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Performance of the modified Becke-Johnson potential for semiconductors
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Very recently, in the 2011 version of the WIEN2K code, the long-standing shortcoming of the codes based
on density functional theory, namely, its impossibility to account for the experimental band-gap value of
semiconductors, was overcome. The novelty is the introduction of a new exchange and correlation potential,
the modified Becke-Johnson potential (mBJLDA). In this paper, we report our detailed analysis of this recent
work. We calculated using this code, the band structure of 41 semiconductors and found an important improvement
in the overall agreement with experiment as Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] did before for
a more reduced set of semiconductors. We find, nevertheless, within this enhanced set, that the deviation from
the experimental gap value can reach even much more than 20%, in some cases. Furthermore, since there is no
exchange and correlation energy term from which the mBJLDA potential can be deduced, a direct optimization
procedure to get the lattice parameter in a consistent way is not possible as in the usual theory. We analyze
the consequences of this problem. Furthermore we found that using the experimental lattice parameter as input,
surprisingly high deviations of the predicted band-gap value from experiment occur. This is an odd result. A
closer look at the obtained band structures reveals that, in some cases, important differences occur that might
not be negligible. The overall implementation of the calculation of the band structure of semiconductors with
the WIEN2K code using this new potential is quite empirical, although it mimics well the results obtained by
other methods, such as the GW approximation, which give better results and are theoretically well founded. We
conclude that, in spite of the very important improvement in the band-gap agreement with experiment using the
mBJLDA potential, there are issues that point to the fact that this problem is not yet totally closed.
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I. INTRODUCTION

WIEN2K (Ref. 1) has been one of the most used codes
to calculate the band structure of solids since long ago. In
2011, the long-standing shortcoming, i.e., its impossibility to
reproduce the experimental gap of semiconductors, has been
approximately overcome in the WIEN2K 2011 version.2 This
code is based on the full potential (linearized) augmented plane
waves and local orbitals [FP−(L)APW + lo] (Ref. 3) where
a new exchange and correlation potential was introduced.
The result is a very remarkable improvement with respect
to the previous version. Some cases worth noting remain
as an exception but the overall agreement is good. While
computing the gap of a certain number of semiconductors
(41), we found that optimization plays a role since small
differences in the lattice parameter can give, for the same
semiconductor, noticeable differences in the gap. It was
observed that small changes in the lattice parameter between
0.02% and 1.0%, can induce differences between 0.5% and
6.5% (see text below). The optimization procedure gives
the value of the lattice parameter that is consistent with
the minimum of the energy vs volume curve. As such, it
depends on the interchange and correlation energy Exc, used
in the calculation. In principle, it appears that the consistent
procedure should be to use, in the optimization procedure
from which the lattice parameter is obtained, the exchange
and correlation energy functional from which the exchange
and correlation potential to be used in the electronic band
structure is deduced. The previous version of the WIEN2K code
uses either local density approximation (LDA) or generalized
gradient approximation (GGA) in this way, but as it is well
known, neither formulation reproduces accurately enough
the gap of semiconductors. The exchange and correlation

potential, the modified Becke-Johnson potential (mBJLDA),
does a much better job. Blaha et al.2 got the best results
when the lattice parameter is first obtained from a LDA or
a GGA optimization followed by a band structure calculation
using the new mBJLDA exchange and correlation potential.
This way of performing the calculation is necessary since it is
impossible to obtain an expression for a functional Exc such
that the mBJLDA potential is VmBJ = δExc[ρ]/δρ, as in the
usual theory. In this work, we analyze the results obtained with
the mBJLDA to pinpoint its assets and its odds in more detail.
We conclude that even though the overall agreement with
experiment of the band-gap value obtained with the WIEN2K

2011 constitutes a noticeable improvement, there are some
cases and details that point to the fact that the problem might
not really be totally closed.

