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Coexistence of antiferromagnetism and d + id superconducting correlations in the graphene bilayer
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We discuss the 7-J-U model on a honeycomb monolayer that has the same low-energy description of the kinetic
term as the graphene bilayer, and in particular study coexistence of antiferromagnetism and superconducting
correlations that originate from Cooper pairs without phase coherence. We show that the model is relevant
for the description of the graphene bilayer and that the presence of the d + id superconducting correlations
with antiferromagnetism can lead to quadratic dependence in small magnetic fields of the gap of the effective
monolayer consistent with the transport measurements of Velasco ef al. on the graphene bilayer.
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I. INTRODUCTION

The interaction effects are important for the physics of the
graphene bilayer; recent experiments reveal gapped phase(s)
in the undoped graphene bilayer which without interactions
would represent a gapless system. In a recent experiment!
with high quality samples, a completely insulating behavior
was detected in transport measurements. Theoretical investi-
gations, mean field, and renormalization group approaches®'°
speak for a close competition of a few, mostly gapped, phases.
One of the most prominent candidates for an explanation of
the experiment in Ref. 1 is a layer antiferromagnetic (LAF)
state. The main reason for the existence of this state would
be an on-site Coulomb repulsion U; indeed as pointed out
in Ref. 6, a Hubbard model on a honeycomb bilayer lattice
would lead to the LAF state, both in weak and strong U
limit. This may remind us of the behavior of the Hubbard
model on the square lattice and the antiferromagnetic (AF)
behavior due to nesting in the weak coupling limit. The
Hubbard model on a square lattice is usually invoked as a
model for cuprates in its strong coupling limit which forbids
the double occupancy and leads to a “perfect” AF behavior
at half-filling. On the other hand, the estimate for U is hard
to know in the graphene bilayer and certainly depends on the
computational scheme but it is expected to be stronger than
both (inter and intralayer) hoppings. Due to the smallness of the
gap revealed in the experiment in Ref. 1, we will not consider
the large U limit (exclusion of double occupancy) when
modeling the graphene bilayer. But we will keep the on-site
repulsion as a main cause of the insulating behavior detected
in the experiment. As expected from previous approaches this
will lead to AF insulating behavior but seems insufficient
to describe all phenomena detected in the experiment. An
additional order parameter, besides the one that describes the
antiferromagnetism, is necessary for the complete explanation
of the transport data of the experiment. '8

In this work we will look for the additional order parameter
that can coexist with antiferromagnetism in the graphene
bilayer at half-filling. We will argue that this is d + id (bro-
ken time reversal symmetry)—wave superconducting order
parameter. This (d + id) order parameter and its coexistence
with antiferromagnetism was already found at finite (nonzero)
dopings in a numerical (Grassman tensor product) approach
to the 7-J (large U) model on the honeycomb monolayer
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in Ref. 17. Due to the assumed moderate (not large) value
of U in our model of the graphene bilayer the AF and
d + id superconducting order parameter can coexist even at
half-filling. Our model of the graphene bilayer can be described
as a t-J-U model on an effective honeycomb lattice and, in
the following, we will argue why this model is relevant for the
description of graphene bilayer.

II. MODEL AND ITS MOTIVATION

The kinetic part of the Hamiltonian that describes the
graphene bilayer on two honeycomb lattices, which are Bernal
stacked, is

HO =t Z Z(a}-,ﬁ,ﬂbl,ﬁJrg,G + a;ﬁ,cbZﬁfaa + HC)

o 3

T Z(a;r,ﬁ,galﬁ,(r + H.c). ™)

n,o

The index i = 1,2 denotes the layer index. In Fig. 1 the relative
positions of two triangular sublattices A1 and B1 for lattice
1, and A2 and B2 for lattice 2 are illustrated. In Eq. (1) # is
the hopping energy between nearest sites in each layer, and
t; is the same energy for hopping between the layers. The

on-site creation (annihilation) operators ajﬁ ,(ai o) are for

the electrons in the sublattice Ai of the layer i with spin o =
T, and b:[ = - (bijio) for the electrons in the sublattice Bi.

