xCL(x), (2)
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FIG. 2. (Color online) Spin correlation CL(x) = 〈Si,LSi+x,L〉 as
a function of separation x for different lines L. Diminishing
antiferromagnetism of the insulator adjacent to the interface is shown.
The induced antiferromagnetic long-range orders in the metallic
region are evident in spite of their weaknesses. U = 0|4 denotes
the interface setup.

where N is the linear lattice size. Figure 3 illustrates the
L-dependent AF structure factor for different correlation
strengths U and temperatures T . The smooth penetration of
antiferromagnetic order into the metal and the diminishing AF
order in the insulator are clearly seen. As might be expected,
the induced long-range AF order in the metal adjacent to
the interface is stronger for correlated insulator with larger24

on-site repulsion U [Fig. 3(a)] and/or lower temperature
[Fig. 3(b)]. The overall magnitude of SAF in the metal is
rather small, consistent with the small real-space correlations
in Fig. 2. The results of Figs. 2 and 3 are rather different
from previous work of Sherman et al.25 who found that the
antiferromagnetic order can penetrate into the metal to a depth
of ten lattice spacings, but are consistent with the shorter-range
effects described in Refs. 11 and 12. Figure 3 indicates that by
layer L = −3 the influence of the contact with the insulator is
minimal.

On the other hand, we find that contact with the metal has a
substantially greater effect on the insulator. Here the “Kondo
proximity effect” diminishes the long-range AF order of the
insulating lines adjacent to the interface. This tendency to
paramagnetism competes with the long-range order induced
by the exchange energy J ∼ t2/U deep in the insulator
[Fig. 3(a)]. To quantify the proximity effects, we fit the curves
of SAF(L,U,T ) with the hyperbolic form SAF(L,U,T ) =
a tanh L/λ + b. The penetration depth λ decreases with larger
correlation U . Interestingly, λ increases at higher temperature.
It is possible that raising T weakens the magnetic order in the
insulator, thereby enhancing the effects of the contact with the
metal.

IV. DENSITY OF STATES

One criterion to distinguish metal from insulator is the
single-particle density of states, which can be extracted
from the local imaginary time-dependent Green’s function
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FIG. 3. (Color online) AF structure factor SAF(L) in each line
L for different correlation strengths U and temperatures T . The
smooth penetration of antiferromagnetic order into the metal and the
diminishing AF order in the insulator are clearly seen. Fitting SAF(L)
to a hyperbolic function,23 a tanh L/λ + b allows the extraction of
a penetration length λ, shown in the insets. λ decreases with larger
correlation U and lower temperature T .

GL(τ ) = ∑
iσ 〈T ciLσ (τ )c†iLσ (0)〉 from

GL(τ ) =
∫ ∞

−∞
dω

e−ωτ

e−βω + 1
NL(ω) (3)

and using the maximum entropy method.26 The density of
states is probed experimentally with photoemission spec-
troscopy. In a translationally invariant system one often
also calculates the momentum-dependent spectral function
A(k,ω), measured in angle-resolved photoemission spec-
troscopy (ARPES).

As mentioned in the introduction, a dramatic experimental
achievement recently has been the development of standing
wave ARPES,7 which has enabled the probing of strong
correlation effects layer by layer in a sample. Here we make
some predictions for possible features to be seen in SW-
ARPES by obtaining the row-dependent single-particle density
of states. As with the row-by-row magnetic correlations,
NL(ω) shown in Fig. 4 characterizes the penetration of
metallicity into the insulator. Kondo proximity effects are
evident in the evolution of NL(ω). Figure 4 shows that the
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FIG. 4. (Color online) The L dependence of the density of states
N (ω) shows the evolution of the spectral properties across the
metal-insulator interface. Lines of sites within the Mott insulator
(L > 0 have nonzero U ) are characterized by the presence of Kondo
resonance peaks split by antiferromagnetic order at half filling.
However this AF gap between the two peaks is dramatically weakened
as L → 1. On the other hand, the densities of states associated with
lines of sites on the metallic side of the interface show little effect of
contact with the insulator. Even for the line L = −1 most immediately
adjacent to the boundary there is only a small dimple in N (ω) at
ω = 0.

