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One-dimensional interacting electrons beyond the Dzyaloshinskii-Larkin theorem
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We consider one-dimensional (1D) interacting electrons beyond the Dzyaloshinskii-Larkin theorem, i.e.,
keeping forward-scattering interactions among the electrons but adding a nonlinear correction to the electron
dispersion relation. The latter generates multiloop corrections to the polarization operator and electron self-energy,
thereby providing a variety of inelastic processes affecting equilibrium as well as nonequilibrium properties of
the 1D system. We first review the computation of equilibrium properties, e.g., the high-frequency part of the
dynamical structure factor and corrections to the electron-electron scattering rate. On this basis, microscopic
equilibration processes are identified and a qualitative estimate of the relaxation rate of thermal carriers is given.
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I. INTRODUCTION

In systems of interacting electrons in one dimension certain
physical phenomena, such as damping of the elementary
excitations and energy relaxation, are beyond the reach of
the conventional Tomonaga-Luttinger (TL) model; see, e.g.,
Ref. 1 for a review. This may be understood from the fact that
for such a model, the spectrum of the interacting electrons is in
exact one-to-one correspondence with the one of free bosons.2

In diagrammatic terms this correspondence is generally re-
ferred to in the literature as the Dzyaloshinskii-Larkin (DL)
theorem;3,4 see also Refs. 5–8 for reviews. Inelastic processes
responsible for a finite lifetime of the elementary excitations
and relaxation in one dimension may, however, be accessed
by abandoning Tomonaga’s approximation of linearizing the
electron dispersion relation9 at the expense of losing the exact
solvability of the model. A number of methods have been
developed, especially during the last decade, to address these
issues thereby generating a considerable amount of work; see
Ref. 1 and references therein. The purpose of this paper is
to emphasize the importance of yet another approach based
on the direct analysis of the lowest order multiloop diagrams
which are beyond the DL theorem. A review of the method
for the computation of equilibrium properties will first be
presented. On this basis, microscopic processes responsible
for the equilibration of one-dimensional (1D) electrons will be
identified. The analysis will be qualitative but will nevertheless
allow us to give an estimate of the relaxation rate of thermal
carriers in quantum wires. This estimate agrees with the recent
literature on the subject.10–12

II. DISPERSION NONLINEARITY AND INTERACTIONS

The TL model is exactly solvable thanks to two crucial
approximations related to the shape of the electron dispersion
relation and to the nature of the scattering processes between
the electrons. The former consists in linearizing the electron
dispersion relation ξ±

k = ±vF (k ∓ kF ), where ±kF are the
Fermi points, ± correspond to the chiralities of the fermions
(+ for right movers near +kF and − for left movers near
−kF ), and vF is the Fermi velocity. As will be seen shortly,
it is this approximation which is responsible for the fact that
low-energy excitations are free bosons, i.e., quantized sound
waves13 of the 1D system. The properties of these collective

modes are encoded in the density-density correlation function
�(x,τ ) = 〈ρ(x,τ )ρ(0,0)〉, where ρ is the density operator. For
noninteracting electrons, this correlation function reduces to a
one-loop diagram, see Fig. 2(a). In imaginary time and in the
linear spectrum approximation it reads5–8

�
(0)
± (iω,q) = ± 1

2π

q

iω ∓ vF q
, (1)

where ω is the energy of the boson of momentum q and ±
refer to the chirality of the fermions. The total polarization
operator is given by �(0) = �

(0)
+ + �

(0)
− . The imaginary part of

the retarded polarization operator defines the dynamical struc-
ture factor (DSF): S(ω,q) = − 2

π
Im�R(ω,q). Combining this

definition with Eq. (1) yields

S(0)(ω,q) = |q|
π

δ(ω − vF |q|), (2)

where we assume that ω > 0 for simplicity. Equation (2)
together with the f -sum rule14

∫ ∞

0
dωωS(ω,q) = n̄

q2

2m
, (3)

where n̄ is the average electron density along the wire, show
that indeed the free boson of energy ω = vF |q| exhausts the
f -sum rule.

