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Effect of the boundary on thermodynamic quantities such as magnetization
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In this paper, we investigate in general how thermodynamic quantities such as the polarization, magnetization,
and the magnetoelectric tensor are affected by the boundaries. We show that when the calculation with periodic
boundary conditions does not involve a Berry’s phase, the quantity in question is determined unambiguously
by the bulk, even in the presence of gapless surface states. When the calculation involves a Berry’s phase, the
bulk can only determine the quantity up to some quantized value, given that (i) there are no gapless surface
states, (ii) the surfaces do not break the symmetries preserved by the bulk, and (iii) the system is kept at charge
neutrality. If any of the above conditions is violated, the quantity is then determined entirely by the details at
the boundary. Due to the strong dependence on the boundary, this kind of thermodynamic quantity, such as the
isotropic magnetoelectric coefficient, cannot be measured in the bulk without careful control at the boundary.
One thus cannot distinguish between a topological insulator and a trivial insulator in three dimensions by any
local measurement in the bulk.
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I. INTRODUCTION

Recently, there has been resurging interest in understanding
the general orbital magnetoelectric (ME) response.1–4 This
is due to the fact that the isotropic magnetoelectric effect,
or the so-called θ term, Lθ = (θe2/2πh)E · B with θ = π ,
is suggested to describe the time-reversal-invariant (TRI)
topological band insulator (TBI) in three spatial dimensions
(3d).5 Usually, the signature of the 3d TBI is the existence of
an odd number of Dirac cones on the boundary surfaces, when
the time-reversal symmetry (TRS) is preserved.6 When the
surface states are gapped out by breaking the TRS locally on
the boundaries, a half-integer quantum Hall effect will take
place and give rise to a quantized bulk magnetoelectric
response.5 Later, people discover that this isotropic response
is only a part of the more general anisotropic orbital ME tensor
defined in the bulk:2

αij = αθδij + α3dij ; (1)

we define αθ = 1
3 Trαij , and α3d is therefore traceless. αij

describes either the orbital magnetopolarizability (OMP) or
the orbital electric susceptibility (OES):

αij = dPi/dBj = dMj/dEi ; (2)

OMP and OES are equal via a Maxwell relation.
One peculiarity of the ME tensor is that αθ is only

determined up to integer multiples of e2/h by the bulk band
structure.2,3 The specific value of αθ depends on the details at
the boundary. From the polarization perspective, if we attach
an integer quantum Hall (IQH) layer with filling ν = ±1
respectively on the top and bottom surfaces of a cylinder, the
OMP, i.e., dP/dB, along the axis of the cylinder will change
by e2/h due to the density locking to the magnetic field of
the top and the bottom IQH layer. From the magnetization
perspective, if we attach an IQH layer with filling ν = 1 on
the side surfaces of the cylinder, the OES, dM/dE, will also
change by e2/h due to the extra Hall current flowing on the
surface in response to the electric field. Either way, the ME
effect is only determined up to an integer multiple of e2/h. In
the bulk, this ambiguity corresponds well to the fact that θ as
a coefficient in front of (E · B) is an angle only defined up to

integer multiple of 2π because
∫

E · Bd3xdt is quantized. α

is odd under TRS, but this ambiguity makes it possible for αθ

not to vanish with TRS preserved, as αθ = ±e2/2h differ from
each other by e2/h. αθ = 0 and αθ = e2/2h then describe two
different insulating states of matter under TRS.

However, the above properties raise some questions. From
the polarization perspective this ambiguity from the bulk is
not so surprising since the zero-field polarization is already
ambiguous with periodic boundary conditions.7,8 From the
magnetization perspective, however, this ambiguity is a bit
more puzzling because one commonly regards magnetization
as a bulk property.9,10 In particular, with periodic boundary
conditions there seems to be no reason to expect any ambiguity
in the magnetization, whereas the ambiguity in the polarization
is easily understood.