II. DENSITY FUNCTIONAL THEORY

Several codes were developed based on density functional
theory (DFT) which became the most used, precise, and
practical way to calculate the band structure of solids. The
development of practical approximations to the exchange and
correlation energy functional lead to a remarkable degree of
accuracy to describe even complicated metallic systems. At
the basis of DFT is the Hohenberg-Khon theorem4 which
shows that the knowledge of the density of the ground state is
equivalent to that of the wave function itself. The density of
states of the real ground state many body system is equal to that
calculated from the solution of the Khon-Sham equations,5

[T + VH + Vxc + Vext]ϕi(r) = εiϕi, (1)

where the density is calculated taking into account the occu-
pied states only. In Eq. (1), T is the kinetic energy operator, VH
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is the Hartree potential, Vext is the external potential, and Vxc

is the exchange and correlation potential which is calculated
from the exchange and correlation energy functional, Vxc =
δExc[ρ]/δρ. To solve the Khon-Sham equations (1), an explicit
expression for Exc[ρ] is needed. The exact expression is
unknown since it includes all kinds of correlations between
all the particles in the system. So an approximation is needed.
The first and best known approximation is the LDA,6 which
was followed by the GGA (Ref. 7) and the meta-GGA (Ref. 7),
among others. These potentials reproduce rather well the band
structure of even complicated metallic systems but fail to
reproduce the gap of semiconductors. As a possible empirical
solution to this problem, Blaha et al.2 have reported the
mBJLDA potential, which is a modification of the exchange
and correlation potential of Becke and Johnson (BJ).8 The new
potential reproduces the experimental gap of semiconductors
with accuracy several orders of magnitude better than the
previous version of the WIEN2K code using either the LDA
or the GGA. The mBJLDA potential is

V mBJ
x,σ (r) = cV BR

x,σ (r) + (3c − 2)
1

π

√
5

12

√
2tσ (r)

ρσ (r)
, (2)

where ρσ (r) is the spin-dependent density of states, tσ (r) is
the kinetic energy density, and V BJ

x,σ (r) is the Becke-Roussel
potential (BR).9 The c stands for

c = α +
(

β
1

Vcell

∫
d3r

|∇ρ(r)|
ρ(r)

)1/2

, (3)

where α and β are free parameters. The WIEN2K 2011 code
defines α = −0.012 and β = 1.023 bohrs1/2. These values are
general but certainly fixed experimenting with several cases.
No expression for the exchange and correlation energy is given
and therefore no total energy functional is really possible. It is
in this sense that the formulation might be seen as an empirical
model in spite of its universality. We next explore further some
more details of it.

III. THE OPTIMIZATION PROCEDURE

The optimization procedure in the usual theory, uses the
proposed energy functional to get the structural ground-state
parameters of the solid at T = 0 K. These parameters are
then used in a further step to get the band structure in a
consistent way. It is in this sense that the exact way used
for the optimization procedure is important. The WIEN2K code
allows the calculation of the equilibrium structural properties
of the system, the minimum of the total energy (E0), the Bulk
modulus (B0), its derivative with respect to pressure (B ′

0), and
the equilibrium volume at zero pressure, V0, by fitting the data
to an equation of state (EOS). The code uses either the EOS
by Murnaghan10 or the one by Birch-Murnaghan,11 or else the
so-called EOS2.12 We used the first one,

E(V ) = E0 + B0V

B ′
0

[
1

(B ′
0 − 1)

(
V0

V

)B ′
0

+ 1

]
− B0V0

(B ′
0 − 1)

,

(4)

P (V ) = B0

B ′
0

[(
V0

V

)B ′
0

− 1

]
(5)

TABLE I. The bulk modulus (B0), in GPa and its derivative (B ′
0),

as obtained from the Murghanan fit. The crystal structure is shown in
parentheses. Experimental values were taken from Refs. 13–23.

LDA GGA Expt.

Solid B0 B ′
0 B0 B ′

0 B0 B ′
0

C(A1) 434.34 3.69 432.52 3.99 442 4.03
Si(A1) 92.96 4.35 87.71 4.23 97.82 4.09
Ge(A1) 73.18 4.98 62.45 3.93 75.80 4.55
MgO(B1) 175.52 4.61 149.89 4.18 160.00 4.15
LiF(B3) 69.29 4.91 68.07 4.22 62.00 5.14
AlAs(B3) 73.34 4.78 67.29 4.53 78.10
SiC(B3) 233.85 4.06 214.95 4.11 224.00 4.1
BP(B3) 175.12 3.85 160.91 3.84 173.00 3.76
AlP(B3) 89.70 4.17 82.15 3.97 86.00 3.99
BN(B3) 401.27 3.71 370.10 3.66 369.00 4.00
GaN(B3) 202.45 3.28 177.39 4.11 188.00 3.2
GaAs(B3) 75.15 3.97 67.14 4.03 74.66 4.6

and performed the calculation for some semiconductors (Si,
Ge, AlAs, SiC, BP, AlP, GaN, GaAs, LiF, MgO, and BN),
using the LDA and GGA approximations.