insulating lines for L = 6,5,4, relatively far from the interface
are characterized by the presence of a Kondo resonance peak
split by antiferromagnetic order at half filling. However, as the
interface is approached for L = 3,2,1 the gap is increasingly
filled in, evidence of the coupling to the metallic half of the
lattice. Meanwhile the metallic line (L = −1) immediately
adjacent to the interface shows some influence of the boundary,
albeit a rather small one: the central peak at ω = 0 shows a
slight dip. This is completely gone for L = −2. Evidentally
the metallic behavior of N (ω) penetrates much further into the
insulator than the insulating physics does into the metal.

Further information on the spectral weight at Fermi level
NL(U,T )|ω=0 as a function of on-site repulsion U and
temperature T is shown in Fig. 5. The penetration of metallic
behavior into the insulator and, conversely, the diminished
spectral weight at the Fermi surface in the metal are clearly
seen. Similar to Fig. 3, we adopt a hyperbolic function for
fitting. The resulting penetration depths λ are given in the inset,
and decrease with larger correlation U and lower-temperature
T .

V. EFFECT OF VARIATION OF INTERFACE HOPPING

We show in Fig. 6 the evolution of the line-dependent
AF structure factors SAF(L) with interface hopping V . As
expected, all lines L > 0 with nonzero on-site repulsion U = 4
have large SAF when the metal and insulator are decoupled
(V = 0). With increasing hybridization all SAF(L > 0) ini-
tially decrease. The most dramatic feature in Fig. 6(a) is the
different behaviors of SAF(L = 1) and SAF(L > 1). In the line
L = 1, adjacent to the metal-insulator interface, SAF(L = 1)
monotonically decreases with V . However, SAF(L > 1) show
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FIG. 5. (Color online) L-dependent density of states for different
on-site repulsions U and temperatures T . The smooth penetration of
metallicity into the insulator and diminished metallic behaviors in
the metal are clearly seen. Similar to Fig. 3, we employ a hyperbolic
fitting function and extract a penetration depth λ (insets), which we
find decreases with larger correlation U and increases with higher-
temperature T .

nontrivial revivals with increasing V and ultimately recover
to values characteristic of the decoupled case V = 0 when
there is no contact with the metal whatsoever. The inset
in Fig. 6(a) shows the nontrivial peak of the penetration
depth, whose position is consistent with the hybridization
strength V where SAF reaches its minimum. This behavior of
SAF(L) is qualitatively similar to the multilayer metal-insulator
interface in the three-dimensional Hubbard model,20 and
can be attributed to singlet formation at the metal-insulator
interface, which both suppresses SAF(L = 1) and also leaves
the remaining lines L > 1 decoupled from the metal.

The metallic line structure factors SAF(L) retain their small
values for the entire range of V . As with the real-space spin
correlation functions, there is a greater effect of the metal on
the insulator (suppressing magnetic order) than of the insulator
on the metal (inducing magnetic order).

Figure 6(b) provides further evidence of the strong mag-
netic coupling across the interface. The dominant feature
is the rapid increase of antiferromagnetic correlation across
the metal-insulator interface C⊥(L = −1,L′ = 1) as increas-
ing the hopping V . Note also that magnetic correlation
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FIG. 6. (Color online) (a) Evolution of the antiferromagnetic
(AF) structure factors SAF(L) with interface hybridization V . With
the exception of sites in line L = 1, adjacent to the metal, SAF(L > 1)
exhibits a nontrivial revival with increasing the V . We attribute this
affect to singlet formation at the metal-insulator interface, which
leaves the lines L > 1 decoupled from the metal. The inset shows
the behavior of the penetration depth, whose peak position agrees
with the hybridization strength V where SAF reaches its minimum.
(b) Further evidence of the strong magnetic coupling across the
interface. U = 0|4,β = 10.