Before answering this rather specific question, we note that
there is an even more general one: to what extent are thermo-
dynamic quantities such as polarization, magnetization, and
ME response determined by the bulk? Unlike the conventional
thermodynamic quantities, which are entirely independent of
the boundary, we have already seen that boundary sometimes
plays a role. How can we tell when a thermodynamic variable
will depend on the boundary and when it will not?

In the following, we will discuss case by case the ground-
state polarization, orbital magnetization, and the magneto-
electric tensor. We will argue that some of them depends on
the boundary and others do not, and verify our claim with
numerical simulations. By matching the observations with our
previous calculation done with periodic boundary conditions,
we can then directly tell from the calculation with periodic
boundary conditions how different thermodynamic quantities
depend on boundaries.

II. GROUND-STATE POLARIZATION

The ground-state polarization is given by the following
formula with periodic boundary conditions:7

P = −ie

∫
BZ

ddk

2πd

∑
α(k)∈occ

〈α(k)| ∂

∂k
|α(k)〉. (3)
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In one spatial dimension (1d), the polarization is defined
modulo e with periodic boundary conditions: P = P0 + ne,
with n being an integer. This corresponds to the observation
that with periodic boundary conditions we can move every
electron to the next unit cell and return to the original state,
while the two states should, by definition, have polarization
that differ by e. With two ends, the polarization will take one
specific value, depending on the number of charges we put at
the two ends.

However, if there are zero modes at the two ends, the
polarization is then ambiguous, as theoretically we can
consider the superposition of states of different occupancy
of the zero modes. The bulk value of the polarization thus
depends entirely on the boundary.

In 3d it is a bit more interesting. For simplicity let us assume
the system sits on a cubic lattice of size a. Now the bulk formula
has an ambiguity of e/a2, which also corresponds well to the
fact that we can move every electron to the next unit cell and
return to the same state. However, with boundary surfaces the
situation becomes quite different. Consider a capacitor setup.
We are allowed to put any number of charges on each of the
opposing surfaces, resulting in a change of the polarization in
units of e/A (A is the total surface area). In the thermodynamic
limit, we can put any finite density of charges on the surface,
and the polarization in the bulk can take any value. Our
bulk formula is thus no longer valid. To accommodate the
charge on the surface, however, the system needs to either be
in a metallic state near the boundary or to break the lattice
translation symmetry in the two in-plane directions. If neither
condition is satisfied, then we can only add an integer number
of electrons per unit cell, and the bulk formula is recovered,
with the remaining ambiguity determined by the surface.

How can the bulk formula become invalid? We note that
the ground-state polarization can be understood as a Berry’s
phase when one adiabatically turns on the electric field. First,
in order for the Berry’s phase to make any sense, the system
has to be gapped. This is the reason why a metallic surface can
render the bulk formula invalid. Second, if we break the lattice
translation symmetry in the two directions perpendicular to the
electric field, we can no longer integrate over the momentum
in those directions but should instead sum over a large
number of subbands labeled by the remaining momentum
along the direction of the electric field. The polarization
will have an ambiguity of e/A in this case. This is different
from the conventional thermodynamic quantity, which requires
symmetry breaking in the bulk to change its value. The Berry’s
phase is thus a rather fragile thermodynamic quantity.

III. GROUND-STATE ORBITAL MAGNETIZATION

It is not immediately obvious that the orbital magnetization
is independent of the boundary. In the bulk the operator
M̂ ∝ (r × v) is ill defined, with periodic boundary conditions,
and seems to be growing as one goes near the boundary. Indeed,
when one numerically computes 〈M̂〉 summing over the local
orbitals, there is a finite contribution from the boundary
orbitals, which renders the total orbital magnetization different
from the “local” bulk contribution.10 Nevertheless, it has been
shown10 that the boundary contribution is, in fact, independent

of the details at the boundary via the use of local Wannier
functions in an insulator with zero Chern number.