8’s are defined as 8 = a(O,l/\/g), & =a/2(1, —l/ﬁ), and
83 =a/2(—1,—1//3), and a = /3 a, a.. is the distance
between sites and a is the next to nearest neighbor distance.
The screening of the long-range part of the Coulomb
interaction in two dimensions (2D), in the graphene bilayer,'3
is insufficient so this part can be neglected. Nevertheless, in
the experiment we discuss,' two metallic gates are present and
this must lead to an additional screening of the long-range
part of the Coulomb interaction that will reduce the influence
of the interaction to its short-range part. We will build our
phenomenological model on the understanding based on the
renormalization group method, as described in Refs. 5-10,
of the influence of the short-range part in the context of the
graphene bilayer. This understanding was successful in the
explanation of the experiment of Mayorov et al.!® Namely,
the three most prominent instabilities of these studies are
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FIG. 1. A view of Bernal stacked honeycomb lattices 1 and 2 with
corresponding sublattice sites A1 and B1, and A2 and B2.

antiferromagnetic (LAF), nematic, and anomalus Hall effect
state. Also in mean field studies their close competition was
observed and this indeed points out that the physics cannot
be reduced to just (Hubbard) U, but must be extended to first
and second near neighbors in an effective description. (This
competition is not hard to understand in the graphene bilayer
because the second near neighbors in the effective description
belong to the same layer, while the first neighbors belong to op-
posite layers, see below.) But because the (edge) conductance
of order €2 /h was not observed in the experiment,1 we will
neglect the influence of the second near neighbor interaction
(B1 — B1,B2 — B2 in Fig. 1) that (according to the Haldane
model?>?") would lead to the anomalous Hall effect.

Thus, according to the results of renormalization group
approaches’!® and on phenomenological grounds (i.e.,
on the basis of the experiments"!?), the antiferromagnetic
(LAF) state and a nematic state are the main instabilities that
may arise due to interactions in the graphene bilayer. The
nematic state is a result of an ordering in the particle-hole
channel that can be described by a nonzero expectation value
of the hopping (bond) operator

.
bl iis o P25 )

o

where 711 + 5 L and 1 — 32 denote sites that are near neighbors
on the honeycomb lattice that make sublattices B1 and B2,
as shown in Fig. 1. On the same lattice the antiferromagnetic
ordering can occur which describes the LAF state.

The nematic, that is, bond ordering as described in Ref. 7,
canbe thoughtasad,»_,» CDW (orad + id CDW as described
in Ref. 5—see below Eq. (13) for the definition of the d,2_»
and d + id ordering) in the language of Ref. 22. In the same
reference this instability (“hidden order” on a square lattice)
was proposed for cuprates. Just as in the case of the square
lattice and cuprates, this ordering, in the graphene bilayer,
can be thought as the result of short-range interactions and
superexchange processes. These interactions and processes
can also lead to the LAF state. The effective Heisenberg
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interaction on the B1 and B2 honeycomb of neighboring sites
iand j (n + §and i — & ) can be rewritten in terms of the
hopping operators [Eq. (2)] as

§j§j __<Zb1mb2ja><zb21(,blm> - 1’ (3)

and should be a part of an effective description of the graphene
bilayer. According to Refs. 6 and 10, the only instability in the
weak coupling limit of the Hubbard model on the graphene
bilayer is antiferromagnetism. Thus, on phenomenological
grounds, we will assume that the value of J is an independent
parameter in the effective description, favorable for both
instabilities, nematic and antiferromagnetic.