A coupling between the collective modes can be achieved
by taking into account small deviations from linear dispersion.
Away from half-filling, the first correction is due to the curva-
ture of the electron dispersion relation ξ±

k = ±vF (k ∓ kF ) +
(k ∓ kF )2/2m, which introduces an additional parameter, m,
the band mass such that kF ≈ mvF at small fillings. Including
this nonlinearity, the free fermion polarization operator and
DSF (at T = 0) become

�(0)(iω,q) = m

2πq
ln

[
(iω)2 − (ω−)2

(iω)2 − (ω+)2

]
, (4a)

S(0)(ω,q) = m

2π |q| [	(ω − ω−) − 	(ω − ω+)] , (4b)

where the two-parametric family appears: ω±(q) = vF |q| ±
q2/2m. The spectral weight now spreads over a range of
frequencies: ω−(q) < ω < ω+(q). The latter corresponds to
a continuum of single (particle-hole) pair excitations14 which
is responsible for the strong damping of the sound mode. From
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FIG. 1. Scattering process g2 and bare chiral propagators (solid
line for right movers, dashed line for left movers, wiggly line for
the interaction) with nonlinear dispersion: ξ±

k = ±vF (k ∓ kF ) + (k ∓
kF )2/2m.

Eq. (4b) we see that the f -sum rule of Eq. (3) is now exhausted
by the single-pair excitations.

The second approximation made in the TL model is that
only forward-scattering processes associated with small mo-
mentum transfers are taken into account. The corresponding
dimensionless coupling constants are noted g4 and g2 for
processes involving the scattering of electrons of the same
and of different chiralities, respectively; see Fig. 1 for
g2. On the other hand, backscattering (g1) and umklapp
scattering (g3), which are characterized by large momentum
transfers, are neglected. Under these assumptions, g4 and
g2 are invariant under the renormalization group flow and
the TL model appears as an infrared fixed point of a more
general class of “g-ology” models.5–8 It describes a 1D
metal; i.e., excitations are gapless. The difference with the
3D (Fermi liquid) case may be seen5–8 perturbatively from
the electron-electron scattering rate and quasiparticle residue:
τ−1
k = −Im
(ξk,k) and z−1

k = [1 − ∂Re
(ε,k)/∂ε]ε=ξk
, re-

spectively, where 
 is the electron self-energy; see Fig. 2(b)
for the g2 process. The latter determine the dressed single-
particle Green’s function, G(k,ε) = 1/[ε − ξk − 
(k,ε)], and
the spectral function, A(k,ε) = − 1

π
ImG(k,ε). For a Fermi

liquid (FL), Im
 ∼ −g2 max{ε2,T 2}/εF and Re
(ε,k) ∼
g2ε, implying the existence of well-defined quasiparti-
cles: τ−1

FL ∼ g2 max{ε2,T 2}/εF , zFL ∼ 1 with a Lorentzian
spectral line shape. In 1D on the other hand, Im
 ∼
−g2

2 max{|ε|,T } and Re
 ∼ g2
2 ε ln(max{|ε|,T }/εF ). The

scattering rate is therefore of the order of the energy of
the particle: τ−1

TL ∼ g2
2 max{|ξk|,T }, and the quasiparticle

residue vanishes logarithmically at low energies: z−1
TL ∼

1 − g2
2 ln(max{|ξk|,T }/εF ), as in a marginal Fermi liquid.15

At very weak couplings, g2 � 1, fermionic quasiparticles
survive above an exponentially small energy scale: T >

εF exp(−1/g2
2). However, the linear dependence on en-

ergy of the scattering rate implies that the spectral line
shape is non-Lorentzian with high-frequency tails scaling
as A(k,ε) ∼ 1/max{|ε|,T }, in contrast to the Fermi-liquid
case.

Concerning the bosonic correlation function, the combined
assumptions of forward-scattering interactions and linear

(a) (b)

FIG. 2. (a) One-loop polarization diagram and (b) two-loop
electron self-energy (for a right mover) for the scattering
process g2.

dispersion imply that there is no higher order correction to the
lowest order diagram of Fig. 2(a). In this sense the TL model
is exact at one loop. This is the essence of the DL (or loop-
cancellation) theorem which allows for an exact computation
of all correlation functions at arbitrary interaction strength.3,4

Beyond weak coupling, single-particle excitations disappear
and the system becomes a non-Fermi liquid. Concerning the
collective mode, interactions renormalize its velocity, v 	= vF ,
and bring a prefactor, γ 	= 1, fixed by the f -sum rule in
the expression of the DSF, which may then be written as
STL(ω,q) = γ |q| δ(ω − v|q|). Bosons therefore remain free
and the boson-fermion mapping implies that there is no
relaxation in the TL model.

As anticipated in the Introduction, relaxation requires both
dispersion nonlinearity and interactions among the electrons.
The former is irrelevant in the renormalization group sense and
is not expected to affect the infrared properties of the model.
But when combined with interactions among the fermions
the DL theorem breaks down and multiloop corrections
appear, providing a variety of collision processes. Presently,
no consistent resummation scheme exists to take into account
these processes in a nonperturbative way. In the following
we will therefore simply focus on the lowest order nontrivial
corrections beyond the DL theorem and relate such corrections
to the equilibration of 1D interacting fermions.