However, in a Chern insulator, a local Wannier function
cannot be found11,12 because the Bloch functions cannot be
periodic and smoothly defined over the Brillouin zone. To
see that even in this case the orbital magnetization is still
independent of the boundaries, we can consider the following
setup.

Suppose we have an insulator with a nonvanishing Chern
number in two dimensions. Let us imagine putting an auxiliary
layer of insulator on top, with an opposite Chern number,
without any interaction with the original one. The new
insulator as a whole has then a total Chern number of zero.
We can therefore make a local Wannier orbital with a linear
combination of orbitals from the two layers.13 The argument
then carries through for the insulator as a whole, and the total
orbital magnetization should be independent of the boundary.
Now since there is no interaction between the two layers, the
total magnetization is just the sum of the magnetizations of the
original insulator and the auxiliary insulator. We now consider
a particular boundary condition where the two insulators
couple to independent boundary terms that also do not interact
with each other. Let us only vary the boundary terms that
couple to the original insulator. The total magnetization cannot
change and neither can the contribution from the auxiliary
insulator. We thus have to conclude that even for a Chern
insulator, the orbital magnetization is independent of the
boundaries.

From this abstract point of view, the generalization to
Chern insulators seems rather trivial. However, the presence of
gapless chiral edge states may cause one to worry. Suppose we
can gate the material to supply a constant chemical potential;
what will happen if we turn up the electric potential on the
edge? Will the edge current decrease because fewer edge states
are occupied, or will it stay the same as required for the bulk
magnetization not to change?

We do a straightforward numerical simulation to resolve
this paradox. We choose the Hamiltonian to be

H =
∑

n

c†n(τz − iτx)cn+x̂ + c†n(τz − iτy)cn+ŷ

+mc†nτzcn + H.c., (4)

where τ are the Pauli matrices. At half filling with m = 1.5, the
band carries a Chern number C1 = 1. If we set the chemical
potential μ = 0, the ground state has no magnetization. If μ

is away from zero, there will be a ground-state magnetization.
We put the Hamiltonian on a 10 × 10 lattice and take open
boundary conditions in both directions. The current on the
vertical links is plotted in Fig. 1. We relate the current to the
magnetization by I b = εab∂aM and take the magnetization
at the middle to represent the bulk magnetization. We see that
while shifting the overall chemical potential creates circulating
currents, altering the electric potential locally at the edge does
not change the bulk magnetization. If we look closer in the
latter case, while the current right at the edge is changed,
there is a counterpropagating current near the edge, which
keeps the total current localized near one edge constant. The
counterpropagating current is just the integer quantum Hall
response to the electric potential gradient. This bulk quantum
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FIG. 1. (Color online) Color-coded plots for the current on the
vertical links of the lattice. The current is measured in arbitrary units.
Currents flowing upwards are plotted in blue, while current flowing
downwards are plotted in red. The currents on the horizontal links are
not plotted. (a) μ = 0.5. As expected, some edge states are occupied,
and we have circulating currents. (Only vertical currents are shown.)
This gives rise to a bulk magnetization. (b) If we set μ = 0 but
locally apply an electric potential V = −0.5 to the first two rows
at the boundary, the edge states are again occupied (the red and
blues near the edge.) However, in the region next to those regions,
counterpropagating currents arise. The bulk magnetization remains
zero (barring some finite-size effect).

Hall current exactly compensates for the current carried by the
now-unoccupied edge states and leaves the bulk magnetization
insensitive to the change of the local potential near the edge.

A very similar puzzle arises in the Sz-conserved spin Hall
insulator. On the edge there are counterpropagating TR-paired
edge states. When we apply a uniform Zeeman field Hz, there
will be a net circulating current from the edge states. We can
therefore deduce a bulk orbital magnetization response to the
Zeeman field. We call this the orbital-Zeeman susceptibility.
However, one can locally break the Sz conservation together
with the TR symmetry near the edge to gap out the edge states.
In this case, will there still be a bulk magnetization response
to the Zeeman field?