With respect to cuprates the on-site repulsion U is not that
strong to preclude the double occupancy on the graphene
bilayer. Therefore we will explicitly include this interaction
in our model Hamiltonian, which can be described as

H = Hy + Hy, )
where
Hy =17 Spi +81) Spli — &), )
no8,8

and the summation is over the near neighbors, and

=Yt v} b+ Hoe+ Y Uiy,

kelBZ i=12 7
(6)

with y, = Y5 exp{ik8}, iy = 7i + &), and 7i, = /i — 8,. The
kinetic term (written above in the momentum space) in real
space, on the effective honeycomb monolayer of B1 and
B2 sites, describes near-neighbor and two times weaker
third-neighbor hopping. It can be recovered in the case of
the noninteracting honeycomb bilayer by taking interlayer
hopping to be large. In that case f.5 = 2 In the small
momentum limit the kinetic term in Eq (6) Eecomes the one
of the graphene bilayer, that is, f.f yk o (kx T lky)2 near

K points: Ky = :I:%”(Q,O).B’24 Because we look for the low
energy properties we will keep the two-band extension with
y,? throughout the Brillouin zone.

This model is similar to the 7-J-U model defined on
the square lattice and known from previous investigations.
The #-J-U model appeared also in the context of gossamer
superconductivity,>> the superconductivity that can exist
even at half-filling.

III. MEAN FIELD APPROACH

In order to apply a mean field approach we can use the
identity

- -

5:8; = —(birbjy — biybj)B} bl —bL b))+ 1. ()
We will define the superconducting order parameter,
_b2i+g¢bli¢>’ (8)

where § can be any of the near-neighbor vectors on the
honeycomb lattice, and

m = (nj —n;y), 9)

As = (biirhy; 45,
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the antiferromagnetic order parameter. In the following we
will use the following notation: ¢ = t.¢, and apply to the
Hamiltonian in Eq. (4) the mean field ansatzes. We will
generalize the derivation of Ref. 30 to the case with the
antiferromagnetic order parameter.

If we use spinors,

Wy = [biy bay by b, 17 (10)

we can write the mean field Hamiltonian as

1 2
Hyr = W/HW+ ZNT Y |85 + U%N, (1)
;

where N is the number of unit cells,

Zm —ty2 0 —2A(k)
e —ty? —Zm —2$A(=k) 0
0 — 2 A*(—k) Zm ty*?
— A% (k) 0 ty% —Zm

12)

and A(k) =) 5 Az exp{il_ég}. The symmetry analysis of the
order parameter on a honeycomb lattice, first done in Ref. 31,
concluded that there are three possibilities,

A, 1, 1)
As: A2, -1, —1) (13)
A, 1, —1)

that span the space of order parameter. The last two possi-
bilities belong to a two-dimensional subspace of irreducible
representation of Sz, permutation group.’> The s-wave A; =
A(1,1,1) has nodes at K points because Ay = Ayy. For
dy_y» wave Asg = A(2,—1,—1) near K1 points we have
A(Ky+k)=A[3+£ ‘/7§(kx +iky)], and for d,, wave A; =
A(0,1, —1) the expansions are A(Ki + k)= Ai[£4/3 —
%(k)r £ iky)]. Therefore if the d + id combination Aj(k) &
i~/3A,(k) is taken near one of the K points the order parameter

is a constant (6A) and at the other K point is linear in &,
and k. Therefore, instead of having the coefficients of the

same absolute magnitude with bJ[ka;k ' and bimblk ' (and
by_i b1kt and by_y boy4) for afixed valley pointd + id singles
out one spin projection (up or down) to be associated with sites
on layer 1 and the opposite one to be associated with sites on
layer 2. Thus it favors pairing (Cooper pairs) in which the
layer index is associated with definite spin projection just as
in an antiferromagnetically ordered state, that is, LAF state
described above.

d+id wave and s wave can coexist, as rotationally
symmetric states, with the LAF state although only for certain
values of J and U parameters. One can show that for the
coexistence of the LAF state and s-wave J > U, which cannot
be the case in the graphene bilayer. For the d + id wave,
on the other hand, one can find an interval for couplings J
and U for which the LAF state and d + id-wave pairing can
coexist. Expanding the mean field equations to fourth order
in the ratio of superconducting and antiferromagnetic order
parameter and in tlJle weak coupling limit that i?, t > J,U, we