In Table I, we present these results first for the Bulk modulus
(B0) and its derivative with respect to pressure (B ′

0). We can
see that when calculated with the LDA, the deviations from
experiment of the Bulk modulus and its derivative oscillate
roughly between 1% and 12%, with the GGA between 4%
and 18%. The values for the bulk modulus as compared
to experiment are overestimated in all cases but three (Si,
Ge, and AlAs) when an LDA optimization is used. For a
GGA optimization, all are underestimated but two (LiF and
BN). The GGA optimization gives a better agreement with
experiment in 5 of the 11 semiconductors considered (MgO,
LiF, AlP, BN, and GaN). Looking at the derivative of the
bulk modulus with respect to pressure (seven experimen-
tal results reported), the GGA optimization gives a better
agreement with experiment in four cases (Si, Ge, MgO, and
GaN).

One problem with the mBJLDA potential is that since no
exchange and correlation energy functional Exc is defined
within this formulation, no consistent optimization procedure
is possible. This shortcoming is the result of the empirical
character of the mBJLDA potential. As a somehow empirical
and inconsistent solution to this shortcoming, Tran and
Blaha2 suggested starting with a GGA (or LDA) optimization
and introducing the lattice parameter value obtained into
the band structure calculation code that uses the mBJLDA
potential.

In Table II, we present the lattice parameter a, calculated
with LDA, GGA, its average value aavg (aavg = (aLDA +
aGGA)/2), and the experimental reports at low temperature
(LT) and at room temperature (RT). Notice that the LDA
gives rise to deviations of the lattice parameter that are always
below the experimental value (except for the values of a in
hexagonal structures) while exactly the opposite arises with
the GGA (except for the values of c in hexagonal structures).
GGA results in a shift toward higher values of the equilibrium
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TABLE II. Lattice parameters (a) obtained from the Murnaghan fit. The aavg values are the average value between aLDA and aGGA. The
experimental data, at LT and RT, are from Refs. 23–25.

Lattice parameters a (Å)

Solid aLDA aGGA aavg a
Expt.
LT a

Expt.
RT

C(A1) 3.5339 3.5731 3.5535 3.5667a 3.5668
Si(A1) 5.4073 5.4738 5.4406 5.4298a 5.4310
Ge(A1) 5.6269 5.7586 5.6928 5.6524a 5.6579
MgO(B1) 4.1635 4.2569 4.2102 4.2052a,b 4.2110
LiF(B3) 3.9152 4.0710 3.9931 4.0300
AlAs(B3) 5.6329 5.7304 5.6817 5.6605a 5.6614
SiC(B3) 4.3378 4.3944 4.3661 4.35853K

c 4.3596
BP(B3) 4.4937 4.5510 4.5224 4.5383
AlP(B3) 5.4371 5.5110 5.4741 5.4635
BN(B3) 3.5831 3.6268 3.6050 3.6155
GaN(B3) 4.4663 4.5626 4.5145 4.5230
GaAs(B3) 5.6050 5.7401 5.6726 5.6523a 5.6533
BAs(B3) 4.7314 4.8085 4.7700 4.777
InP(B3) 5.8239 5.9535 5.8887 5.86574.8K 5.87875
AlSb(B3) 6.1084 6.2209 6.1647 6.1355
GaSb(B3) 6.0449 6.2086 6.1268 6.09593
GaP(B3) 5.3912 5.5084 5.4498 5.4469a 5.4508
InAs(B3) 6.0185 6.1804 6.0995 6.0584
InSb(B3) 6.4497 6.6363 6.5430 6.4794
CdS(B3) 5.7636 5.9304 5.8470 5.8320
CdTe(B3) 6.4166 6.6198 6.5182 6.4675d 6.4810
CdSe(B3) 6.0169 6.1995 6.1082 6.0770
ZnS(B3) 5.3083 5.4524 5.3804 5.4102
ZnSe(B3) 5.5826 5.7401 5.6614 5.6680
ZnTe(B3) 6.0129 6.1854 6.0992 6.0890
MgS(B1) 5.1358 5.2342 5.1850 5.2030
MgS(B3) 5.5985 5.7018 5.6502 5.6220
MgSe(B1) 5.3993 5.5129 5.4561 5.4600
MgTe(B3) 6.3836 6.5187 6.4512 6.4230
BaS(B1) 6.2743 6.4313 6.3528 6.3890e