We take the previous model for spin-up electrons and pair
it with its time reversal. We applied a uniform Zeeman field
δHz = 0.2

∑
n c

†
nSzcn. The numerical result is shown in Fig. 2.

Here we can see that even though the edge states are gapped
out by the local perturbations, the total current flowing near
the edge remains the same. The local perturbation transfers
the current from the states at the Fermi level to the occupied
bands. In the end, while local properties can affect the gapless
states and gap them out, the total current near the edge in the
vicinity is unaffected.

We therefore conclude that the orbital magnetization, as
well as the orbital-Zeeman susceptibility, is independent of
the boundary for an insulator. While the circulating current
may be carried by the edge states, the total amount is
entirely insensitive to the local boundary conditions. One can
understand this from a calculation with periodic boundary
conditions: the magnetization is calculated as an energy
density in a magnetic field. The total energy, unlike the Berry’s
phase, is a truly extensive property, so that the boundary
contribution is irrelevant in the thermodynamic limit. The
energy density in the bulk is thus entirely independent of the
boundaries far enough away, whether there are gapless states
or not.

FIG. 2. (Color online) (a) and (b) Plots of the spectrum in
ascending order. In (a), the symmetry is preserved on the edge. The
edge states live inside the gap. In (b), by applying a time-reversal and
Sz symmetry-breaking term near the boundary δH = ∑

n∈edge c†nSxcn,
we gap out the edge states. (c) and (d) Color-coded plots for the current
on the vertical links, without and with the symmetry breaking term
δH . While the current distributes slightly differently with or without
the symmetry breaking term at the edges, the contributions to the bulk
magnetization are identical.

IV. MAGNETOELECTRIC EFFECT

After the discussion of the polarization and the magnetiza-
tion and seeing that they are thermodynamic quantities with
very different behaviors, it is thus natural to ask the same
question about the ME tensor and to ask how the Maxwell
relation can be maintained. Before going into the details of
the boundary dependence, however, let us first show that the
anisotropic part α3d is independent of the boundaries.

In terms of electronic Green’s functions and with periodic
boundary conditions, we have derived the ME tensor from the
OMP perspective as a Berry’s phase in a magnetic field:14

αij = (αwzw + α3d)ij ,

αwzwij = −πi

6
εabcdTrS(g∂ag−1g∂bg−1g∂cg−1g∂dg−1g)δij ;

α3dij = − i

6
εabj Tr(g∂ig

−1g∂ag
−1g∂bg

−1g − H.c.). (5)

The traces include the frequency and momentum integral
divided by factors of (2π ); TrS denotes the integral and trace
in one extra dimension in momentum space, with the original
Brillouin zone and a trivial test system as the boundary. While
the entire ME tensor is derived as a Berry’s phase, α3d does
not depend on the Green’s function extended to the extra
dimension. Without considering boundaries directly, we can
show that α3d is independent of the boundaries by showing it
extends smoothly to finite frequency and momentum.

At finite frequency and momentum, the ME response is
understood as a term in the effective action which is pro-
portional to Ei(q,ω)Bj (−q,−ω). Unlike the uniform ME
response, however, this term can no longer be understood
as OMP or OES due to the fact that, unlike uniform
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electromagnetic fields, the electric and magnetic fields at
finite frequency and momentum are related by Faraday’s law.
The term nevertheless affects properties of the propagating
electromagnetic waves. For our purposes, it suffices to show
that the effective Lagrangian is continuous from q = 0 to q →
0. At any q �= 0, we can calculate the effective Lagrangian
with the conventional diagrammatic method. Calculated in the
Appendix, the bubble diagram gives

SME = −
∫

d4q

(2π )4
B�(q)Ek(−q)α3dk� + O(q). (6)