ﬁnd%—%]w <7< %+i]w, with w = W.We expect
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that the interval will broaden when the short-range correlations
(due to U) are properly taken into account that will renormalize
(reduce) the effective value of ¢. This was worked out for the
square lattice in Ref. 27 in a comprehensive (renormalized
mean field) study of the 7-J-U model, and a interval of
couplings was identified for which antiferromagnetism and
superconducting correlations can coexist at half-filling. Fur-
thermore, in Ref. 28 a variational Monte Carlo method was
applied to the same system, and a finite value of the pairing
amplitude (A) was found in the antiferromagnetic region (with
no superconducting phase coherence). We expect a similar
situation in our case.

As in the case of honeycomb monolayer in Ref. 31, we can
diagonalize the free part of the above Hamiltonian and come
to the following expressions for order parameters:

C; = Z Ag cos{lgg —2¢z}
H

and

S =) Agsin{ks — 2¢3).
5

where ¢; = arg[y (k)]. Due to the expansion of A around K
points in the case of the d + id wave we have

(ky & iky)>
k|2

where the last sign is independent of K points. Thus we
recovered the basic signatures of d + id pairing: (a) The order
parameter is an eigenfunction of orbital angular momentum
with eigenvalue equal to two, and (b) due to the same sign
(chirality) at both K points this wave is a time reversal
symmetry breaking wave on the bilayer honeycomb lattice.
Therefore in analyzing this wave we can keep the leading
behavior in Aj(k) and A,(k) as this effectively captures the
basic phenomenology of the d 4 id wave. Thus we take

CKi+k ~ SKiJrk ~ s (14)

U

Ym  —tyz 0 —J3A
—tyk*2 —%m 0
Ha-ia = 0 0 Uy 2 (15)
2 Y_k

-I3A 0 vy —im

in the case of A(k) = A(k) — i\/gAz(k) combination, or

%m —tykz 0 0
-ty =Sm  —J3A 0
Havia = 16
i 0 —i3a Umo 2| U9
0 0 v —Ym

in the case when A(k) = A (k) + i/3A5(k).

In the same low-momentum limit yx, x &~ Fa %g(k)C F
iky). We will use redefinitions Ym =m, J3A = A, and
tasz = t in the following.

We take A to be purely real and without the phase [U(1)]
degree of freedom, that is, phase coherence?? that would lead
to supercurrents proportional to the gradient of this phase that
would screen a magnetic field that may be present. We assume
that supercurrents cannot develop in the antiferromagnetic,
insulating background.
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The Bogoliubov spectrum is the same irrespective whether
we ask for energy eigenvalues in the case defined by Eq. (15)
or (16), and with the introduced redefinitions the eigenvalues

are
212
12k* + <§> ] . (17)

Therefore the two different chirality states of the d wave
are equally likely in the presence of the antiferromagnetic
ordering.

A
E=+ m2—|—|:5:|:

IV. PRESENCE OF SMALL MAGNETIC FIELD

In the presence of magnetic field, due to the minimal pre-
scription, we may introduce a pair of creation and annihilation
operators and express the resulting Hamiltonian matrix around
K point as

m —w.(ah)? 0 —A
Y _ —w:(a)? —m 0 0
Hd-id)B — 0 0 m we(ah)?
—A 0 we(a)? —m

(18)

Here we introduced w, = fn—fi, where B is the magnetic field
and m is the effective mass of the graphene bilayer % = 2t.
The eigenvectors can be expressed as 4-spinor coefficients
of eigenvectors W, of ata operator ataw, = nv, classified
by integer eigenvalues n: 0,1,2, . ... In the presence of small
magnetic field we will look for the eigenstates in the form

U, =[cicre3eqll|n), n=0,12,.... (19)

The Nambu-Gorkov formalism with 4-spinors artificially
doubles the degrees of freedom. This appears in spectra
as doubling of energy levels (:E). Thus when solving the
Hiw—-iayp we have to keep levels that are continuously
related to energy levels with no superconducting instability
(A # 0) and are pertinent to the 2 x 2 upper, left block of the
Hamiltonian matrix.