BaSe(B1) 6.4792 6.6604 6.5698 6.5950e

BaTe(B1) 6.8647 7.0680 6.9664 7.0070e

CaO(B1) 4.7177 4.8346 4.7762 4.8110
CuCl(B3) 5.2101 5.4403 5.3252 5.4093a,b 5.4202
CuBr(B3) 5.5264 5.7391 5.6328 5.6764a 5.6900
AgF(B1) 4.7946 5.0224 4.9085 4.9360
AgI(B1) 6.3656 6.6416 6.5036 6.4990
GaN(B4) b 3.2027 3.2051 3.2039 3.1980

d 5.1408 5.1330 5.1369 5.1850
InN(B4) b 3.5715 3.5751 3.5733 - 3.5480

d 5.6845 5.6729 5.6787 5.7600
AlN(B4) b 3.1200 3.1211 3.1206 3.1113a,f 3.1120

d 4.9565 4.9529 4.9547 4.9793a,f 4.9820
ZnO(B4) b 3.2675 3.2604 3.2640 3.24824.2K

g 3.2500
d 5.1736 5.1653 5.1695 5.20404.2K

g 5.2070

aExtrapolated values.
bReference 26.
cReference 27.
dReference 28.
eReference 29.
fReference 30.
gReference 31.

volume which might be thought of as a kind of relaxation due to
the use of derivatives of the local density in the functional. The
experimental lattice parameters were taken from Refs. 23–25.

In Table II, we first compare the lattice parameter obtained with
an LDA optimization to experimental data taken at LT and at
RT. In the first case, we find, in general, small differences
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(0.6%–1%), except for CuBr and CuCl (2.6% and 3.7%,
respectively). In the second case, the differences are usually
below 1.3% but can rise up to 3.9% as in CuCl. If we use
the GGA approximation the differences are slightly higher in
general.

We will show below that the use of the average lattice
parameter aavg, results in a gap value that is always in better
agreement with experiment. We give an error statistics analysis
of this result in Table III to emphasize its validity. To obtain
aavg has a low computational extra cost.

IV. BAND STRUCTURE CALCULATIONS

In Fig. 1, we compare the band structure for Si, Ge,
GaAs, and LiF calculated with the LDA and with the
mBJLDA potential. As a general result, this potential causes
a rigid displacement of the conduction bands toward higher
energies with respect to the top of the valence band, with
small differences in the dispersion at some regions of the
Brillouin zone but reproducing, in general, the characteristic
behavior of the bands for each semiconductor according to
experiment23,24,32,33 as the WIEN2K code used to. If we look at
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FIG. 1. (Color online) The band structure obtained for Si, Ge, GaAs, and LiF with LDA and mBJLDA. The origin is at the top of the
valence band. In parentheses the crystal structure is shown.
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TABLE III. Lattice parameter error statistics for compounds of
Table II, in Å.

Error relative to LT experiments
aLDA aGGA aavg

MEa −0.046 0.047 0.00041
MAEb 0.050 0.055 0.025
SDc 0.046 0.049 0.034

Error relative to RT experiments
aLDA aGGA aavg

MEa −0.055 0.055 −0.00009
MAEb 0.058 0.066 0.026
SDc 0.048 0.055 0.034

aMean error.
bMean absolute error.
cStandard deviation.

the resulting band structures in more detail, we see that a rigid
displacement of only the conduction bands as to reproduce the
mBJLDA predicted gap value will cause some differences in
the upper conduction bands, although the ones just above the
upper gap edge will match quite well with the calculation
using the mBJLDA potential. This is roughly true for the
first three semiconductors presented in Fig. 1. LiF deserves
a more detailed discussion. In Fig. 2, we show the result of
such a displacement. We can see that clear differences arise
that might influence a calculation of a system containing LiF
as one of its elements. So, we conclude that, in general, a
rigid displacement of a band structure calculation with the old
formulation of WIEN2K will not be accurate enough for certain
purposes, as it might occur in the calculation of the band
structure of certain interfaces containing a semiconductor as
one of its elements, for example. The direct use of the previous

FIG. 2. (Color online) The band structure obtained for LiF with
LDA and mBJLDA.

version of the WIEN2K code in this case, will not be accurate
enough as well.