Comparing with Eq. (5), we see that α3d is continuous, whereas
αwzw is entirely absent at finite momentum. One might worry
that we have missed αwzw in momentum space due to the
fact that it is a total derivative in real space, which Fourier
transforms to zero and cannot be seen in momentum space.
However, one can evaluate the diagram in real space, and it
is still absent. Fundamentally, this is due to the fact that the
conventional perturbation theory is perturbative in orders of the
gauge field, which breaks down with uniform field strength.
Nevertheless, combining the two calculations, we can still say
that α3d is a bulk property and is independent of the boundaries.
αwzw, on the other hand, is similar to the polarization: it does
depend on the boundary, but when there is no boundary, it
presents itself as a Berry’s phase. We note that one benefit of
using the Green’s function is that the separation of the local
terms and boundary terms matches exactly how the expression
depends on the extra dimension. That is, as long as the term
can be expressed in terms of the Green’s functions without
being extended to one extra dimension, that term is locally
measurable. This is not the case if we use the density matrices,
either to calculate the same Berry’s phase15 or to calculate a
current response to a pumping procedure.2 In both calculations
the ME tensor naturally separates into two terms, with the first
term independent of the energy gap:

α = αcs + αG; (7)

αcs is isotropic, but αG is not traceless. While αG can
be uniquely determined by the bulk band structure and
is independent of the boundaries, its trace is actually not
measurable in the bulk.

Let us now focus on the isotropic part αwzw. In terms of
polarization in a magnetic field, the ambiguity is no surprise.
However, how does the ambiguity of the orbital magnetization
in a electric field come about?

One origin of the ambiguity is from the fact that the
perturbation of a uniform electric field grows with distance. It
therefore naturally depends on the boundary, when there is one.
When we consider periodic boundary conditions, however, it
becomes less clear.

In order to study the OES with periodic boundary con-
ditions, we first have to properly define the magnetization
with periodic boundary conditions. Without the current at
the boundary, one sensible definition of the magnetization
is from the relation B = H + M . That is, in the absence of
applied current (which generates H ), the magnetization simply
equals the measured magnetic field. Note that with periodic
boundary conditions and a finite volume, the magnetic field is
quantized because the total magnetic flux through the sample is
quantized in units of h/e. In this case we take the perspective

that the magnetic field will take the closest quantized value
to the magnetization while the magnetization itself is still
continuous.

In our previous work,15 we have shown that in a magnetic
field, the θ term, which characterizes the isotropic part of the
OMP, changes the quantization condition of the global electric
flux. The ground state of the system thus carries an electric
flux of −(θe2/2πh)�B + ne, where n is some integer that
minimizes the flux. Using 0 = D = E + P , the θ term thus
gives an isotropic orbital magnetopolarization response ∂P

∂B
=

θe2

2πh
. However, this result is valid only when (�Bθe/2πh) < 1.

In the thermodynamic limit this condition is always violated,
and instead ∂P

∂B
= 0.

Similarly, to see whether the same term contributes to the
OES of the system, we would like to investigate whether
there is a uniform magnetic field when we constrain the path
integral to a given average electric field in the same direction.
However, the electric field and the magnetic field behave in
intrinsically different ways when we formulate our theory
assuming the existence of electric charges and the absence
of magnetic monopoles: the quantization of the electric flux
can change in the presence of the magnetic field, while the
quantization of the magnetic flux is fixed at (h/e). When we
apply an electric flux, we can always imagine that the system is
a coherent state composed of states with integer electric fluxes.
The background magnetic field therefore does not have to be
different from zero. Therefore, even at finite size, the θ term
does not give rise to the OES. The Maxwell relation between
the isotropic OMP and the OES is thus violated. They are only
equal in the thermodynamic limit, where the θ term gives no
contribution for either quantity. In other words, the isotropic
OES is better thought of as a bulk-induced surface response,
which vanishes when there are no boundary surfaces.