The Hamiltonian in Eq. (18) we will consider under the
approximation of a small magnetic field and rewrite it as

HS a—iayp = Ho+ V, (20)
where
m 0 0 -A
Ho = 0O —-m 0 O ’ @1
0 0 m O
-A 0 0 —m
and V denotes the perturbation
0 —w(a')? 0 0
—wc(a)? 0 0 0
V= O N %))
0 0 0 we(ah?
0 0 we(a)? 0

Taking as solutions only values that are connected continu-
ously in the limit A — 0 to the upper 2 x 2 left part of Hy we
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get for the eigenvalues and eigenvectors of Hy:
E’f = —m, \Ijl = [0? 17 07 O]T|n>’
= V2 T A2 W= clm+ E. 0,0,

— Jm2 2 — 1 ideri
where E = +/m*+ A“ and ¢ = NeEER Considering the
small magnetic field to second order as perturbation we
get Ef = —m — —(”+2)(”+1)w‘ and Ej = E + "(” l)w . Con-
sidering the same problem at K'=—-K pomt we get E” =

m+ (n+2)(ﬂ+1) a)‘ and En - _FE— n(n2 1) w
Thus, by analyzmg the spectra of both K pomts together, we
can conclude that with the inclusion of small magnetic fields

— A" |n),

the gap changes from E, = 2m value to E, =2m + 2%3 in
the presence of d — id correlations. Without the correlations or
with d + id correlations the gap will not have the correction
quadratic in small magnetic field, which direction is fixed
in Eq. (18). d — id correlations minimize the energy of the
system by shifting also the energy levels closest to the Fermi
point. In the Appendix we compare the energies of the states
with d + id and d — id correlations, and show that d — id are
indeed of the lower energy.

The energy minimization, when the direction of perpendic-
ular magnetic field is opposite, requires that the superconduct-
ing correlations are of d + id kind. Thus the change in the
direction of magnetic field is followed by the change in the
chirality of the superconducting instability, that is, B — —B
followed by d —id — d +id, as one would expect from
the superconducting instability that has orbital and therefore
magnetic moment. This amounts to just switching of the
previously found spectra between K and K’ points. The gap
is the same irrespective of the direction of the magnetic field
although with the inclusion of superconducting correlations
linear in k [on the diagonal in Egs. (15) and (16)] leads to an
asymmetry which may be related to the asymmetry detected
in the transport measurements of Ref. 1 with respect to the
change in the direction of the external field.

V. DISCUSSION AND CONCLUSION

In the literature we find several proposals®* 3% for the
explanation of the data of Ref. 1. See also Ref. 37 for further
experimental investigations on the same system and possible
explanations based on anomalous quantum Hall physics.
Reference 34 by Kharitonov introduces an additional order
parameter to the Néel order parameter, but the resulting gap
dependence does not have a minimum at B(magnetic field) =
O—compare Fig. 3 in Ref. 34, in contrast to what can be seen
from the transport measurements—compare Fig. 3 in Ref. 1.
Reference 35 by Zhu, Aji, and Varma with the interesting
proposal of taking into account the full four band structure,
still gives linear dependence on B of the gap—compare with
Fig. 6 in Ref. 35, in contrast to the quadratic dependence
on small B as seen in the experiment. Reference 36 by Roy
does describe the quadratic dependence based on a mean
field treatment of spin magnetism, where a phenomenological
ferromagnetic interaction next to the Néel ordering among
the spins of electrons is introduced which existence (with a
precise magnitude) is necessary to obtain a correspondence to
the experimental data.
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Our approach is also mean field and phenomenological,
though clearly motivated microscopically by the physics of
the 7-J-U model, as we introduce orbital magnetism of
superconducting correlations. This leads to the quadratic
dependence of the gap on small B as observed in the
experiment. Thus we demonstrated a possibility that the
quadratic dependence on small magnetic field observed in
the experiment of Ref. 1 may be due to the time reversal
symmetry breaking d-wave superconducting correlations that
coexist with antiferromagnetism.