In Table IV, we show the result of the calculation using the
mBJLDA potential with the aLDA, aGGA, and aavg to survey
the respective differences in the gap value as compared to
experiment.23–25 We can see that if we use the lattice parameter
from a LDA optimization, mBJ(aLDA), the prediction for the
gap deviates by less than 10% for 21 of the 41 semiconductors
considered, between 10% and 20% for 9 of them, and more
than 20% for the remaining 11 (Ge and GaAs among them).
Using GGA, we get 19, 14, and 6, respectively. When using
the average value of the two, we get 25, 7, and 7, a result
that improves the calculation at relatively low computational
cost. There are, nevertheless, two semiconductors that we did
not include in the two last cases just presented: MgS(B3) and
MgTe. It turns out that both the calculation using aGGA and that
using aavg give the wrong result that the gap is indirect, while
aLDA gives rise to a correct direct gap for both semiconductors
and predicts its value with a less than 10% deviation in both
cases. Further, to explore the absolute capacity of the mBJLDA
potential to predict the gap value correctly, we have used the
experimental lattice parameter value at low temperature (aLT)
where it existed in the literature to perform the calculation.
It is interesting that the result is not as good as one would
expect, as can be seen from Table IV. This calculation shows
the best that the mBJLDA potential can do, a result that might
be important to bear in mind. It appears that when no data are
available, the best result is obtained by taking the average of
the lattice parameters resulting from an LDA optimization and
a GGA one. Furthermore, it is interesting to observe that small
differences in the lattice parameter can give rise to noticeable
differences in the predicted value for the gap. An example of
this is Ge. As small a difference in the lattice parameter as
0.5% (LDA) gives rise to a 23% deviation of the gap value
as compared to experiment. Within the GGA optimization,
a 1.9% lattice difference generates a 5.4% off value for the
gap and a 0.6% difference in the lattice parameter gives an
8.1% difference in the gap when the average is taken. A
very interesting issue is that when the experimental value of
the lattice parameter is introduced into the mBJLDA code,
important deviations from experiment occur. In Table IV,
we have included 14 semiconductors for which we found an
experimental low temperature lattice parameter value. We get
the experimental gap value only for one of them (Si). With
less than 10% deviation, we found seven (C, MgO, AlAs, SiC,
GaAs, GaP, and CdTe); a deviation between 10% and 20%
occurs in three (Ge, InP, and AlN). Very important deviations
from experiment occur in CuCl (47.5%), and CuBr (45.3%).
These results are facts to bear in mind for a proper evaluation of
the performance of the mBJLDA potential since the quality of
the optimization procedure is judged from the deviation of the
predicted lattice parameter from the experimental value. This
judgment implies that the best result for the predicted band-gap
value is obtained when the experimental lattice parameter is
introduced into the code. Actually any code should, first of
all, be examined in this sense so that the selection of an
optimization procedure based on the deviation of the predicted
lattice parameter from experiment, really makes sense. So, the
mBJLDA potential gives rise to inconsistencies that emphasize
its empirical character.
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TABLE IV. Calculations of the gap (Eg) in eV, from the potential mBJLDA using the parameters in Table II. The lattice parameter aavg is the
average value between aLDA and aGGA. The experimental values were taken from Refs. 23–25. The crystal structure and percentage difference
with respect to experiment is shown in parentheses.

Gap

Solid EmBJ(aLDA)
g EmBJ(aGGA)

g EmBJ(aLT)
g E

mBJ(aAvg)
g EExpt.