Now let us consider geometry with boundaries in some
detail. From the result of Ref. 3, we know that with open bound-
ary conditions in all directions, the OES has an ambiguity
only determined by specific surface boundary conditions. We
have also seen in the Introduction that in a cylinder geometry
the ambiguity of the OES can come from the quantized Hall
current on the side surfaces.

What if there are no side surfaces? Suppose we take periodic
boundary conditions only in two directions to get rid of the
side surfaces. Does the OES still have the same ambiguity?
One naively would expect the situation to be similar to the
case with periodic boundary conditions due to the absence
of the possible circulating Hall currents. However, a more
careful argument shows this is not the case. In fact, the system
will spontaneously generate a magnetic field, which will then
generate surface charge density σ = ±(ν + θ/2π )e2B/h via
the OMP response, to lower the electric energy. Minimizing
the total energy as a function of B, we then get B = M =
(ν + θ/2π )e2E/h. While at finite size the total magnetic flux
is quantized in units of h/e in this setup, in the thermodynamic
limit, the magnetic field will converge to the expected value,
in contrast to the situations with periodic boundary conditions
where it stays at zero. We have numerically confirmed this
result by calculating the magnetization in the electric field
using the momentum space formula for the magnetization
derived in Ref. 10, as shown in Fig. 3.
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FIG. 3. The calculated OES vs n, the number of layers in the
z direction, with the model described by Eq. (73) in Ref. 5 with
θ = 0, m = c = 1. We take θ = 0.5π at the top and bottom layers
to gap out the edge states. (If we take θ = ±0.5π on the two
surfaces, respectively, the whole system will be a Chern insulator
and can no long be kept at charge neutrality without closing the
gap in a magnetic field.) We put on an electric field such that the
potential difference between the top and the bottom layers is 0.2.
The squares show the calculated values. The solid curve is a fit by
assuming a fixed width w of the surface charges when there is a
magnetic field, such that dM

dE
∝ (1 − w

n
). The fit gives dM

dE
= 0.50 e2

h

in the thermodynamic limit and w = 2.54. The OES changes sign as
expected when we change to θ = −0.5π on the boundary.

Before summing up, let us consider how gapless surface
states can alter the ME response. Evidently, if we attach a
fractional quantum Hall state to the side of the cylinder, the
OES is going to change by a fraction of e2/h.16 In general
the fraction is quite arbitrary, so in this case the bulk value
of the isotropic OES is not valid. This corresponds to the
fact that the fractional quantum Hall state has ground-state
degeneracy. In general, we will therefore expect that any
gapless surface state will destroy the bulk description of the
isotropic ME response.

To sum up, the anisotropic part of the ME tensor α3d

is independent of the boundaries. The isotropic part αwzw

depends partially on the boundary. While α3d is a truly
local quantity, αwzw only lives at q = 0. Adding the fact that
both isotropic OES and OMP responses vanish with periodic
boundary conditions in the thermodynamic limit, it is better to
think of αwzw as a quantized surface effect induced by the bulk.

V. CONCLUSION

We have thus gone through polarization, magnetization, and
magnetoelectric responses and have seen their dependence on
the boundary. A bulk calculation done with periodic boundary
conditions contains enough information to predict how the
quantity in question depends on the boundary, however. In
particular, using our formalism described in Ref. 14, any
quantity that does not involve an extension of the Green’s
function to one extra dimension, such as the magnetization in
zero electric field, is independent of the boundary. On the other
hand, quantities that require an extension to extra dimensions,
such as the polarization and the trace of the magnetoelectric
tensor, will depend on the boundary. The bulk can determine
their value up to some quantized amount only when (i) there are
no gapless surface states, (ii) surfaces break no symmetry that
is required to determine the bulk value with periodic boundary
conditions, and (iii) the system is kept at charge neutrality.
If any of the conditions are violated, the surface contribution
will dominate and render the results obtained with periodic
boundary conditions invalid. Thermodynamic quantities of
this kind cannot be measured in the bulk without careful
control at the boundary. Specifically, one cannot perform a
local measurement to distinguish the topological insulator in
3d from a trivial insulator because (i) the coefficient of the θ

term will depend on the boundary and (ii) it is absent at finite q.
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APPENDIX: ME EFFECT AT FINITE MOMENTUM