The d +id wave superconductivity and antiferromag-
netism at high dopings of the graphene monolayer were studied
in Refs. 38 and 39. It was shown that both instabilities are
connected with the existence of the on-site repulsion U.

The last and important question we would like to discuss is
how our proposal can explain the behavior of the system gap
in strong (and moderate) magnetic fields. In other words, the
question is how does the antiferromagnetic ground state with
d + id superconducting correlations evolve in the many-body
state of half-filled zero-energy Landau level, which is eightfold
degenerate due to flavor [spin and valley (layer)] and orbital
(n = 0,1 Landau index) degrees of freedom. We expect a
gradual formation of a QHFM (quantum Hall ferromagnet)*’
due to many-body correlations and the spontaneous ferromag-
netic ordering of the spin degree of freedom. Thus we will
fix the valley and orbital degree of freedom in the following
and discuss how from two (spin up and spin down) Landau
levels we can have effectively a single filled Landau level and
ferromagnetic ordering. d 4 id wave Cooper pairs, described
in the long distance with the following Cooper pair wave
function:*!

Gy — 7o) ~ L2 23)
214 — 224
in the presence of the magnetic flux will be modified by flux
(vortex) attachment due to the particles of opposite spin as in

Z2¢ H(Zm —ziy)* H(Z% — Z”)

(24)

fGFiy —Fay) ~ o

This will lead to the following many-body state

Det<m N) H(Zm —at =@ -0 @9

Zit T Zj i

where Det denotes the determinant of the antisymmetrized
product of Cooper pair wave functions, and x, denotes the
filled second Landau level wave function in the Jain notation.
The identity used in Eq. (25) was proved in Ref. 42. The
topological properties of the wave function in Eq. (25) (or the
low energy properties of the system described with the wave
function as discussed in Ref. 43) are equivalent to the Halperin
(1,1,1) state or QHFM, that is, the following state:

H(Z;T Z]T)H(Zm Zq¢)1_[(ZlT—Zm¢) (26)

l<j P<q

PHYSICAL REVIEW B 86, 195113 (2012)

for fixed valley and orbital index, and thus lead to the QHFM
state with the effective filling factor v = 4. It was shown in
Ref. 44 that this state would lead to the gap with linear depen-
dence on the (strong) magnetic field as observed in Ref. 1. Thus
we described a possible route from antiferromagnetic state
with d + id superconducting correlations to the spin QHFM
state consistent with the experiment.
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APPENDIX: ENERGY MINIMIZATION

To find whether d — id or d + id SC correlations coexist
with antiferromagnetism in the presence of the magnetic field,
which direction is defined as in Eq. (18), we should compare
the two ground state energies,

Ed-id Z[ m— (n + Dn +2)8]
n=0
+ > [-E — n(n — 1)8] (A1)
n=0
and
Edtid — Z[—E —(n+ D(n+2)8]
n=0
+ ) [-m —n(n - 1)3], (A2)
n=0
where § = A and the bounds for the summations are

2E°
determined by the lower cutoff —FE,, that is, we have in the

d — id case

E.—m

n +2)n +1) = 5 (A3)

E.— FE
n'(n —1) = 5 (A4)
@ +2)@ +1) = ‘8_ : (AS)

and

11 =11 EC —m

n'(m—1)= 5 (A6)

in the d 4 id case. After a few steps of simple algebra we get

E4Tid _ patid — o — E). (A7)
Because E > m, the energy minimization favors d —id SC

correlations for the fixed direction of the magnetic field
[Eq. (18)].
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