III. PERTURBATION THEORY

We assume that both the interactions among the electrons
and the deviations from linear dispersion are weak and take
them into account in perturbation theory. For simplicity, we
focus on spinless fermions, i.e., fully spin-polarized electrons.
In this case there is no distinction between g1 and g2

processes. The combinations g4 and g2-g1 are then invariant
under the renormalization group flow and have to be taken
into account. If we assume that electrons interact via the
realistic 3D Coulomb interaction, i.e, V (q) = −e2 ln(qa),
where q is the 1D momentum transfer and a the width of
the wire, these coupling constants depend on momentum
only logarithmically. In the following we will neglect this
marginal dependence keeping in mind, however, that g2 −
g1 = [V (0) − V (2kF )]/2πvF → g2 	= 0, in the logarithmic
approximation. Then, to logarithmic accuracy, direct and
exchange processes involving g4 cancel each other and we
are left with the momentum-independent process g2, see
Fig. 1. This considerably reduces the number of diagrams that
have to be considered, thereby simplifying the diagrammatic
study while keeping track of the most important microscopic
processes.

With these assumptions in hand, the lowest order nontrivial
diagrams that need to be considered are the three-loop
diagrams displayed in Fig. 3. For clarity they have been
separated into three groups with obvious notations: “chiral”
�±± diagrams as well as a group of “mixed” �±∓ diagrams
generally referred to as the Aslamasov-Larkin diagrams in the
literature. The sum of all these contributions yields the lowest
nontrivial correction, due to both dispersion nonlinearity
and interactions, to the polarization operator: �(2) = �

(2)
++ +

�
(2)
−− + 2�

(2)
+−, and the corresponding DSF. These diagrams

have been computed to the lowest order in 1/m in Ref. 16. For
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FIG. 3. Three-loop corrections to the polarization diagram. Top:
�

(2)
++ (and equivalently for �

(2)
−− upon exchanging solid and dashed

lines). Bottom: �
(2)
±∓.

clarity, we reproduce here the expression of the imaginary part
of the corresponding retarded polarization operators:

Im�
(2)R
±± (ω,q) = −g2

2π

4vF

q2

(mvF )2

ω ± vF q

ω ∓ vF q
F(T ; ω,q), (5a)

Im�
(2)R
±∓ (ω,q) = +g2

2π

4vF

q2

(mvF )2
F(T ; ω,q), (5b)

where, for simplicity, a numerical coefficient has been ab-
sorbed in the coupling constant g2 and the thermal fac-
tor is given by F = 1/(1 − e− ω−vF q

2T ) − 1/(1 − e
ω+vF q

2T ). From
Eqs. (5) the three-loop correction to the DSF reads

S(2)(ω,q) = g2
2

vF

(
q2

m

)2
1

ω2 − (vF q)2
F(T ; ω,q). (6)

At zero temperature, F(T ; ω,q) = 	(ω − vF q) for ω > 0.
Equation (6) therefore corresponds to a continuum of two-pair
excitations which extends beyond the single-pair continuum, at
ω � vF |q|. Thanks to the high-frequency cancellation brought
by the diagram of Eq. (5b) this two-pair continuum has a
vanishing contribution to the spectral weight and the sum
rule, Eq. (3), is still exhausted by the single-pair excitations.
This perturbative result has limitations as ω → vF |q| where
nonperturbative approaches are required17–19 but nevertheless
agrees with similar results obtained by different methods.18–21

On the basis of these three-loop diagrams we can estimate
corrections to the electron-electron scattering rate beyond
the DL theorem: τ−1 = τ (2)−1 + τ (4)−1 + · · ·, where τ (2)−1 ≡
τ−1

TL ∼ g2
2 T for a thermal excitation as already discussed. The

next correction is given by the imaginary part of the four-loop
fermion self-energy, Fig. 4. Due to constraints imposed by the
g2 process the Aslamasov-Larkin diagrams do not contribute to
the fermion self-energy. The remaining diagrams describe the
scattering of two (particle-hole) pairs of different chiralities
and therefore do carry information about the lifetime of the

FIG. 4. Four-loop corrections to the self-energy of a right-moving
fermion (and equivalently for a left mover upon exchanging solid and
dashed lines).

excitations. The latter is estimated to be

τ (4)−1 ∼ g4
2

T 3

ε2
F

, (7)

up to a numerical factor. This correction brings back the Fermi
energy scale but does not follow the usual Fermi-liquid-like
scaling: T 2/εF . From dimensional arguments we understand
the cubic energy dependence as the only possible scaling to
compensate for the square of the Fermi energy appearing from
the polarization part.