C⊥(L = 1,L′ = 2) become smaller with larger hopping V due
to the singlet formation at the interface L = −1,1.

VI. CONCLUSION

We have used the numerically exact finite-temperature
determinant quantum Monte Carlo (DQMC) method to study a
metal-insulator interface in a two-dimensional square lattice.
By investigating the long-range antiferromagnetic order and
density of states, we demonstrated that the metallic behavior
penetrates into the insulator for several lattice spacings, with
a penetration depth λ, which decreases with increasing on-site
repulsion, U , on the insulator side of the interface. λ is also
(somewhat more weakly) temperature dependent, decreasing
as T is lowered towards the critical temperature Tc = 0
for long-range magnetic order on the insulating side. The
penetration length λ thus shows an opposite temperature
dependence to that of the spin correlation length, ξ , which
grows as T is lowered.

The insulator-induced antiferromagnetic long-range order
in the metal is predominantly limited to the line immediately
adjacent to the interface. That is, magnetic characteristics

of strong correlation appear to penetrate less deeply into
the metallic side of an interface than does weak correlation
physics penetrate into the insulator. This is consistent with
previous results for a planar interface in a 3D lattice.20 We
note, however, that in the 3D geometry, the effect of the contact
with the insulator on the in-plane conductivity σ in the U = 0
half of the lattice can extend beyond the contact layer. This is
consistent with our results for the density of states at the Fermi
level N (ω = 0), which are shifted from their U = 0 values for
layer L = −2 in addition to layer L = −1.

Recently, studies of the effect of spatially varying densities
and interaction strengths have been motivated by experiments
on trapped atomic gases.27–30 In such systems the spatial
variation [e.g., a quadratic confining potential Vtrap(r) =
VT (r/ l)2] has an explicit length scale l. This complicates the
determination of intrinsic length scales associated with the
response of the interacting fermions themselves. Our choice
here of a sharp (scale free) interface between metal and in-
sulator (UL = 0,L = −1,−2,−3, . . . and UL = U > 0,L =
1,2,3, . . .) allows us to attribute the lengths characterizing the
relaxation of properties on either side of the interface solely
to the fermionic correlations. This choice is, of course, also
more appropriate to the solid-state context of a sharp interface
between two materials.

In the present work we have studied 1D interfaces sepa-
rating 2D bulk materials. While we believe our results will
be qualitatively relevant to higher dimension, we should
emphasize that 1D electronic systems have unique properties:
power-law decay of correlation functions in the ground state,
as opposed to true long-range order. Thus if we were to
examine the decay of correlations down the 1D interface
chains L = ±1 in the large V regime where these two chains
have decoupled from the bulk, we expect the functional
forms to differ from those describing the decay in a 2D
interface. One further motivation to study the metal-insulator
interface is its close relation to the question of orbitally
selective Mott transitions (OSMTs).31–36 Here the central
question is whether orbitals with different degrees of electronic
correlation, coupled together by interorbital hybridization,
necessarily undergo the Mott transition simultaneously. The
layer index L in the Hamiltonian considered in this paper
bears a formal similarity to the orbital degree of freedom
in the OSMT, although of course the details of the coupling
via hybridization are rather different in the two cases. It is
evident from our data that a layer that shows the hallmarks
of an antiferromagnetic Mott insulator can coexist with layers
that have the characteristic behavior of a paramagnetic metal.
That such coexistence is possible is similar to the conclusion
ultimately reached in numerical studies of the OSMT.

In this paper, the density of states and magnetic correlations
near an interface between U = 0 and U �= 0 regions have been
found to be more or less smooth interpolations between the
bulk metal and Mott insulator. Some quantum Monte Carlo
simulations have observed novel phases such as spin liquids,
to arise in models where the energy scales are poised at
the boundary between a semimetal and an antiferromagnet,37

although several recent studies challenge that assertion.38 An
interesting extension of the present work would be, therefore,
to bring such more general regions into contact and study the
properties at the interface.
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