In the main text we have argued heuristically that the
trace of the ME tensor comes entirely from the surface and
therefore does not contribute at finite momentum. The locally
measurable ME tensor is therefore traceless in the q → 0 limit.
We can directly calculate the ME tensor at finite q: Fourier
transforming and expanding the hopping Hamiltonian up to
second order of Aμ, we have

�H =
∑
k,q

c
†
k+q/2∂uH (k)ck−q/2A

μ(−q) + 1

2

∑
k,q,q ′

c
†
k+(q+q ′)/2∂u∂νH (k)ck−(q+q ′)/2A

μ(−q)Aν(−q ′); (A1)

Hk ≡ ∑
di

tdi
exp(ikdi) is a matrix. Integrating out the electrons, the effective action at quadratic order of Aμ reads

Seff =
∫

d4q

(2π )4

i

2
Aμ(q)Aν(−q)Tr

[
∂μ∂νg

−1(k)g(k) + ∂μg−1(k)g

(
k + q

2

)
∂νg

−1(k)g

(
k − q

2

)]
; (A2)

similarly, the trace includes the integral of energy and momentum divided by 2π . The first term in the trace is from the second
term in Eq. (A1), usually called the paramagnetic current, and does not have q dependence. To compare with Eq. (5), we Taylor
expand the second term to second order in q to get the behavior in the q → 0 limit (from here on, we drop the dependence on k

to avoid clutter):

Seff ∼
∫

d4q

(2π )4
− i

4
qλqσ Aμ(q)Aν(−q)Tr

(
∂μg−1∂λg∂νg

−1∂σ g − 1

2
∂μg−1∂λ∂σ g∂νg

−1g − 1

2
∂μg−1g∂νg

−1∂λ∂σ g

)
+ O(q3).

(A3)
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To further simplify the expression, let us now take the Coulomb
gauge. In the Coulomb gauge, we have to take either λ or σ to
be in the time direction to have the expression contribute to the
ME tensor. Since ∂i∂ωg−1 = 0, we can integrate by part the
time derivative. Using ∂ωg = −g2 and renaming the indices
i,j,k, now running through only the spatial directions, we get

SME ∼
∫

d4q

(2π )4

i

2
ωqiAj (q)Ak(−q)Tr(g∂jg

−1∂ig∂kg
−1g).

(A4)

Now we need to massage the expression a little bit.
Let us use (ijk) as shorthand notation for the expression
Tr(g∂ig

−1∂jg∂kg
−1g). Integrating by parts,14 we have the

following relation:

(ijk) + (jki) + (kij ) = 0. (A5)

We therefore have

(jik) = 2
3 [2(jik) − (ikj ) − (kji)]. (A6)

In the trace in Eq. (A4), only the part symmetric under the
exchange of indices j and k would contribute, as we can change
variables from q to −q, effectively exchanging Aj (q) and
Ak(−q). Therefore, in the expression above, we can exchange
j and k freely. We therefore have

SME ∼
∫

d4q

(2π )4

i

6
ωqiAj (q)Ak(−q)

× [(jik) + (kij ) − (ijk) − (kji)]

=
∫

d4q

(2π )4

i

6
ωqiAj (q)Ak(−q)εij�εab�[(kab) + (bak)].

=
∫

d4q

(2π )4

i

6
B�(q)Ek(−q)εab�[(kab) + (bak)]

≡ −
∫

d4q

(2π )4
B�(q)Ek(−q)αk�(q → 0). (A7)

αk�(q → 0) = − i
6εab�[(kab) + (bak)] is traceless, as the two

terms cancel each other with antisymmetrization.
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