IV. KINETICS AND THERMALIZATION RATE

Following Refs. 10,12 we now consider the hypothetical
situation where the system is prepared in an out-of-equilibrium
state characterized by a small temperature difference in the
distribution of right and left movers. The scattering process
g2 brings back the system to equilibrium. In the following,
we give evidence that the corresponding thermalization rate is
given by Eq. (7).

A rigorous approach to kinetics should in principle be
based on the nonequilibrium Green’s function technique; see,
e.g., Refs. 22 for reviews. Here, we shall follow the basic
steps of the method on a qualitative level. This technique
allows one to construct a quantum kinetic equation (QKE)
for a generalized distribution function: n(ε,k,t). For a Fermi
liquid the QKE reduces to a Boltzmann equation ∂tnk =
−I (nk), where nk ≡ n(ε = ξk,k,t) is the electron distribution
function and all the relaxation mechanisms are in the collision
integral I (n). For 1D interacting electrons the situation is
highly nontrivial. The first difficulty is that as the interaction
strength increases, quasiparticles become ill defined in 1D. To
circumvent this difficulty, we restrict ourselves to the case of
very weak interactions and not too low temperatures where,
as previously discussed, quasiparticles still exist. However,
the spectral function is non-Lorentzian: broader on-shell with
part of the spectral weight transferred to high-frequency
tails. As a consequence one cannot, in principle, neglect
off-shell contributions: ε 	= ξk . For thermal carriers, we argue
that the long time dynamics is dominated by the on-shell
contribution.25 Focusing on these long time scales, which
may be the easiest to access experimentally, we therefore
neglect the off-shell contributions. It is then well known22

that, to lowest order in interactions, the collision integral
has a four-fermion structure determined by the two-loop

(a)

k

q

k−q k

k q

k −q

(b)

k

q1+q2

k−q1−q2 k

k1
q1+q2

k1−q1

q2q2

k2−q2

k2

FIG. 5. Comparison between (a) two-loop and (b) one of the four-
loop diagrams of Fig. 4. Diagram (a) yields a four-fermion collision
integral. Diagram (b), together with the other diagrams of Fig. 4,
yields a six-fermion collision integral along the cut passing through
five particle lines.
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self-energy diagram of Fig. 5(a): nknk′−q(1 − nk′)(1 −
nk−q) − nk′nk−q(1 − nk)(1 − nk′−q), where the two terms cor-
respond to “in” and “out” contributions. Energy and momen-
tum conservation then impose: ξ+

k + ξ−
k′−q = ξ−

k′ + ξ+
k−q . In

1D this yields q = 0 and hence the identical cancellation of
“in” and “out” terms. We thus recover the fact that (on-shell)
two-body collisions do not contribute to relaxation in 1D.23

The next correction, which is nonzero thanks to dispersion
nonlinearity, is given by the four-loop diagrams of Fig. 4; see
Fig. 5(b) for a more detailed example. Tedious but straightfor-
ward calculations then show that the corresponding collision
integral has a six-fermion structure; e.g., for the diagram
of Fig. 5(b), nknk1−q1nk2−q2 (1 − nk1 )(1 − nk2 )(1 − nk−q1−q2 ) −
nk1nk2nk−q1−q2 (1 − nk)(1 − nk1−q1 )(1 − nk2−q2 ). The diagrams
of Fig. 4 yield a nonvanishing contribution to the collision
integral even when the energy-momentum constraint is taken
into account. On shell, such three-body collisions therefore
provide the leading contribution to the thermalization rate
which scales as g4

2 T 3/ε2
F , see Eq. (7).

V. CONCLUSION

A brief account has been given of the analysis of the
lowest order nontrivial corrections beyond the DL theorem
arising from interactions and dispersion nonlinearity. Focusing
on the case of weak interactions and spinless fermions,
a rigorous derivation of the three-loop corrections to the
DSF has been reviewed.16 The corresponding four-loop
fermion self-energy diagrams were related to equilibration
processes of 1D interacting fermions. Qualitative arguments
allowed us to estimate the temperature dependence of the
thermalization rate, see Eq. (7), in agreement with the
literature on the subject;10–12 see also Ref. 24 for recent
progress. The diagrammatic approach can be applied to the
quantitative computation of other equilibrium properties of
interest. In light of recent literature10–12,24 the whole approach
can be extended to, e.g., various interaction potentials, to
the g4 process,26 and, eventually, to the case of spinful
fermions.
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