g

C(A1) 4.98 ( −9.1%) 4.92 ( −10.2%) 4.93 ( −10.0%) 4.95 ( −9.7%) 5.48a

Si(A1) 1.13 ( −3.4%) 1.20 (2.6%) 1.17 (0.0%) 1.17 (0.0%) 1.17a

Ge(A1) 0.91 (23%) 0.70 ( −5.4%) 0.84 (13.5%) 0.80 (8.1%) 0.741.5K

MgO(B1) 7.57 ( −2.6%) 6.88 ( −11.5%) 7.26 ( −6.6%) 7.22 ( −7.1%) 7.777.7K

AlAs(B3) 2.13 ( −4.5%) 2.22 ( −0.4%) 2.14 ( −4.0%) 2.17 ( −2.7%) 2.234K

SiC(B3) 2.21 ( −8.7%) 2.28 ( −5.8%) 2.26 ( −6.6%) 2.26 ( −6.6%) 2.422K

AlP(B3) 2.28 ( −6.9%) 2.37 ( −3.3%) 2.33 ( −4.9%) 2.454K

GaN(B3) 3.13 ( −10.6%) 2.74 ( −21.7%) 2.94 ( −16.0%) 3.501.6K

GaAs(B3) 1.84 (21.1%) 1.28 ( −15.8%) 1.62 (6.6%) 1.56 (2.6%) 1.52a

InP(B3) 1.70 (19.7%) 1.34 ( −5.6%) 1.59 (12.0%) 1.52 (7.0%) 1.421.6K

AlSb(B3) 1.76 (4.8%) 1.84 (9.5%) 1.80 (7.1%) 1.6827K

GaSb(B3) 1.20 (46.3%) 0.68 ( −17.1%) 0.90 (9.8%) 0.82a

GaP(B3) 2.18 ( −7.2%) 2.30 ( −2.1%) 2.24 ( −4.7%) 2.24 ( −4.7%) 2.35a

InAs(B3) 0.77 (83.3%) 0.34 ( −19.0%) 0.55 (31.0%) 0.424.2K

InSb(B3) 0.59 (145.8%) 0.09 ( −62.5%) 0.31 (29.2%) 0.241.8K

CdS(B3) 2.68 (8.1%) 2.52 (1.6%) 2.61 (5.2%) 2.484.2K

CdTe(B3) 1.80 (12.5%) 1.54 ( −3.8%) 1.73 (8.1%) 1.67 (4.4%) 1.60a

CdSe(B3) 1.99 (12.4%) 1.77 (0.0%) 1.87 (5.6%) 1.77a

ZnS(B3) 3.85 (1.0%) 3.55 ( −6.8%) 3.70 ( −2.9%) 3.81a

ZnSe(B3) 2.90 (2.8%) 2.56 ( −9.2%) 2.74 ( −2.8%) 2.826K

ZnTe(B3) 2.52 (5.4%) 2.19 ( −8.4%) 2.38 ( −0.4%) 2.392K

MgS(B1) 4.12 ( −8.4%) 4.02 ( −10.7%) 4.07 ( −9.6%) 4.5077K

MgS(B3) 5.18 ( −4.1%) 5.405K
b

MgTe(B3) 3.59 ( −2.2%) 3.672K
c

CaO(B1) 7.55 ( −3.2%) 6.97 ( −10.6%) 7.31 ( −6.3%) 7.80a,d

CuCl(B3) 2.00 ( −41%) 1.72 ( −49.3%) 1.78 ( −47.5%) 1.85 ( −49.3%) 3.392K

CuBr(B3) 1.83 ( −40.4%) 1.62 ( −47.2%) 1.68 ( −45.3%) 1.71 ( −44.3%) 3.071.6K

AgF(B1) 1.80 ( −35.7%) 2.44 ( −12.9%) 2.22 ( −20.7%) 2.804.8K

AgI(B1) 2.72 ( −6.5%) 2.83 ( −2.7%) 2.77 ( −4.8%) 2.914K

GaN(B4) 3.13 ( −5.2%) 3.13 ( −5.2%) 3.13 ( −5.2%) 3.3010K
e

InN(B4) 0.82 (15.5%) 0.82 (15.5%) 0.82 (15.5%) 0.7110K
f

AlN(B4) 5.52 ( −10.8%) 5.53 ( −10.7%) 5.56 ( −10.2%) 5.53 ( −10.7%) 6.197K
g

ZnO(B4) 2.77 ( −19.5%) 2.77 ( −19.5%) 2.72 ( −20.9%) 2.76 ( −19.7%) 3.44a

LiF(B1) 13.80 (1.5%) 12.92 ( −5.0%) 13.40 ( −1.5%) 13.6300K
h

BP(B3) 1.80 ( −10.0%) 1.87 ( −6.5%) 1.83 ( −8.5%) 2.00300K

BN(B3) 5.86 ( −5.5%) 5.83 ( −6.0%) 5.85 ( −5.6%) 6.20300K

MgSe(B1) 2.95 (19.4%) 2.84 (15.0%) 2.89 (17.0%) 2.47300K

BaS(B1) 3.23 ( −16.8%) 3.37 ( −13.1%) 3.31 ( −14.7%) 3.88300K

BaSe(B1) 2.80 (21.8%) 2.94 ( −17.9%) 2.87 ( −19.8%) 3.58300K

BaTe(B1) 2.13 ( −30.8%) 2.34 ( −24.0%) 2.24 ( −27.3%) 3.08300K

BAs(B3) 1.69 (15.8%) 1.75 (19.9%) 1.72 (17.8%) 1.46300K

aExtrapolated values.
bReference 34.
cReference 35.
dReported value are direct gap at 
.
eReference 39.
fReference 36.
gReference 37.
hReference 38.

We finally present in Table V, the statistical analysis of the
gap value obtained from a band structure calculation with the
mBJLDA potential using as input different lattice parameters
obtained from different optimization procedures. The use of

the average lattice parameter clearly gives the best result. It
is worth noting that when the experimental parameter at low
temperature, mBJ(aLT), is introduced in the code to calculate
the band gap values, we get, in some cases, deviation form
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TABLE V. Band-gap error statistics for compounds in Tables IV,
in eV (see text).

Error relative to LT experiments
mBJ (aLDA) mBJ (aGGA) mBJ (aprom) mBJ (aLT)

MEa −0.15 −0.32 −0.24 −0.87
MAEb 0.33 0.35 0.30 0.45
SDc 0.44 0.43 0.42 1.99

Error relative to RT experiments
mBJ (LDA) mBJ (GGA) mBJ (aprom)

MEa −0.25 −0.30 −0.27
MAEb 0.48 0.47 0.44

aMean error.
bMean absolute error.
cStandard deviation.

the experimental value of the gap that are not expected, in
principle.

In a further work40 we compare the predicted band-gap
value as obtained by different methods in the literature.
The theoretically well found GW approximation gives rise
to the best predictions. Nevertheless the mBJLDA empirical
potential results compare acceptably well.

V. CONCLUSIONS

We have calculated using the empirical mBJLDA
potential,2 the band structure of 41 semiconductors and ob-
tained their band gap value, which we compared to experiment.
In this formulation, there is no expression for the exchange
and correlation energy so that the mBJLDA potential can
be obtained from it, as in the usual theory. Due to this
shortcoming, no consistent optimization procedure is possible.
This is due to the empirical character of the mBJLDA potential.
As an empirical solution to this problem, Tran and Blaha2

suggest the use of an LDA or a GGA optimization to get the
lattice parameter that goes a further step into the code that
calculates the band structure using the mBJLDA potential. As
an overall first sight picture, the mBJLDA potential causes

a rigid displacement of the conduction band toward higher
energies so as to considerably improve the agreement with
experiment of the band-gap values. A closer look reveals that,
in some cases, there are noticeable deviations from a rigid
displacement of the band structure calculated with the previous
version of the code that might result in wrong conclusions,
as could happen when the band structure of an interface is
calculated, for example. We explored at this point the resulting
band-gap predicted value as a function of the lattice parameter
used. We found two important facts. First, the best result
for the band-gap value is obtained, in general, if the average
lattice parameter aavg is used (aavg = (aLDA + aGGA)/2), where
aLDA(aGGA) is the lattice parameter that results from a LDA
(GGA) optimization. Second, another important result is
that if we take the experimental lattice parameter into the
code using the mBJLDA potential, important deviations from
the experimental gap value are obtained, a result to bear
in mind for a detailed analysis of the performance of the
mBJLDA potential. This result is important since it shades the
optimization procedure in the sense that a lattice parameter
closer to experiment does not guarantee a better prediction
for the band gap. In spite of the above observations, our work
shows that for the 41 semiconductors considered, the mBJLDA
potential represents an important improvement as compared to
the results obtained from the previous version of the code. This
procedure, all together, only mimics many-body results. But
the mimic is not so bad for reasons that do not seem to have a
theoretical foundation.

In a further work40 we have compared the performance of
some different methods in the literature to predict the band
gap of semiconductors. We find that the GW approximation
(GWA), a theoretical well-founded method, gives the best
result. The empirical potential, in spite of the several problems
and shortcomeings described in this work, gives predictions
that compare acceptably well. Another factor that might be
considered is the computational cost. GWA has a higher
computational cost. It should be mentioned that this factor
loses importance as new computer facilities spread all over
the world, as is happening nowadays. We find, nevertheless,
that there are still important issues to be fixed in DFT before
we consider the proper prediction of the band-gap value of
semiconductors a closed problem.
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